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First, a fuzzy system based on if-then rules and with parametric consequences is recalled. Then, it is shown that the global
and local � -insensitive learning of the above fuzzy system may be presented as a combination of both an � -insensitive
gradient method and solving a system of linear inequalities. Examples are given of using the introduced method to design
fuzzy models of real-life data. Simulation results show an improvement in the generalization ability of a fuzzy system
trained by the new method compared with the traditional and other � -insensitive learning methods.
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1. Introduction

The support vector machine (SVM) is historically the first
method based on the main result of statistical learning the-
ory, i.e., the generalization ability of a machine depends
on both the empirical risk on a training set and the com-
plexity of this machine. For an in-depth study of statisti-
cal learning theory, see (Vapnik, 1995; 1998; 1999). The
SVM has been successfully applied to a wide variety of
classification and regression problems.

In the last few years, there has been increasing in-
terest in fuzzy systems which incorporate well-known
tools from statistical learning theory. Fuzzy clustering
with a weighted (or fuzzy) � -insensitive loss function
was introduced in (Łęski, 2001; 2003a; 2004a). The
above method leads to improved robustness to outliers
with respect to traditional fuzzy clustering methods. Sup-
port vector fuzzy regression machines were introduced in
(Hong and Hwang, 2003). A support vector interval re-
gression network was established in (Jeng et al., 2003). A
differentiable approximation of the misclassification rate
and using the empirical risk minimization principle to im-
prove the learning of a neuro-fuzzy classifier is proposed
in (Castellano et al., 2004). The work (Chiang and Hao,
2003) reports the support vector fuzzy clustering method.
An � -insensitive approach to the learning of neuro-fuzzy
systems was introduced in (Łęski, 2001) and extended in
(Łęski, 2002a; 2002b; 2003b; 2004b). A similar approach
to training a classifier, called the fuzzy support vector ma-

chine, was independently introduced in (Lin and Wang,
2002). The concept of the fuzzy kernel perceptron is pre-
sented in (Chen et al., 2002).

From the above-mentioned methods the � -
insensitive approach to the learning of neuro-fuzzy
systems is of special interest in this work. This approach
is based on the premise that human learning, as well
as thinking, is tolerant of imprecision. Instead of the
usually used quadratic loss function, an � -insensitive
loss function is used which assumes a zero loss for the
difference between a model and the reality less than some
pre-set value, noted as �. If this difference is greater than
�, then the loss increases linearly. �-insensitive learning
is based on the connection between fuzzy modeling and
statistical learning theory where easy control of system
complexity is permitted. Learning tolerant to imprecision
always leads to a better generalization ability and robust-
ness to outliers compared with the traditional methods
(Łęski, 2003b). In the previous works �-insensitive
learning was used for the consequences of if-then rules
only. The premises of if-then rules were selected using
preliminary fuzzy clustering in the input space. Such
selected premises remain unchanged in the learning
process. However, in the traditional approach to fuzzy (or
neuro-fuzzy) modeling both premises and consequences
of if-then rules are adjusted during the process of learning
(Czogała and Łęski, 2000; Jang et al., 1997; Rutkowska,
2001; Rutkowski and Cpalka, 2003). Thus, the main
purpose of this work is to answer the following question:
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Does the method for adjusting the premises of if-then
rules based on the gradient descent approach lead to fuzzy
systems with an improved generalization ability with re-
spect to �-insensitive learning used for the consequences
of if-then rules only? A key to the approach in this paper
are the following changes to the �-insensitive learning of
a fuzzy system:
(1) An �-insensitive gradient descent approach to adjust-
ing the parameters of premises. Such an approach is com-
mon in the context of traditional neuro-fuzzy modeling.
(2) An �-insensitive learning method for the parameters
of consequences by a modified Solving a System of Lin-
ear Inequalities algorithm. In this approach the problem
of the estimation of consequence parameters with the con-
trol of the complexity of the model will be shown for both
global and local approaches.
(3) A fuzzy system based on if-then rules with parametric
consequences. In this case, the fuzzy systems well-known
from the literature may be treated as a special type of this
fuzzy system.

The main goal of this work is to introduce global
and local �-insensitive learning of a fuzzy system, in
which both premises and consequences are adjusted dur-
ing learning. For the sake of generality, new learning
methods will be shown on a fuzzy system based on if-then
rules with parametric consequences. The next goal is to
investigate the generalization ability of the fuzzy system
obtained by means of new learning methods for real-world
benchmark data. We also include a comparison with tradi-
tional approaches to fuzzy modeling and a state-of-the-art
method based on the support vector machine.

The problem solved in this paper may be more for-
mally defined as follows: Suppose we have the training
set � ��� � ����, ���, ���, ���, � � � , ��� , �� ��, where
� stands for data cardinality, and each independent input
datum �� � �

� has a corresponding dependent output
datum �� � �. Let us define the testing set � ���� �
������, �����, �����, �����, � � � , ����� ,���� ��,
where � denotes data cardinality. We seek a knowledge-
base of a fuzzy system on the basis of the training set
� ���. The quality of the obtained knowledge-base is mea-
sured using the generalization ability. It refers to produc-
ing a reasonable output of a fuzzy system for a data pair
unused during the process of extracting the knowledge-
base. Throughout this paper, the generalization error is
determined as a root mean squared error (RMSE) calcu-
lated on the testing set � ����. Indeed, the error refers to
the difference between a fuzzy model output and a desired
(output) datum from the testing set.

The remaining part of the paper is structured as fol-
lows: A short description of a fuzzy system based on
if-then rules with parametric consequences is recalled in
Section 2. Section 3 presents an introduction of an �-
insensitive learning method of the parameters of conse-

quences by a modified Solving a System of Linear In-
equalities algorithm (�LSSLI). An �-insensitive gradient
descent approach to adjusting the parameters of premises
is presented in Section 4. Hybrid learning algorithms of
the parameters of premises and consequences are intro-
duced in Section 5. Section 6 presents simulation results
and a discussion of fuzzy modeling of real-world high-
dimensional data. Finally, conclusions are drawn in Sec-
tion 7.

We now describe our notation. All vectors and
matrices will be denoted in boldface. Vectors will be
in columns. Transposed vectors will be denoted by
superscript�. The notation� � ���� , � � �� denotes a
real ��� matrix and a real �-dimensional vector, respec-
tively. The diag��� denotes a diagonal matrix with diag-
onal elements taken from the vector �. ���� and ����

denote a vector of dimension � � � with all entries equal
to � and a vector of dimension��� with all entries equal
to �, respectively. The identity matrix will be denoted by
�. 	� stands for �-norm 
 operation. For a fuzzy set
�, �� �� denotes its membership function. Throughout
this paper, the notation���� ��� ��� will denote the area
under the membership function �� ��. The �-insensitive
loss function will be denoted by ���� � 	�
 ���� � �� ��,
where � 	 � is an insensitivity parameter and � is an
arbitrary scalar.

2. Fuzzy Systems with Parametric
Consequences in If-Then Rules

In this section, fuzzy rules with parametric consequences
will be used to recall the important fuzzy systems which
are basic in further deliberations. The above systems are
selected because the fuzzy systems well-known from the
literature may be treated as a special type of a fuzzy sys-
tem based on if-then rules with parametric consequences.

Let us assume that � fuzzy if-then rules with � inputs
and one output (MISO) are given. The �-th rule in which
the consequent is represented by a fuzzy set � ��� ���
whose membership function depends on parameter vec-
tor � may be written in the following form (Czogała and
Łęski, 2000):

�
��� � IF�� IS �

���
� AND � � � AND �� IS �

���
� �

THEN � IS ���� ��� (1)

or in a pseudo-vector notation:

�
��� � IF� IS ����, THEN � IS ���� ��� � (2)

where
� � ���� ��� � � � � ��

� (3)
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and ��� ��� � � � � �� and � are linguistic variables which
may be interpreted as inputs of a fuzzy system and the
output of that system. �

���
� � �

���
� � � � � � �

���
� are linguis-

tic values of the linguistic variables ��� ��� � � � � �� and
���� ��� is a linguistic value of the linguistic variable
� . The vector � consists of parameters of input fuzzy
sets (their height or the localization of their centers of
gravity). Fuzzy modeling allows finding nonlinear mod-
els of reality where knowledge is obtained as a set of
the above-mentioned if-then rules with linguistically in-
terpreted propositions. Fuzzy modeling is based on the
premise that human thinking is tolerant of imprecision and
the real world is too complicated to be described precisely
(Zadeh, 1973). Fuzzy modeling has an intrinsic inconsis-
tency. It may perform thinking tolerant of imprecision,
but the traditional learning methods are zero-tolerant of
imprecision. The approach to fuzzy modeling presented
in this paper is based on the premise that human learning,
as well as thinking, is tolerant of imprecision.

A collection of the above-written rules for � �
�� �� � � � � � creates a rule base which may be fired by the
singleton inputs

�� IS �� AND � � � AND �� IS �� (4)

or, shortly,
� IS ��� (5)

In the above case the �-th fuzzy if-then rule has the form

�
��� � IF �� IS �

���
� AND � � � AND �� IS �

���
� �

THEN � IS ���� ���� (6)

and may be called the fuzzy if-then rule with a moving
fuzzy consequent (Łęski and Czogała, 1999). In the case
when fuzzy singletons are used as inputs, the vector �

may consist of localizations of singletons only. So, � �
��. A conclusion output fuzzy set for the �-th rule may be
written in the form (Czogała and Łęski, 2000):

�	���������� � 
����� 	�� �	��� ������� (7)

where 	�� stands for a conjunctive interpretation of the
if-then rule and


����� � �
�
���
�
���� 	� � � � 	� �

�
���
�

����

� ����� ���� (8)

denotes the firing strength of the �-th rule. Equation (8)
represents an explicit connective (AND) of the predicates
�
 IS �

���

 ; � � �� �� � � � � �, in the premise of the �-th

fuzzy if-then rule.

A final crisp value of the system output for a nor-
malized sum as aggregation, COG defuzzification and the

algebraic product used for if-then rules interpretation may
be evaluated from the formula (Czogała and Łęski, 2000):

�� ���� �

��
���

���� �������� ��	���� �������

��

��

���� ��	���� �������

� (9)

where ����� is a resulting conclusion for the �-th if-then
rule before aggregation and � ��� is the location of the cen-
ter of gravity of the fuzzy set � ����:

���� ���� � COG ��	���� �������

�

�
��	���������� ���
�	���������� ��

� (10)

Usually, we assume that locations of fuzzy sets in
consequences are linear combinations of the inputs ��:

���� ���� � �
���
� � �������� � ��������� (11)

where ���� �
�
�
���
� � ��������, �� denotes the parameter

vector with a bias element excluded, the superscript �
stands for transposition and ��� denotes an extended input

vector ��� �
�
�����

��
.

It is worth noting that for singletons as fuzzy sets in
consequences of if-then rules and the algebraic product
used for the interpretation of if-then rules, the well-known
Takagi-Sugeno-Kang fuzzy system is obtained (Czogała
and Łęski, 2000; 2001). On the other hand, the Mamdani-
Assilan fuzzy system is obtained for fuzzy sets in conse-
quences which do not depend on �� (Czogała and Łęski,
2000; 2001).

Let us assume that the consequents � ��� of the �-th
if-then rule have symmetric triangle (isosceles triangle)
membership functions with the width of the triangle base
equal to ����. The ���� ��	���� ���� should be determined
to evaluate the fuzzy system output on the basis of (9).
From the definition of � ��� and (7) we have

���� ��	���� ������� �
����

�

������ (12)

A crisp value of the output for the fuzzy system can
be evaluated from the following formula (Czogała and
Łęski, 2000):

�� ���� �

��
���

����
����� �
�������

��

��

��
�

����

� (13)
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For the sake of simplicity ���� � const, for � �
�� �� � � � � � , is used in this work. Thus, a crisp value of
the output may be written as

�� ���� �

��
���


����� �
�������

��

��



����

� (14)

The system described by (14) can be interpreted as
a mixture of expert models. The response of the �-th ex-
pert (if-then rule) for the input �� is ��������. The final
output of the system is obtained as a weighted average of
local experts outputs. The non-negative weight of asso-
ciation between �� and the �-th expert is 
�����. Thus,
nonlinear models of reality can be described as a combina-
tion of simple linear models. It is well-known in machine
learning that too precise learning on a training set leads to
overfitting (overtraining), which results in a poor gener-
alization ability. The generalization ability is interpreted
as the production of a reasonable decision for data previ-
ously unseen in the training process. Statistical learning
theory has recently emerged as a general theory for the
estimation of dependencies from a finite set of data (Vap-
nik, 1995). The most important issue in this theory is the
Structural Risk Minimization (SRM) induction principle.
The SRM principle suggests a tradeoff between the qual-
ity of an approximation and the complexity of the approx-
imating function (Vapnik, 1995; 1998). A measure of the
approximation function complexity (or capacity) is called
the VC-dimension. One of the simplest methods to control
the VC-dimension is to change the insensitivity parameter
� in the loss function and to enforce the flatness of the
approximating function by a regularization constant (Vap-
nik, 1995; 1998; 1999). The above approach will be used
in the fuzzy system described by (14) in the next section.

The output value �� of the system in Eqn. (14) may
be considered to be a linear combination of unknown pa-
rameters ����. If we introduce the following notation:

���� ���� �

�����
��


��



����

� (15)

� ���� �
�
���� �����

��
� � ���� �����

��
� � � � � �

���� �����
��
�

��
� (16)

	 �
�
������������ � � � ������

��
� (17)

then (14) may be written in the form

�� ���� � � ����
�
	� (18)

Indeed, membership functions for the premises of if-
then rules (6) should be selected to evaluate (18). Typi-
cally, the problem of estimation values of these functions
is solved by means of preliminary clustering of the input
part of the training set using the fuzzy �-means method
(Chen et al., 1998; Pedrycz, 1984; Czogała and Łęski,
2000 and Setnes, 2000). The premise fuzzy set of the �-th
rule has a membership function ����� ���� � �

�  ��� �.
In case of Gaussian membership functions and the al-
gebraic product used as the �-norm modeling AND, the
fuzzy premise is defined as

����� ���� �

��
���

�
�

�	
�
�
�� � �

���
�

��

��
���
�

��

� �
�

�	
��

�

��
���

�
�� � �

���
�

��

�
���
�

�� � (19)

where the parameters �
���
� , �

���
� , � � �� �� � � � � �; � �

�� �� � � � � � are centers and dispersions of membership
functions for the �-th rule and the �-th input variable, re-
spectively.

Usually, the learning of fuzzy systems presented
above may be executed using the following schemes (Czo-
gała and Łęski, 2000; Jang et al., 1997 and Rutkowska,
2001):

� the parameters from the premises and consequents
of if-then rules are adjusted separately. First, the
premise parameters are adjusted using unsupervised
learning—the clustering of the input data using the
fuzzy �-means method. Second, the consequents pa-
rameters are adjusted by means of the gradient de-
scent method or the least squares method.

� the parameters are adjusted in two-phase learning.
First, as in the previous method, the premise parame-
ter are adjusted using unsupervised learning. Second,
all parameters (premise and consequent) are adjusted
by means of the gradient descent method.

� First, the premise parameters are adjusted using un-
supervised learning. Finally, in each iteration the pa-
rameters ���� are estimated on the basis of the least
squares method, whereas the parameters ����� , ����� by
means of the gradient descent method.

There are two approaches to using the least squares
method: first, to solve one global Least Squares (LS)
problem, for all if-then rules; second, to solve � inde-
pendent weighted LS problems, one for each if-then rule
(Łęski, 2002a). The first approach leads to better global
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performance, while the second one leads to more reliable
local performance. In this work both approaches, i.e.,
global learning and local learning will be used to intro-
duce the idea of �-insensitive learning of premises and
consequences of a fuzzy system.

3. �–insensitive Learning of Consequences
of If-Then Rules

LS learning methods use the quadratic loss function to
match the reality and a fuzzy model. In this case only
perfect matching between the reality and the model leads
to a zero loss. The approach to fuzzy modeling presented
in this section is based on the premise that human learning
as well as thinking is tolerant of imprecision. Hence, an
�-insensitive loss function is used and learning methods
based on this loss function lead to so-called �-insensitive
fuzzy modeling (Łęski, 2001; 2002a; 2003b; 2004a). In
further parts of this section, the problem of the estima-
tion of consequence parameters with the control of the
complexity of the model will be shown for both global
and local approaches. We seek the consequence parame-
ters vector 	 on the basis of a set of independent iden-
tically distributed (i.ı...) data pairs called a training set
� ��� � ����, ����

�
���, where � is data cardinality and

each independent datum �� � �
� has a corresponding

dependent datum �� � �.

3.1. Problem Formulation

Using the �–insensitive loss function for an arbitrary
scalar � (Vapnik, 1995):

���� �

�
�� ��� � ��

��� � �� ��� � ��
(20)

where � 	 � denotes the insensitivity parameter, the
global learning criterion function has the following form
(Łęski, 2003b):

	��
���������

� �	� �
��
���

�
�� �	

�� ����
�
�
�

�

�
�	� �	�

(21)
where �	 � �������, ������, � � � , ������� is a narrowed
vector 	, with excluded components corresponding to the
biases (see Eqn. (11)); ���� ��� is the �-th pair from the
training set. The second term in (21) is related to the min-
imization of the Vapnik-Chervonenkis dimension (com-
plexity) of the regression model (Vapnik, 1998). The pa-
rameter � � � controls the trade-off between regression
model complexity and the amount up to which errors are
tolerated.

In the local approach to learning fuzzy system pa-
rameters of each if-then rule are obtained separately.

Thus, to obtain � if-then rules the minimization of the
respective criterion function should be done �-times. Us-
ing the �-insensitive loss function, the local learning crite-
rion function for the �-th if-then rule has the form (Łęski,
2001; 2002a):

	��
���������

�
���
�

�
����

�
�

��
���

���� ����
�
����

�������

�
�

�
�

�
������������ (22)

The above equation is called the weighted �-
insensitive estimator (or fuzzy �-insensitive) with com-
plexity control (Łęski, 2002a).

As we saw in (Łęski, 2001; 2002a; 2002b), the
determination of the parameters 	 or ���� leads to a
quadratic programming (QP) problem with bound con-
straints and one linear equality constraint. For a large
training set, standard optimization techniques quickly be-
come intractable in their memory and time requirements.
Thus, the work (Łęski, 2004a) proposes a computationally
effective algorithm called incremental learning. An alter-
native approach called the iterative QP solution, which de-
termines the parameters in the fuzzy modeling problem,
is presented in (Łęski, 2002a). The third approach to �-
insensitive learning presented in (Łęski, 2003b) leads to a
problem of solving a system of linear inequalities. In this
paper this idea is used to solve the problem of fuzzy mod-
eling with �-insensitive learning. However, a new mod-
ified method of solving a system of inequalities will be
introduced.

If we define�� � �� ���� �� ���� � � � � �� ��� �
�
�

�
��������, � � ��� , ��, � � � , �� � � �

� , the mini-
mization problem (21) can be rewritten in the matrix form

	��
�

� �	� � �� ���	�������
�

�

�
	���	� (23)

where ���� denotes the vector of dimen-
sion � � � with all entries equal to �; �� �
diag���������� ���

�
���� � � � � ���

�
���� �� ���

�-times

; ������ de-

notes a weighted Vapnik loss function defined for
the vector argument 
 � ���� ��� � � � � �� � and weights
� � ���� ��� � � � � �� � as (Łęski, 2002a):

�
���� �

��
���

�� ����� � (24)

If we denote �� � ������
�
�� � � � ��

�
� � � ��������,

then the minimization problem (22) for the �-th rule may
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Table 1. Notations used in global and local �-insensitive learning.

Notation Global learning Local learning (�-th rule)

� � ��� �� �� �

� � �
�
������������ � � � ������

��
���� �

�
�
���
� � ������

��
� �� � �� ����� �� ����� � � � � �� ������

�
�� � ������

�
�� � � � ��

�

� �
�

� ���� 	��� �
�
���� ���� � �

��� ���� � � � � � �
��� ��� �

��
�
 �� � diag

��
�������� ���

�

���� � � � � ���
�

���� �� �
	�


�-times

�� � diag
��

�� �����

��

be easily rewritten in the form similar to (23), i.e.,

	��
����

�
���
�

�
����

�
�

�
� ����

���
�
������

�
�

�
������������

(25)

where

�� � ����
��

�������

���
�

���� �
�
���� ���� � �

��� ���� � � � � � �
��� ��� �

��
�

Thus, both global and local learning of consequence
parameters can be presented as a solution of the following
minimization problem:

	��
�

� �� � �� � ����� �
�

�
� ��� (26)

where  � ���� ��� � � � � �� 
�

� �
� , � � �

��� ,
� � � ��  �� � � � �  � 

�
� �

� , �� � �
��� . The mean-

ing of the notations , �, �� and others is summarized in
Table 1.

Now, the problem of �-insensitive learning of the
consequences of rules for both global and local ap-
proaches is equivalent to the minimization of the criterion
(26). An iterative method for the minimization of (26) was
proposed in (Łęski, 2002b; 2003b). A modified Solving a
System of Linear Inequalities algorithm (�LSSLI) will be
introduced in the next subsection.

3.2. A New Algorithm for Learning Rule
Consequences

The main problem with the minimization of (26) is how
to make the first term mathematically tractable. We see
that the first term is equal to zero when the follow-
ing requirements are satisfied: � � ����� � � and
� � ����� ! �. These inequalities may be rewrit-
ten in the form � � � � ����� � ���� and �� �

� � ����� ! ����, where ���� denotes the vector
of dimension � � � with all entries equal to zero. We
may multiply both sides of the above inequalities by the
parameter " � �: "� � " �� � ������ � ���� and
�"��" �� � ������ ! ����. The role of this param-
eter will be explained later.

Let us now define the following vectors and matrix:

� � ", � �
�
�� � "

��
,

�� �

�
� �� � �����

�� � � �����

�
� (27)

Taking into account the above definitions, our inequalities
may be written as

��� � ������ (28)

Thus, if the above system of inequalities is fulfilled, then
the first term of (26) is equal to zero. In practically in-
teresting cases, not all inequalities in the above system
may be fulfilled (except for the case where � is large
enough to make all the data fall into the insensitivity re-
gion). Note that the solution of the inequality system
��� � ����� is equivalent to the solution of the equal-
ity system ��� � �, where � is an arbitrary positive vec-
tor, � � �����. Indeed, we do not know �. However, the
method described below enables us to obtain both  � and
� in such a way as to maximize the degree of fulfillment
of (28).

Let us first define the error vector as 
 � ��� � �.
If the �-th, � � � � �� , component of 
 is greater
than zero, i.e., �� � �, then the �-th equality is not ful-
filled. However, the corresponding �-th inequality is ful-
filled. Additionally, we can get �� � � by increasing the
respective component of �, i.e., #�. In this case, the re-
quirement � � ����� will still be satisfied. On the other
hand, if the �-th component of 
 is negative, then neither
the �-th equality nor the �-th inequality are fulfilled. Note
that it is impossible to decrease #� and fulfill the condition
#� � �. In the original algorithm (Łęski, 2002b), the value
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of #� remains unchanged. However, in the current formu-
lation of the problem we have the parameter " � � (in the
original algorithm " � �). The advantage of this formu-
lation is the possibility to decrease the components of �
and simultaneously fulfill the condition � � �����. For
example, if we set " � ���, then both sides of ��� � �

are divided by �. So, the elements of the vector � are
divided by 2. Although all components are divided simul-
taneously, the respective components can be increased in
successive iterations. In conclusion, we can iteratively in-
crease or divide the components of the vector � until the
components of the error vector 
 are negative for inequal-
ities which are not fulfilled and equal to zero for inequali-
ties which are fulfilled.

Our minimization problem (26) can be approximated
by the following:

	��
��� �������

� ����� � ���� � ��
�
�� ���� � ��

�
�

�
��

���� (29)

where

�� � ����
��
�����

���
and �� �

� �� �

� �

�
� (30)

As we can see, the first term of (29) may be rewritten
as 
���
. From the above we know that the elements
of the vector � will be iteratively changed until the ele-
ments of the error vector 
 are equal to zero for satisfied
inequalities and negative for unsatisfied inequalities. So,
the first term of (29) is a measure of the degree of fulfill-
ment of the analysed inequality system. For mathematical
simplicity, the above criterion is an approximation of (26)
because the squared error is used rather than the absolute
error. After describing the algorithm for the squared er-
ror, in the further part of this section, an algorithm for
the absolute error will be obtained using an iteratively re-
weighted least-squares method.

We obtain conditions for optimality by differentiat-
ing (29) with respect to �, �:�������

$� �����

$�
� ���� �� ���� � �� � � ����

$� �����

$�
� ���� ���� � ��

(31)

and setting the results equal to zero:��� � �
�
��� ���� �

�
�
�����

��� ����


 � ��� � � � ��
(32)

From the first equation (32) we see that vector �
depends on the vector �. The only way to prevent �
from converging to zero is to start with � � �����

and to refuse to decrease any of its components. Ho and
Kashyap proposed an iterative algorithm for alternately
determining � and �, where the components of � can-
not decrease (Ho and Kashyap, 1965; 1966). The solution
is obtained in an iterative way. The vector � is deter-
mined on the basis of the first equation from (32), i.e.,


�
	
� �

�
��� ���� �

�
�
�����

��� ���
�
	, where the super-

script �� denotes the iteration index. The components of
the vector � are modified by the components of the error
vector 
, but only in the case when it results in increas-
ing the components of �. Otherwise, the components of
� remain unmodified. So, we write this modification as
follows:

��
��	 � ��
	 � %��

 

�
	 �

!!
�
	!!"� (33)

where % � � is a parameter. Taking into account the sec-
ond equation (31), we see that (33) may be treated as the
gradient descent modification of �:

��
��	 � ��
	�
%

�

�$� ���"
$�

!!!
������

�
!!!$� ���"

$�

!!!
������

!!!�� (34)

In the above equation the traditional gradient descent
method is modified in such a way that if any component of
the gradient vector is positive, then it is set to zero. So, we
see from (33) that the components of � can increase the
only. However, the introduction of the parameter ", as ex-
plained before, causes all components of � to be divided
by " � �.

For mathematical simplicity, the criterion (29) is an
approximation of (26) because the squared error rather
than the absolute error is used. Note that the criterion (29)
may be rewritten for the absolute error as

� ����� �
�
�����

�
���� � ���

�

�
��

���
�

�
�����

�
�
��

�

�
��

���� (35)

Taking into account the equality

�
� �

���
���

���� �

���
���

���
����

� 
�diag

#
�

����
�

�

����
� � � � �

�

���� �

$

� (36)

where �� is the �-th component of the error vector, the



J. Łęski and T. Czogała264

criterion (35) may be rewritten as

� ����� � 
�diag

#
 �

����
�
 �

����
� � � � �

 �

���� �

$

�

�

�
��

����
(37)

Thus, comparing (29) and (37), the absolute error crite-
rion equivalent to (26) is easily obtained by selecting the
following diagonal weight matrix: �� � diag� � ����� ,
� � � ,  � ���� � ,  � ������� � � � ,  � ����� � �. However,
the error vector depends on �, so, we use the vector �
from the previous iteration. This procedure is based on the
premise that the sequential vectors �
	� differ impercepti-
bly near the optimum solution.

The procedure of seeking optimal � and � may be
summarized in the following steps:

1. Fix � 	 �, % � � and ���	
� � diag(

�
�����

��
).

Initialize ���	 � �����. Set the iteration index � �
�,

2. �
	� �
�
��� �

�
	
� �� �

�
�
�����

��� �
�
	
� �

�
	,

3. 
�
	 � ��
�
	
� � ��
	,

4. ��
��	
� � ����

�
 �

Æ!!��
	�

!!� � � � �  �Æ!!��
	�

!!�
 �

Æ!!��
	���

!!� � � � �  �Æ!!��
	��

!!�,

5. ��
��	 � ��
	 � %�
��	
�

 

�
	 �

!!
�
	!!",
6. if � � � and

%%%�
	�

Æ
"�
	 � 

�
��	
�

Æ
"�
��	

%%%
�
! &, then

go to Step 7, else � � � � �, go to Step 2.

7.  � 
�
	
�

Æ
"�
	. STOP.

An iterative method for the minimization of (26)
based on � -insensitive Learning by Solving a System
of Linear Inequalities (�LSSLI) was proposed in (Łęski,
2002b; 2003b). The above-introducedalgorithm is a mod-
ified version of this algorithm and may be called �LSSLI1.

4. �–insensitive Learning of Rule Premises

Let us observe that for Gaussian membership functions of
the rule premises (19), the following unknown parameters
should be determined: �

���
� , ����� for � � �� �� � � � � � and

� � �� �� � � � � � . Usually, the above-mentioned unknown
parameters are estimated by means of fuzzy �-means clus-
tering (Łęski, 2002a). Indeed, in our case we have � clus-
ters. So, the name fuzzy �-means method will be better.
In this method each input vector ��; � � �� �� � � � � � ,
is assigned to clusters represented by the prototypes � �;
� � �� � � � � � measured by the grade of membership
'�� � ��� �. The �� ��� -dimensional partition matrix

� comes from the set of all possible fuzzy partitions into
� clusters and is defined by

����

&
� � ����

!!!! �
�����
�����

'�� � ��� ��

��
���

'�� � ��

� !

��
���

'�� ! �

'
� (38)

The fuzzy �-means criterion function has the form
(Bezdek, 1982):

(������ �
��
���

��
���

�'���
�
)���� (39)

where � � ��� , � � ������� � � � ���  � �
��� and

� is a weighting exponent in �����. The quantity
)��� is the following norm: )��� � ��� � ���

�
�

��� � ���
�
��� � ���.

It can be proved that a local minimum of the criterion
(39) may be obtained by an iterative method of commu-
tative modification of the partition matrix and prototypes
(Bezdek, 1982):

�
�����
�����

'�� �

�
 ��
���

#
)��

)��

$ �
���

���

� (40)

�
�����

�� �

��
���

�'���
�
��

��
���

�'���
�

� (41)

The optimal partition is a fixed point of (40) and (41),
and the solution is obtained from the Picard iteration. The
fuzzy �-means can be described in the following steps:

1. Fix � �� ! � ! ��� � � �����. Initialize ���� �
��� . Set the iteration index, � � �.

2. Calculate centers for the �-th iteration ���� �

��
���
� ��

���
� � � � � ��

���
�  using (41) and����.

3. Update the fuzzy partition matrix������ for the ���
��-th iteration using (40).

4. If
%%������ �����

%%
�

� �	, then � � � � � and go
to Step 2, else STOP.

���� denotes the Frobenius norm (����� �Tr���� � ��
�

�
� '

�
��) and �	 is a pre-set parameter. There is no

theoretical basis for the optimal selection of �, and usu-
ally � � � is chosen.

According to the above-written algorithm, the cal-
culations are initialized using a random partition matrix
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� which fulfils conditions from (38). Such a method
leads to the local minimum of the criterion (39). There-
fore, the most frequently used solution consists in multiple
repeated calculations in accordance with the above algo-
rithm for various random realizations of the initial parti-
tion matrix. Usually, validity indices which measure the
cluster quality are used. One of the most popular valid-
ity indices is the extended Xie-Beni index (Xie and Beni,
1991):

�XB �

��
���

��
���

�'���
�
)���

�	��

 ���

��
 � ���
� (42)

Indeed, we search a fuzzy �-partition for which the
index �XB is minimal, that is, minimizing the compact-
ness of clusters whilst maximizing their separation. As a
result of preliminary clustering of the training set, the fol-
lowing assumption for the initialization of the premises of
parameters is made:

�
���
� �

��
���

'�� ��

��
���

'��

(43)

and

�
�
���
�

��

�

��
���

'��

�
�� � �

���
�

��

��
���

'��

� (44)

where '�� denotes the membership degree of the vector
�� � ���� ��� � � � � ��

� from the training set to the
�-th cluster (to the premise of the �-th if-then rule).

Frequently, the above-described method of obtaining
the premises of rules is used for the initialization of a gra-
dient descent method (Łęski and Czogała, 1999). The
measure of the error of the system output value may be
defined for a single pair from the training set as

*� � + ��� � �� ����� � (45)

where ��, �� ���� denote the desired (target) and actual
value of the system output for ��, respectively. The func-
tion + ��� stands for a loss function. Most frequently a
quadratic loss function is used, that is, + ��� � �

� ���
�. The

�-insensitive loss function (20) will be used in this paper.
For the entire training set, we define the error function as
the average of *�:

* �
�

�

��
���

*�� (46)

In the so-called batch mode of learning, parameters
are updated after the presentation of all examples from

the training set, called an epoch. Thus, the minimization
of the error * is made iteratively (for the parameter � �
��

���
� � �

���
� ������������� ):

�new � �old � ,
$*

$�

!!!!
���old

� (47)

where , � � is the learning rate parameter.

In the sequential mode of learning (the stochastic
mode), parameters are updated after the presentation of
each example from the training set. From the point of view
of real-mode the sequential mode is preferred. In addition,
given that examples are presented in a random manner to
the system, the search is stochastic. In this case, it is less
probable for a learning algorithm to be trapped in a local
minimum.

Taking into account (14) we may express the partial
derivatives of the error *� with respect to the unknown
parameters from the premises of rules as

$*�

$�
���
�

� ��

����� ����� �� ����
�����
��


��



����

�� � �
���
��

�
���
�

�� �

(48)

$*�

$�
���
�

� ��

����� ����� �� ����
�����
��


��



����

��� � �
���
� ���

�
���
�

�
 �

(49)
where

�� �
$*�

$�� ����

!!!!

��
�

� (50)

Indeed, for the quadratic loss function, we obtain �� �
� ��� � �� �����. Using the � -insensitive loss function,
the measure of the error for the �-th example has the form
(Vapnik, 1998):

*� � ��� � �� ������

�

�
�� ��� � �� ����� � ��

��� � �� ����� � �� ��� � �� ����� � ��

(51)

In the above case, the quantity�� takes the form

�� �
$*�

$�� ����

!!!!

��
�

(52)

�

�
�� ��� � �� ����� � ��

sgn ��� � �� ����� � ��� � �� ����� � ��
(53)

where sgn��� denotes the signum function.
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A very simple operation speeding up convergence is
proposed by Jang et al. (1997). In (47), the learning rate
parameter is selected in a special way:

�new � �old �
-(

��
���

�
��
���

��

�������old

$*

$�

!!!!
���old

� (54)

where � denotes the number of optimized parameters, in
our case, � � ��� ; - � � is the so-called step size. If in
four successive steps of gradient descent learning the error
* increases and decreases commutatively, then the step
size is decreased, that is, multiplied by �� ! �. However,
if in four successive steps of gradient descent learning the
error * decreases, then the step size is increased, that is,
multiplied by �� � �.

5. Hybrid Learning Algorithms

Learning algorithms which incorporate techniques de-
scribed in previous sections will be introduced in this sec-
tion. Let us assume that the following parameters are
given: the number of if-then rules � 	 �, the insensitivity
parameter � 	 � and the regularization parameter � � �.
A method of obtaining these parameters will be described
later. The following learning algorithms are proposed:

� �-LS-�-gradient. First, the parameters of the
premises of rules are obtained using the fuzzy �-
means algorithm. Next, the parameters of the con-
sequents of rules are obtained using �LSSLI1 (in a
local or global manner). Then, the above initial pa-
rameters of rules are adjusted iteratively. Each itera-
tion consists of �-insensitive gradient descent modi-
fication of the parameters of premises and determin-
ing the parameters of consequences by the �LSSLI1
method (local or global). For the gradient method the
parameters of consequences are treated as fixed, and
for the �LSSLI1 method the parameters of premises
are treated as fixed. The iterations are stopped when
parameters in successive iterations differ impercepti-
bly.

� �-LS-gradient. This algorithm is similar to the �-LS-
�-gradient method, however, the quadratic loss func-
tion is used in the gradient descent modification of
the parameters of premises.

� �-LS. First, the parameters of the premises of rules
are obtained using the fuzzy �-means algorithm.
Then, the parameters of the consequents of rules are
obtained using the �LSSLI1 method (local or global).
The iterative modification of the parameters of rules
is not performed.

� LS-gradient. First, the parameters of the premises
of rules are obtained using the fuzzy �-means algo-
rithm. Next, the parameters of the consequents of
rules are obtained using a weighted Least Squares
(LS) method (in a local or global manner). Then, the
above initial parameters of rules are adjusted itera-
tively. Each iteration consists of the gradient descent
modification (the quadratic loss function) of the pa-
rameters of premises and determining the parameters
of consequences by the LS method (local or global).
For the gradient method the parameters of conse-
quences are treated as fixed, and for the LS method
the parameters of premises are treated as fixed. The
iterations are stopped when parameters in successive
iterations differ imperceptibly.

� LS. First, the parameters of the premises of rules are
obtained using the fuzzy �-means algorithm. Then,
the parameters of the consequents of rules are ob-
tained using the LS method (local or global). The it-
erative modification of the parameters of rules is not
performed.

Indeed, the above-mentioned algorithms are simpli-
fied versions of the �-LS-�-gradient method. Thus, let us
start from the presentation of the �-LS-�-gradient method.
The initial values of premise parameters are obtained us-
ing the fuzzy �-means algorithm. For a fixed number
of clusters, � 	 �, the clustering is repeated �� times
for a different random initialization of the partition ma-
trix �. The clustering algorithm is presented at the be-
ginning of the previous section. The following values of
parameters are used: � � � (the weighting exponent)
and �	 � � � ���
 (the parameter in the stopping con-
dition). Finally, clusters corresponding to the minimal
value of the Xie-Beni index (42) are used. Then, the ini-
tial values of the parameters of the premises ����� , ����� for
� � �� �� � � � � � and � � �� �� � � � � � are determined using
(43) and (44).

The further part of the algorithm consists of commu-
tative performance of �LSSLI1 and � -insensitive gradi-
ent descent modification of the parameters of premises.
The �LSSLI1 algorithm was precisely described at the
end of Section 3.2. The meaning of the notation used in
this algorithm for local and global learning is summarized
in Table 1. The algorithm is performed for given values of
� (the insensitivity parameter) and � (the regularization
parameter). The iterations are stopped as soon as the norm
in a successive pair of � vectors is less than & � �����
.
The selection of the parameter values � ��	 � ����� and
% � � will be done in the experimental part of the pa-
per. Indeed, for local learning, the �LSSLI1 algorithm is
performed � times, one for each rule and for global learn-
ing simultaneously for all rules. The �-insensitive gradi-
ent descent method modifies the parameters of premises,
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i.e., ����� , ����� for � � �� �� � � � � � and � � �� �� � � � � � in
the batch mode using (54). The gradients of * with re-
spect to �

���
� , ����� are cumulated by means of (48), (49)

and (53). Initially, the step size is set to ����. If in four
successive steps of gradient descent learning the error *

increases and decreases commutatively, then the step size
is decreased, i.e., - � ��� -. On the other side, if in
four successive steps of gradient descent learning the er-
ror * decreases, then the step size is increased, that is,
- � ��� -.

Now, the whole �-LS-�-gradient algorithm may be
summarized in the following steps:

1. Fix � 	 �, � � �, � 	 �.

2. Repeat �� times the fuzzy �-means algorithm for a
different random initialization of the partition matrix
�.

3. Initial values of the parameters of the premises
�
������	
� , �

������	
� are determined using (43) and (44)

from clustering corresponding to the minimal value
of the Xie-Beni index (42).

4. Set the iteration index, . � �, and the step size, - �
����.

5. Determine the parameters of the consequences
�������	 using the �LSSLI1 algorithm with �

������	
� ,

�
������	
� .

6. Cumulate gradients with the respect parameters
�
������	
� , �������	� .

7. Update the premise parameters �
��������	
� , �

��������	
�

using (54).

8. Determine the error measure (46) for the .-th itera-
tion, * ��	.

9. If . � � and * ��	 ! *����	 and * ����	 ! *����	

and * ����	 ! *���
	 and * ���
	 ! *����	, then
- � ��� -.

10. If . � � and * ��	 ! *����	 and * ����	 � *����	

and * ����	 ! *���
	 and * ���
	 � *����	, then
- � ��� -.

11. If . � � and
!!*��	 �*����	

!! ! � � ����, then stop,
else .� .� � go to Step 5.

In the above algorithm the superscript �. denotes
the iteration index. If in the �-LS-�-gradient algorithm
�� � � ��� � �� ����� will be used instead of the quan-
tity �� from (53), then the �-LS-gradient algorithm is
obtained. In the �-LS algorithm the iterative modification
of rule parameters is not performed. Thus this algorithm
consists of the following steps:

1. Fix � 	 �, � � �, � 	 �.

2. Repeat �� times the fuzzy �-means algorithm for a
different random initialization of the partition matrix
�.

3. Values of the parameters of the premises �
���
� , �����

are determined using (43) and (44) from clustering
corresponding to the minimal value of the Xie-Beni
index (42).

4. Determine the parameters of the consequences � ���

using the �LSSLI1 algorithm with �
���
� , ����� . STOP.

The LS-gradient algorithm may be easily obtained
by replacing the determination of the parameters of con-
sequences by the least squares (LS) method in the �-LS-
gradient algorithm. Using notations from the previous
sections, the global LS solution to the consequent param-
eters can be written in the matrix form as

	 �
 
��
���

"��
��
� �� (55)

where �� � �� ����� �� ����� � � � � �� ���� �
�

�

�
��������, � � ���� ��� � � � � �� 

�
� �

� . The lo-
cal LS solution to the consequent parameters of the �-th
rule can be written in the matrix form as

���� �
�
��

� �
�����

���

��
� �

����� (56)

where�� � ������
�
�� � � � ��

�
� 
�
� �������� and���� �

diag����������, ��������, � � � , ������� ���. The same
values of premise parameter as in the � -insensitive learn-
ing algorithms are used.

Finally, the LS algorithm consists of the following
steps:

1. Fix � 	 �.

2. Repeat �� times the fuzzy �-means algorithm for a
different random initialization of the partition matrix
�.

3. Values of the parameters of the premises �
���
� , �����

are determined using (43) and (44) from clustering
corresponding to the minimal value of the Xie-Beni
index (42).

4. Determine the parameters of the consequences � ���

using (55) and (56) with �
���
� , ����� . STOP.
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6. Numerical Experiments and Discussion

Experiments were run on a Pentium IV ���� GHz proces-
sor running Windows XP and the MATLAB ��� environ-
ment. In all experiments, ���	 � ����� and % � ���
were used in �LSSLI and �LSSLI1 methods. The iter-
ations for the �LSSLI method were stopped as soon as
the Euclidean norm in a successive pair of the � vec-
tors was less than & � ����. The iterations for the
�LSSLI1 method were stopped as soon as the Euclidean
norm in a successive pair of the ��" vectors was less
than & � ����. For global and local �-insensitive learn-
ing the standard fuzzy �-means clustering method was
used with the weighted exponent � � �. The iterations
were stopped as soon as the Frobenius norm in a succes-
sive pair of partition matrices was less than ���
. For
the number of clusters fixed the clustering was repeated
�� times for a different random initialization of the parti-
tion matrix. Finally, clusters corresponding to the minimal
value of the Xie-Beni index were used.

6.1. Tests for the �LSSLI1 Method

The purpose of this experiment was to compare the perfor-
mance of the �LSSLI1 method proposed in the paper with
that of the original method �LSSLI. A two-dimensional
(one input and one output) data set consists of a pair of
true linear function with mixed Gaussian and Bernoulli-
Gaussian random noise. The true but unknown (for algo-
rithms) model is � � ���� ��� � �, where � represents
random noise. Thus, the true parameters are �� � ���,
�� � ���. The training set consists of ��� samples of the
linear model. Each datum pair ��� ��� was generated by
the following technique: first, a uniform random number
� was generated in ��� ����, next, the value of �� was
obtained using the linear model and mixed Gaussian and
Bernoulli-Gaussian random noise � � � � �. Bernoulli-
Gaussian noise was generated as follows (Mendel, 1983):
�� � ��/�. In this model / has a Bernoulli distribution
with the parameter 0:

Prob �/�� �

�
0� /� � ��

�� 0� /� � ��
(57)

The � and � have zero-mean Gaussian distributions with
the variance 1�

� , 1
�
� , respectively. The variables �, / and

� are statistically independent. In the experiment, the fol-
lowing values of parameters were used: 0 � ��� and
1� � �� and 1� � �. Parrameter � was taken from
the range � to �� (the step ���) and � was changed in
the range from � to ��� (the step ���). The vector of
weights was ���� � ����. After the training stage using
LS, �LSSLI and �LSSLI1 methods, the performance of
these methods was determined as a Sum of Squared Error

(SSE) (difference between true and estimated model pa-
rameters):

SSE � ��� � )���� � ��� � )���� � (58)

where ��, �� denote true but unknown (for the algorithm)
values of model parameters, and )��, )�� stand for the pa-
rameters of the model obtained by the LS, �LSSLI or
�LSSLI1 method. The above-mentioned training stage
was repeated ��� times on different realizations of a train-
ing set. The average performance of the tested methods is
as follows: LS—������, �LSSLI—������ for � � ���
and � � ���, �LSSLI1—������� for � � ��� and
� � ���. It is worth noting that the mean number of itera-
tions needed to fulfil the stop condition is ��� for �LSSLI
and �� for the �LSSLI1 method. Thus, experiments show
that the proposed approach outperforms LS and performs
competitively to the original �LSSLI method.

6.2. Real World High–Dimensional Data

The purpose of these experiments was to compare the gen-
eralization ability of a fuzzy system learned using hybrid
algorithms introduced in Section 5 and the classical (zero-
tolerance) learning. The following benchmark databases
were used:

� Data originating from the Box and Jenkins (Box and
Jenkins, 1976) work concerning the identification of
a gas oven. Air and methane were delivered into the
gas oven (gas flow in ft/min—an input signal  ���)
to obtain a mixture of gases containing CO� (per-
centage content—output signal � ���). The data con-
sisted of ��� pairs of input-output samples with a �
sec. sampling period. In order to identify the model,
the following vectors were used as the input: x� �
����� ��� � � � � ���� ��� ��� ��� � � � � ��� ��

�

and the output: �� � ����. The learning set con-
sists of the first ��� pairs of data and the testing set
consists of the remaining ��� pairs of data.

� ECG signal from the MIT-BIH database—the record
numbered ���. The sampling frequency of that sig-
nal is equal to ��� Hz and the quantization step
size is ��V. The learning process was conducted for
the first ��� samples. The testing set consists of
���� samples. The order of the model was equal
to � and a nonlinear one-step predictor was built.
Thus, the following vectors were used as the input:

�� � ���� ��� ��� ��� ��� ��� ��� ��
�

and the output �� � ���.

Remarks

1. It should be noted that for the Box-Jenkins dataset
we used only ��� data points in an ��-dimensional
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space to determine a fuzzy model. It is well known
from statistics that as a function of space dimension-
ality, we need exponentiallymany data points to sam-
ple this space properly. However, in the light of
statistical learning theory, the generalization ability
is influenced by the complexity of the model rather
than by the dimensionality of its input space. Thus, a
model generalizes well when in a high-dimensional
feature space it is chosen from a simple class of func-
tions — for example, a linear class (the locations of
fuzzy sets in consequences are linear combinations
of the inputs ��, cf.(11)).

2. For both of the above-described datasets, the train-
ing set is a small part of the available data samples.
Thus, in this case a very pessimistic estimation of
the generalization ability is determined, but, hope-
fully, �-insensitive learning will be a good tool for
constructing a fuzzy model even for a small number
of data samples.

3. In most real-world problems a model should be con-
structed on the basis of a small given dataset. The
ECG database is a good example. For Holter record-
ings a reasonable model of a signal should be de-
signed using limited amount of information—usually
the first few seconds of the signal. Such a model is
used for on-line compression of the remaining part of
the signal—usually �� or �� hours.

In all experiments the parameter � was taken from
the set ������, ����, ����, ���, ���� and � was changed
in the range from � to ��� (the step ����). The number
of if-then rules was changed from � to �. After the train-
ing stage using the training part of data, the generalization
ability of the designed model was determined as a root
mean squared error (RMSE) on the test set. The train-
ing stage was repeated for each combination of the above
values of parameters. Tables 2 and 4 show the RMSE
for LS algorithms (global and local) obtained for Box-
Jenkins and ECG databases, respectively. Tables 3 and 5

Table 2. RMSE obtained on the testing part of Box-Jenkins data
by both local and global �-insensitive learning (LS and
LS-gradient methods).

LS learning LS-gradient learning

� local
approach

global
approach

local
approach

global
approach

� ��	
�� ��	��� ��	
�� ��	��

	 ��	��� ��	�
 ��	�� ��	
��

 ����
 ���� ��	�	 ����


 ����� ��
��� ��	��� ��
��

� ��	�� ������ ��	��
 ��
���

Table 3. RMSE obtained on the testing part of Box-Jenkins data
by both local and global �-insensitive learning (�-LS,
�-LS-gradient and �-LS-�-gradient methods).

�-LS

� local approach global approach

RMSE � 	 RMSE � 	

� ��		�� �� ����� ��		�	 ��
 ���


	 ��	
�	 ���
 ��
 ��	
�� ���
 ���


 ��	�
 ��� ��� ����	 ���
 ���



 ���	 ��
 ����� ��
�	 ���
 ����

� ��	�� ���
 ��
 ����� �� �����

�-LS-gradient

� ��	�
� ��� ���� ��	��� ��� �����

	 ��		�
 ��
 ����� ��	��� ��
 �����

 ��	�
� ��� ���
 ��		�
 ��	
 ����


 ��		�� ��� ���
 ��	��� ��	 ����

� ��	�� ��� ��
 ��	�
� ��� ���

�-LS-�-gradient

� ��		�	 ��	 ���
 ��	��� ���
 �����

	 ��	�� ���
 ����� ��	�� ���
 �����

 ��		� ��� ���� ��	�	
 ���
 ��



 ��	�� ���
 ���� ��		�	 ���
 ���


� ��	� ��� ���
 ��		

 ��� ��


show the lowest the RMSE for �-insensitive learning al-
gorithms (global and local) obtained for Box-Jenkins and
ECG databases, respectively. The values of the parame-
ters � and � for which the lowest RMSE was obtained are
also shown in these tables.

Table 4. RMSE obtained on the testing part of the ECG signal
by both local and global �-insensitive learning (LS and
LS-gradient methods).

LS learning LS-gradient learning

� local
approach

global
approach

local
approach

global
approach

� ���	��� ���	�	� ������� ������


	 ������� ������	 ������� �������

 ������� ������� ������� �������


 ����	� ���		�� ����	� �������

� ����
�	 ������	 ����
�	 �������

If we take these tables into account, several observa-
tions can be made. First of all, it should be noted that de-
spite the number of if-then rules, learning tolerant of im-
precision leads to better generalization comparing to zero-
tolerant learning, for both databases. The best generaliza-
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Table 5. RMSE obtained on the testing part of the ECG signal
by both local and global �-insensitive learning (�-LS,
�-LS-gradient and �-LS-�-gradient).

�-LS

� local approach global approach

RMSE � 	 RMSE � 	

� �����
� ��

 ����� ����� ��
 ����

	 ������� �� ����� ������� ��

 �����

 ������� ��

 ����� ������ ��� ���


 ������� ��� ��� ������	 ��

 ���


� ����	� ��	 ����� ����	� ��

 ����

�-LS-gradient

� ������� ��� ��� �����

 ��	 ���

	 ����

� ���
 ��
 �����	 ��
 ����

 ������ ��� ����� ������� ���
 ����


 ������� ���
 ��� �����	� ���� ���

� ������
 ���
 ���
 �����
� ���
 �����

�-LS-�-gradient

� ������	 ���
 ���� ����
�� ��	 ���

	 �����

 ��� ����� ������ ��� ���

 ������� ���
 ����� ����	�� ��� ���



 ������� ���
 ��� ������	 ��
 ���


� ������
 ��	
 ����� �����
	 ���
 �����

tion for each number of rules is obtained for the parame-
ters � and � with a value different from zero. It must also
be noted that we observe an improvement in the general-
ization ability for algorithms with gradient modification of
premise parameters, i.e., the LS-gradient algorithm is bet-
ter than the LS algorithm, and the �-LS-gradient algorithm
is better than the �-LS algorithm. It is also important that
the � -LS-gradient algorithm should slightly outperform
the �-LS-�–gradient algorithm. Thus, the best general-
ization ability is obtained by the �-LS-gradient learning
algorithm.

The best generalization ability for Box-Jenkins data
is obtained using the �-LS-gradient algorithm for global
learning with � � �, � � ��� and � � �����—RMSE �
������. For the ECG database, the best generalization is
obtained for the global �-LS-gradient algorithm with � �
�, � � ��� and � � ���—RMSE � �������. Figure 1
shows the output of Box-Jenkins data as well as the output
of the model obtained using the �-LS-gradient algorithm
for global learning with � � �, � � ��� and � � �����
— upper; the course of the error signal for the training
(left) and testing (right) part of data—lower. Figure 2
shows simulation results for the ECG signal. In these fig-
ures signals obtained by models are denoted by solid lines
with point markers and the original signals are denoted by

solid lines. If we take these figures into account, it should
be noted that models obtained by the �-LS-gradient algo-
rithm on the basis of a limited amount of information gen-
eralize well. Errors in testing parts are slightly bigger than
errors in training parts. For the Box-Jenkins dataset, many
results obtained using all 296 data samples and reported
in the literature are worse. For example, the following re-
sults may be enumerated: RMSE � ������ (Tong, 1980),
RMSE � ������ (Xu and Lu, 1987), RMSE � ������
(Box and Jenkins, 1976) and RMSE � ������ (Sugeno
and Yasukawa, 1993).

The results obtained for the �-LS-gradient algorithm
were compared to the state-of-the-art method based on
the Support Vector Regression (SVR) machine (Vapnik,
1998). For this machine the following results were ob-
tained: the Box-Jenkins database—RMSE � ������,
�SV � �� for 1 � ��, � � ����, 2 � ����; the ECG
database—RMSE � ������, �SV � ��� for 1 � ���,
� � ����, 2 � ���. Taking into account the numbers
of support vectors (�SV), the following numbers of coeffi-
cients were obtained: ���� for the Box-Jenkins database
and ���� for the ECG database. The best generalization
ability of the fuzzy model is obtained for the following
numbers of coefficients: �� and ��, respectively. Thus,
we see that the knowledge-base obtained by fuzzy mod-
eling with the � -LS-gradient learning algorithm is signifi-
cantly smaller and, additionally, linguistically interpreted.
It can also be noted that fuzzy modeling with the �-LS-
gradient learning algorithm leads to better generalization
for real-world high-dimensional data, compared with the
SVR machine. The running times for the ECG database
were as follows: the SVR machine—����� sec., the fuzzy
modeling with the � -LS-gradient learning algorithm for �
if-then rules—���� sec.1 Thus, the running time of fuzzy
modeling with �-insensitive learning was approximately
��� times shorter with respect to the SVR machine.

7. Conclusions

This work presents a new approach to fuzzy modeling
with learning tolerant of imprecision. The Vapnik �-
insensitive loss function is used in this method of learning.
It is shown that in this case the problem of �-insensitive
learning of the consequences of rules for both global and
local approaches is equivalent to solving a system of lin-
ear inequalities. A modified iterative method for Solving
a System of Linear Inequalities (�LSSLI1) is also intro-
duced. A hybrid learning method for the premises and
consequences of if-then rules is proposed. This method
consists of the following steps: First, the parameters of the

1 The support vector regression (SVR) machine from the
Matlab Support Vector Machine Toolbox by S. Gunn
was used. This toolbox has been through the Internet—
http://www.isis.ecs.soton.ac.uk/resources/svminfo.
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Fig. 1. Box-Jenkins data used in the experiments. The training part on the left and the
testing part on the right.
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premises of rules are obtained using the fuzzy �-means al-
gorithm. Next, the parameters of the consequents of rules
are obtained using �LSSLI1. Then, the above initial pa-
rameters of rules are adjusted iteratively. The method of
adjusting premises is based on the gradient descent ap-
proach. Both squared and �-insensitive functions are used
as a loss function.

Numerical examples show the usefulness of the mod-
ified iterative method for Solving a System of Linear In-
equalities. Given the convergence speed and estimation
accuracy, this method outperforms the �LSSLI method.
Examples are given of using the proposed hybrid learn-
ing of the parameters of the premises and consequence
of if-then rules for designing fuzzy models of real-life
data. Simulation results show an improvement in the gen-
eralization ability of the fuzzy system with respect to the
traditional as well as previously introduced �-insensitive
learning methods. The experiments also show that the
best generalization ability is obtained by means of the hy-
brid learning method combining the �LSSLI1 method for
consequence parameters and the gradient method with a
square loss function for premise parameters.
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Łęski J.M. and Czogała E. (1999): A new artificial neural net-
work based fuzzy inference system with moving conse-
quents in if-then rules and its applications. — Fuzzy Sets
Syst., Vol. 108, No. 3, pp. 289–297.
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Łęski J.M. (2002b): Improving generalization ability of neuro-
fuzzy system by �-insensitive learning. — Int. J. Appl.
Math. Comp. Sci., Vol. 12, No. 3, pp. 437–447.
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