Int. J. Appl. Math. Comput. Sci., 2005, Vol. 15, No. 2, 295-304

STRICT MAXIMUM SEPARABILITY OF TWO FINITE SETS:
AN ALGORITHMIC APPROACH

DoroTtaA CENDROWSKA

Polish-Japanese Institute of Information Technology
Koszykowa 86, 02—-008 Warsaw, Poland
e-mail: ddan@j wst k. edu. pl

The paper presents a recursive algorithm for the investigation of a strict, linear separation in the Euclidean space. In the
case when sets are linearly separable, it allows us to determine the coefficients of the hyperplanes. An example of using
this algorithm as well as its drawbacks are shown. Then the algorithm of determining an optimal separation (in the sense of

maximizing the distance between the two sets) is presented.

Keywords: binary classifiers, recursive methods, optimal separability

1. Introduction

The problem of pattern classification is one of the most
frequently occurring problems in the field of artificial in-
telligence. Therefore, there is a wide range of methods
for correct classification of known patterns as well as new
ones (with unknown attachment). One of these methods
is the k-Nearest-Neighbour rule. This rule classifies @
by assigning to it the label which is most frequently rep-
resented among the k nearest labelled samples. What
should be done is to specify the value of k& (if the met-
ric is known).

It should be mentioned that, as k increases, the
k-Nearest-Neighbour rule becomes optimal, close to the
best theoretically known classifie—the Bayes classifier.
On the other hand, a disadvantage of the k-Nearest-
Neighbour rule is the necessity of keeping a set of la-
belled samples during the classification process. The set
should be rather large for correct classification. In order to
eliminate the need of having this set, one should approxi-
mate the classifier based on the k-Nearest-Neighbour rule
by a piecewise classifier. Therefore, to define this clas-
sifier, an algorithm of investigating the linear separability
is needed. Such algorithms may be grouped according to
their nature. The first group comprises gradient methods
(Duda €t al., 1995), which minimize an error function. In

“The states of things are not just simply good or bad, and
actions are neither erroneous nor plausible. All kinds of
worth scales have completely relative character.”

1.D. Bross

general, except the Ho-Kashyap algorithm (Duda et al.,
1995), these methods do not enable us to find out if sets
are non-separable. But there is no known estimate of the
maximum number of steps to ensure that it is impossible
to separate linearly sets in the case of Ho-Kashyap’s algo-
rithm.

Another approach is to use algorithms which deter-
mine the points from X = X; U X5 or their convex com-
binations. The separating hyperplane is spread on them.
Kozinec’s algorithm (Kozinec, 1973) and its modifications
(Franc and Hlavacg, 2003) belong to this group. A draw-
back of these algorithms is the assumption that the sets
are linearly separable. Sometimes it is impossible to ful-
fil this condition a priori. J6zwik’s algorithm (J6Zwik,
1983), though it belongs to that group, does not have this
disadvantage. Additionally, in this algorithm an upper es-
timate of the number of steps needed to decide whether
sets are not separable (J6zwik, 1998) is known.

Moreover, support vector machines methods should
be mentioned. They allow us to separate sets which
are originally non-separable. But this is done by in-
vestigating the solution in a space whose dimension is
much higher than the original one (Cristianini and Shawe-
Taylor, 2000; Jankowski, 2003; Mangasarian, 2000). Un-
like the above-mentioned group, the algorithm which is

s

D. Cendrowska

presented here finds a solution in the space E""2, where
n is the dimension of the original space.

In this paper an example of using the original algo-
rithm proposed by JéZzwik (1975) is presented to show
its disadvantage. Then modifications are presented which
were made to separate correctly (if possible) all samples
from two finite sets. In general, both sets consist of n-
dimensional vectors in £, though in the presented exam-
ples which ilustrate the mentioned algorithms the sets are
two-dimensional to make the analysis of the algorithms
easier.

2. Strict VersusLinear Separability
of Two Sets

The presentation of the algorithm regarding strict sepa-
rability of two finite sets commences with providing an
example of the use of the algorithm presented by J6Zwik
(1998). The example shows a property of the found sep-
arating hyperplane that does not assure strict separability,
despite the fact that the division of the sets in such a way is
possible. This gives a basis to define the algorithm which
assures that every vector in the separated sets will be sep-
arated correctly in the case of linear separability.

In the examples presented below, the sets X, Xo
shown in Fig. 1 are considered.

Ay
B
@ e i
- »
3
Xl - {(L’l,$2,$3,$4}
XZ = {$57m67$77$8}
rp = [—7, 1] Ty = [—4,3]
r3 = [—3,—3] T4 = [2,1]
Is = [375] Tg = [572]
z7 = [9,3] xg = [11, 1]

Fig. 1. Thesets X; i Xo.

2.1. Linear Separ ability

The sets X1 and X are linearly separated if there exists
a function g(x) such that

(g(x) >0 whenz € X},

g(x) <0 whenz € Xs,
n

g(x) = Zaiﬂ?i t+a, b
i=1

i:af # 0.

\ =1

The condition (1) related to separability can be presented
as one condition if the transformation below is used:

t:f(ili), (ITEX:XlUXQ,

[Z1,Z2,..., &y, 1] when z € X7,

f(x) =
[-z1,—%2,...,—Zyn,—1] whenz € X,.

2

Then the first part of the condition (1) amounts to
(a,t)>0, teT={zeX,UXs: f(x)}, O

where (-,-) means a scalar product, and a =
[a1,az,. .., an,a] € EMFL

It is important to notice that after the transforma-
tion (2) it is still possible to establish whether each ¢
belongs to X; or X,. This is done by the (n + 1)-th
component of .

The condition (3) is interpreted in the following way:
The first n components of the vector a in the original
space E™ form a normal vector to the hyperplane H.
On the other hand, the vector a in the space E™! isa
normal vector to the separating hyperplane going through
the point (0,...,0) € E™*! in such a way that all vec-
tors complying with elements in X after the transforma-
tion (1) are placed in the same part of the space E™+!
produced as a result of the separation of E™*! by this
hyperplane.

Unlike gradient methods, the algorithm examining
linear separability of two sets (shown below) allows find-
ing the right vector a in a finite number of steps (an upper
estimate of the number of steps can be found in (J6Zwik,
1975)).

A basic property of the hyperplane found as a, as
well as the consequence of the use of the algorithm (un-
ambiguously defined by the vector a), will be presented
by executing the algorithm step by step to separate the sets
X 1 and X 2.

Strict maximum separability of two finite sets: An algorithmic approach

Therefore the algorithm LS2S presented in (J6zZwik,
1998) will be cited. The algorithm requires two parame-
ters:

e T}, —alist or a sublist of points to be separated,

e K, — a set of points through which the separating
hyperplane is to be passing.

At the beginning we set p = 0. All given points
are to be separated, so the first parameter is equal to
To = {f(z) € E"': & € X, UX, € E"}. There is
no information about points to be passed through the sep-
arating hyperplane, so Ko = ().

In the original algorithm (J6Zwik, 1998) the second
parameter was the space where the solution was sought,
i.e., at the beginning the space Sy = E™*!. This alter-
ation is made to simplify the understanding of the algo-
rithm. This space is specified in the first step of the algo-
rithm.

The label p is used to make the algorithm more leg-
ible, and to easily know the current level of recursion at
every moment. In the numbering of algorithm steps, p ex-
presses how many recursion calls (in depth) have already
been done, so n — p may still be done.

In the gradient methods the process of finding a sat-
isfactory solution a, is performed step by step by cor-
recting the components of the current solution. In the pre-
sented algorithm every recursion call adds one point to
the set of points to be “a good candidate” to go through
the separating hyperplane. This is so because in order
to separate correctly an incorrectly separated point this
point must at least go through the separating hyperplane.
So the maximum depth of recursion calls is specified by
the original size (n) of vectors in the sets X; and Xos.
In Fig. 2 examples of the current solutions are presented
(in the original space) according to the level of recursion.
Unlike the gradient methods (in the figure the examples
a,), the solution is always built on the points from the list
which are to be separated (except for the first calculation
of the vector a in Step 0.2).

In Fig. 2 the points ¢; and ¢, are incorrectly sepa-
rated by the line a2 (the solution a obtained in Step 0.2
of the algorithm). Thus the recursion call is done for a new
list without these points: 77 = Tp \ {¢1,t2}. The point
t1 is chosen to go through the separating plane a; », so
K, = {t,}. Itis enough to separate the list 7'} but not
enough to separate all points from the list 7'y, so another
recursive call will be done.

As a result, two parameters are obtained: the num-
ber flag and the vector a. The former is information on
the separability of the sets: when flag = —1, the sets
are inseparable linearly but when flag = 1, the sets are
separable. The latter is important only in the case of sets

Fig. 2. Example of Step 2 of the LS2S algorithm
on two levels of recursion.

being linearly separable—it defines a vector whose first
n components form a normal vector to the separating hy-
perplane.

In the cited algorithm its second point is modified so
as to express uniquely the choice of the vector from the
list T,.

The header of Algorithm LS2S:
LS2S(T,, Kp)

The body of the algorithm:

(a,flag) <«

p.l S, =E""'nK ;— — the space where the solution is
to be found;

p.2 a—any vector from the list 7', whose projection on
the subspace S, is different from zero. In the case
when there are several non-zero projections of the
vectors from the list 7}, with such properties, the
projection of the vector that isthefirst inthelist 7,
is chosen;

p.3 ifin T}, there is no vector whose orthogonal projec-
tion on S, is not equal to zero, then set flag = —1
and proceed to p.14;

p4 NCp, ={t € T, : {(a,t) < 0} — the list of incor-
rectly separated points;

p.5 if NC, = 0, then set flag = 1 and proceed to
p.14, i.e., the points from the list 7', are separated
correctly;

p.6 if p=mn and NC, # 0, flag = —1 then proceed
top.14,i.e., it is impossible to define a hyperplane in
E™1 which contains more than n+1 non-colinear
points (n points from K, and the origin: O =
0,0, ...,0)

s

D. Cendrowska

p7 Tp+1 :TP\NC 5
p.8 b — the first vector from the list NC';
p.9 Kpy1 = K, U {b};

p-10 execute the algorithm
(a,flag) «-LS2S(Tpq1, Kpt1):

p.11 if flag = —1, then proceed to p.14;
p.12 NC, ={t € NC), : {a,t) < 0};
p.13 if NC, # 0, then proceed to p.7;

p.14 if flag = —1, then the sets are not linearly separa-
ble; if, on the other hand, flag = 1 and p = n,
then the sets are linearly separable and the first n
components of the vector a form the sought normal
vector to the separating hyperplane.

For better undestanding of the proposed algorithm in
the space E3, the solution of the problem for the list

TO = {t17t27t37t47t57t67t77t8}
= {f('rl)vf($2)7f($3)7f(a74)7
f($5),f($6),f($7),f($8)}

will be sought.

The algorithm is executed as follows: LS2S(T, ().

The Gram-Schmidt orthogonalization is used in Step 2.
0.1 So=E3
02 a=t
0.3 the condition is not satisfied
0.4 NCoy = {t4}
0.5 the condition is not satisfied
0.6 the condition is not satisfied
0.7 Ty = {t1,ta,t3,t5,t6, tr7, ts}
08 b=t4
09 Ky =0U{ts} = {ts}

0.10 execute the algorithm
(a,flag) «LS2S(Ty, K;)

1.1 §; = E3n {t4}J‘

ti.t
12 a:tl—Mt =3 1

(ta,ta) *

1.3 the condition is not satisfied

1.4 NC, ={t5}

1.5 the condition is not satisfied
1.6 the condition is not satisfied
17 Ty = {ty,t2,t3,t6,t7,t5}
1.8 b=1t;

1.9 Ky = Ky U{ts} = {ts,t5}

1.10 execute the algorithm
(a, flag) (—LSZS(ZZ, Kg)

2.1 Sy = B3N {ty,t5}+

(ta, 1) (p,t1)
22 a=1t — ts — b
(ta,ts) (p,p)
—4
_6
11
1
14,1
where p = t5 — (s, 5>t4 =] =3
<t47t4> 1

2.3 the condition is not satisfied

2.4 NCZ = @

2.5 the condition is satisfied
2.14 the condition is not satisfied

1.11 the condition is not satisfied
1.12 NC, =0
1.13 the condition is not satisfied

1.14 the condition is not satisfied
0.11 the condition is not satisfied
0.12 NCo =0
0.13 the condition is not satisfied

0.14 the condition is satisfied and a is the searched vec-
tor.

The obtained solution a is a normal vector to the
plane separating the points from the list Ty placed after
the transformation f in the space E*—the plane goes
through the origin O = (0,0,0). Simultaneously, the
vector a determines the straight line separating on the
plane the points from the original set X = X; U X5. The
straight line goes through the points z4 and x5, making
the separation of the remaining points from the set X pos-
sible. But the obtained solution (I) does not allow us to
separate the points x4 and x5, although in this case it is
easy to show solutions (II, III) which would not have that
drawback. So, the most important property is the possibil-
ity to separate, if possible, all points from the set X .

Strict maximum separability of two finite sets: An algorithmic approach

Fig. 3. The set of possible solutions to obtain
after using the algorithm LS2S.

The discussed example raises two questions: first, is
it possible, in the case where there are multiple solutions,
to obtain other solutions by means of the described algo-
rithm? And second, what does obtaining a given solution
depend on? The answer is: it depends on the chosen defi-
nition of the word whichever in Step p.2 of the algorithm,
and on the way in which the incorrectly separated point is
selected in Step p.8. That is why 1), and NC), are not
sets but lists—some order relation must be defined. The
sequence of elements in these lists does have some influ-
ence on the form of the solution.

The solutions already mentioned (II and III) will be
obtained after executing the algorithm for the following
lists, respectively:

To = { f(s5), f(x2), f(ms), f(z1), f(x3), f(z4),
f(wf} ,f($7)},
To = {f(xa), f(2s5), f(@6), f(x1), f(22), f(3),
f(w'T 7f(m8 }

2.2. Strict Separability

Two sets are strictly separable when there exists at least
one separating hyperplane H which assures a correct
separation of all elements in the separated sets (the so-
lution I from the previous point does not fulfil that con-
dition). In practice, if there exist one such hyperplane,
at the same time there exist an infinite number of them,
which still applies to the above-mentioned condition. A
few examples of separable straight lines that enable a cor-
rect separation of each point are presented below. The
abundance of solutions brings up the question which of
them is the best one.

The question is impossible to be answered satisfac-
torily. But we may replace the question about the “taste”

with a far more pragmatic one: which of the hyper-
planes can be calculated most quickly (i.e., in the smallest
amount of steps)?

The algorithm that finds a hyperplane enabling us to
separate the sets (if such a hyperplane exists) is presented
below.

The algorithm uses the following observation:
among all the possible solutions assuring strict separabil-
ity of sets, there is always one (and only one) quite ex-
ceptional. It is characterized by the fact that the minimum
distance between the hyperplane and the points represent-
ing the elements of the sets is maximum. For elements
belonging to the plane an example of such a hyperplane is
the straight-line h in Fig. 4.

\\\ \A\y

X
>

N N\

\\ NG
\ \
\\

N N

1° h ‘hy

Fig. 4. Some of the instances of the strict
separability of the exemplary sets.

Lo

=

=

In the next steps the algorithm does not determine
the characteristic hyperplane h, but two lines parallel to
it, hy and ho, cf. Fig. 4.

The algorithm thus looks for a solution such that

(hl(azl)ZO N h2($1)>0,
hl(.’ltg) <0 A hg(.’l)g) <0,

T, € Xl, Ty € Xz,
n
hl (:I:) = lz:; Qi + «, (4)
n
ho(x) = Zaimi +a+e,
n i=1
Zai =1.

=1

If in the solution € > 0, then the sets are strictly separa-
ble. The conditions related to the hyperplanes h; and ho,
which are sought, can be presented as one condition, and
therefore to make the algorithm less complicated we use

@amcs

s

D. Cendrowska

the transformation below:

y:f*(ac), CCEX:Xl UXQ,
i [z1,Z2,...,2,,0,1] whenx € X,
[r(z)=
[—z1, —%2,...,—Zp,—1,—1] whenax € Xs.
(5)

Then conditions equivalent to (4) are

(a*,y) >0, yeY={xecX UXs:f"(x)}, (6

where a* = [a1, ag,...an,,a] € ET2,

Thus the task of the algorithm is to define a* de-
scribing an accepted solution allowing us to determine
the hyperplanes hq, hs or the hyperplane h. Algorithm
SLS2S shown further finds a solution which is not only
strict but with a maximum valueof e.

As was presented in Algorithm LS2S, the calculated
solution is unambiguously defined only in Step n.2. That
is the reason why getting different solutions is possible.

The idea of Algorithm SLS2S is as follows: To define
in the space E™ (n > 2) two parallel (n — 1)-dimensional
hyperplanes, which additionally are as distant from each
other as possible, at least two points must be known, one
from the set X and one from X5. In this case, which
is the simplest one, the distance between these points is
at the same time the maximum value of the component ¢.
After the transformation (5) it is still possible to establish
whether each y belongs to X; or X,. It is done by the
(n+2)-th component of y. Steps p.2 and p.3 of Algorithm
SLS2S are to make sure that those two points are given.

Therefore, to make the algorithm more legible, the
parameter K, which is a subset of points through which
the separating hyperplanes hi, hy are to be passing, is
altered by two subsets K ,(,1) and K}()z) to get to know
easily which points originally belong to X; or Xs.

The algorithm presented further requires three pa-
rameters:

e Y, —alist or a sublist of points to be separated,

o K ,(,1) — a set of points through which the separating
hyperplane h; is to be passing,

1(,2) — a set of points through which the separating
hyperplane h, is to be passing.

At the beginning, we set p = 0. All given points
are to be separated, so the first parameter is equal to
Yo = {f*(x) € E"™?: & € X; UX, € E"}. Thereis
no information about points to be passed through the sep-

arating hyperplanes, so Kél) = () and K(()Q) = (.

Additionally, to make Algorithm SLS2S more legi-
ble, the following function is defined:

1 when the (n 4 2)-th component
of yisequalto 1,

class(y) =
2 when the (n + 2)-th component

of y isequalto — 1.

The header of Algorithm SLS2S: (a*,flag) <«
SLS2S(Y,, KM, K1?)

The body of the algorithm:

p.1 let K = () be a temporary set of points through
which the separating hyperplanes hi, hy are to be
passing;

p-2 if card (K,()l)) = 0, then K = {anyy ¢
Y, with class(y) = 1};

p.3 if card (K,(,z)) = 0,then K = K U {anyy €
Y, with class(y) = 2};

p.4 a* — the vector in E™*2 perpendicular to every
vector belonging to the set K U K ,(,1) UK, ,()2), with
the maximum component value of a,,+; = ¢ (there
is only one such vector);

p5 NC, = {y € Y, : (a*,y) < 0}, i.e, the list of
incorrectly separated points;

p.6 if NC, = 0, then set flag = 1 and proceed to
p.17, i.e., the points from the list T, are separated
correctly;

p7 if p=n+1 and NC, # 0, then set flag = —1
and proceed to p.17;

p8 Ypu1 =Y, \ NCy;
p.9 b — the first vector from the list NC';
p.-10 ¢ = class (b);
p.11 if card (K,(f)) <n.
then K\%, = K37 U {b}, K$79 = K§*™°
p.12 if card (K,(,C)) = n, then set flag = —1 and pro-
ceed to p.17;
p-13 execute the algorithm
(a*, flag) SLS2S(Yps1, KUy, K5

p.14 if flag = —1, then proceed to p.17;
p.15 NC, ={y € NC, : {(a*,y) < 0};

Strict maximum separability of two finite sets: An algorithmic approach @ amncs

p.16 if NC, # 0, then proceed to p.8;

p.17 if flag = —1, then the sets are not linearly separa-
ble; if, on the other hand, flag =1 and p = 0, then
the sets are linearly separable and the vector a* is
the sought vector, describing the sought hyperplanes
hy and ho, and, additionally, the solution assures
the maximum separability.

A closer look at the executing of the algorithm for
the list Yy ordered in the way shown below seems to be
necessary:

Yo = {y4, Y5, Y2, Y3, Y1, Ys, Y7, Ys}
= {f*(xa), f*(5), [*(x2), [*(w3), [* (1),
F(@6), f* (1), f*(25) }-
The algorithm is executed as follows: SLS2S(Zy4, 0, 0).
0.1 K=0
0.2 the condition is satisfied and K = {y4}

0.3 the condition is satisfied and K = K U {y5} =
{y47y5}

0.4 solve the after-mentioned equations (only one solu-
tion exists):

(a*,ys) =0 2010 +as +a = 0,
(@*,ys) = 0 —3a1 —day —e —a = 0,
2 2 = 2 2

af +a; =1 af +a3 =1,
max(e) max(e).

Determining « from the first equation and a; from
the second after substitution in the third one gives

17a3 + 8ay + €2 —1=0.

This equation is treated as a quadratic equation
where ¢ is a parameter. Then

A,, = —4e® + 68.

To satisfy the fourth condition, the maximum value
of ¢ = /17 is set. As a result, only one solution
passing through the points x4 and x5 exists:

-1
o VIT | 4
17 | 17

6

0.5 NCo = {y2, Y6, Y7, Ys }

0.6
0.7
0.8
0.9
0.10
0.11

0.12
0.13

the condition is not satisfied

the condition is not satisfied

Y1 = {ys,Y5,93, 1}

b=y,

c=1;

the condition is satisfied and K 1(1) ={y:}. K 1(2) =
KY =0

the condition is not satisfied

execute the algorithm

(a*,flag) +SLS2S(vy, KM, k%)

1.1 K=90

1.2 the condition is not satisfied

1.3 the condition is satisfied and K = {y5}

1.4
<a*7y2> =0 =7
(a”,ys) = 0 g YB 2 ,
a?+ai =1 53 53
max(e) —22

1.5 NCl = {y4}

1.6 the condition is not satisfied
1.7 the condition is not satisfied
1.8 Y ={y5,y3,y1}
1.9 b=y,
1.10 ¢ =1,
1.11 the condition is satisfied and K 51) =K 1(1) U
{ya} = {yo, 9}, K = K}” =0
1.12 the condition is not satisfied
1.13 execute the algorithm
(a*,flag) +SLS2S(Y>, KM, K1?)
21 K=19
2.2 the condition is not satisfied
2.3 the condition is satisfied and K = {y5}

2.4

<a*7y2> =0 -1
(@*,y4) = 0

10 | -3

<a*7y5> =0 = a" = £ ’
,) 10 13

af +a; =1 5
max(e)

25 NCy =10

2.6 the condition is satisfied

s

0.14
0.15
0.16

0.8

0.9
0.10
0.11

0.12
0.13

D. Cendrowska

2.17 the condition is not satisfied

1.14 the condition is not satisfied
115 N01 - (Z)
1.16 the condition is not satisfied

1.17 the condition is not satisfied

the condition is not satisfied

NCo = {ys,ys}

the condition is satisfied

Y1 ={y4s, 95,92, Y3, Y1, Y7}

b=1ys

c=2;

the condition is satisfied and KV = K = 0,
K" = {ye}

the condition is not satisfied

execute the algorithm

(a*,flag) +SLS2S(Yy, KM, K?)

1.1 K=

1.2 the condition is satisfied and K = {y4}

1.3 the condition is not satisfied
1.4

1.5 NC, ={y5}
1.6 the condition is not satisfied
1.7 the condition is not satisfied
1.8 Yo = {y4,Y2,Y3,Y1,Y7}
19 b=1ys;

1.10 ¢ = 2;

1.11 the condition is satisfied and Kél) = Kfl) =0,
K = K U{ys} = {y5,6}

1.12 the condition is not satisfied

1.13 execute the algorithm

(a*,flag) «SLS2S(Z,, K3V, K{?)

21 K=19

2.2 the condition is satisfied and K = {y4}
2.3 the condition is not satisfied

-1
10

24

<a’*7y4> =0 -3
<G,*,y5> =0

13| -2

<a*7y6> 0 = a* = £ ’
) 2 13 11

af +a; =1 8
max(e)

2.5 NCZ :@

2.6 the condition is satisfied
2.17 the condition is not satisfied

1.14 the condition is not satisfied
1.15 NC, =0
1.16 the condition is not satisfied

1.17 the condition is not satisfied
0.14 the condition is not satisfied
0.15 NCo =0
0.16 the unsatisfied condition

0.17 the condition is satisfied and a* is the searched so-
lution.

It has just been shown that the list order of 7', is cru-
cial in Algorithm LS2S, cf. the examples of the obtained
solutions I, IT and IIL. The list order of Y, in Algorithm
SLS2S does not lead to multiple solutions—there is only
one. The list order may effect the number of steps which
are necessary to find a solution (if it exists). The fastest
results are obtained when two points with the following
properties are in the list Yy at the beginning:

e one point is originally from X; and the other from
XZ’

o these points are the closest ones in the Euclidean met-
rics in the original space.

It is impossible to find the hyperplanes h; and hso
with a larger value of € than the distance between those
two points.

In the case of the discussed sets, for the list (the
points with the described properties are €4 and xg):

Yo = {f*(@a), f* (o), [*(25), f*(22), f* (23),
Fr@y), £ (2q), £ (xs) }

executing Algorithm SLS2S is “much faster” (in the sense
of the number of steps to be done) and is shown as follows:

0.1 K=10

0.2 the condition is satisfied and K = {y4}

Strict maximum separability of two finite sets: An algorithmic approach

0.3 the condition is satisfied and K = K U {ys} =

{y4:y6}
0.4
<a*7y4> =0 -3
@"%?:0 :a*:\/ﬁ -1 |
d+a3 =1 10 | 10
max(g) 7
0.5 NC() = {y5}

0.6 the condition is not satisfied
0.7 the condition is not satisfied
0.8 Y1 = {y4,Y6,Y2,Y3,Y1,Y7Ys }
09 b=1ys;
0.10 ¢ = 2;

0.11 the condition is satisfied and Kl(l) = Kél) =0,
K1(2) = Kéz) U{ys} = {ys}
0.12 the condition is not satisfied

0.13 execute the algorithm
(a*,flag) +-SLS25(Y1, K| ", K\”)
1.1 K=10
1.2 the condition is satisfied and K = {y4}

1.3 the condition is not satisfied

1.4
(@*,ys) = 0 -1
(% ys) =0 _ . _ VIT | —4 |
al+a3 =1 17 17
max(e) 6

L5 NC1 = {ys,Y2,Y7,ys}
1.6 the condition is not satisfied
1.7 the condition is not satisfied
1.8 Yy = {ya,ys,y1}
1.9 b =1ys
1.10 ¢ = 2;
1.11 the condition is satisfied and Kél) = Kl(l) =

0,
K = K® U{ys} = {ys, v}
1.12 the condition is not satisfied
1.13 execute the algorithm
(a*,flag) «SLS2S(Ys, KV, K{*)
21 K=190

2.2 the condition is satisfied and K = {y4}

2.3 the condition is not satisfied

24
(@, ys) =0 _3
<a*7y5> =0
V13 | =2
<a*7y6> 0 = a"=—-)
) 5 13 11
ai +a; =1 8
max(e)
2.5 NCZ = @

2.6 the condition is satisfied

2.17 the condition is not satisfied
1.14 the condition is not satisfied
1.15 NC; =0
1.16 the condition is not satisfied

1.17 the condition is not satisfied
0.14 the condition is not satisfied
0.15 NCy =0
0.16 the condition is not satisfied

0.17 the condition is satisfied and a* is the searched vec-
tor.

3. Concluding Remarks

The presented algorithm SLS2S still has the theoretical
properties of the LS2S algorithm (J6Zwik, 1975). Though
the computation complexity is O(m™* 1) (m = card(X;U
X)) the maximum number of steps to be done is less than
(%i7)-

Unlike LS2S, the presented algorithm uses informa-
tion concerning the label of every point without a special
effort. And the most important fact is that the result of ex-
ecuting the SLS2S algorithm does not depend on the se-
quence of the classified patterns. If sets are separable, the
obtained solution is always the same, optimal and max-
imises the distance between the separated sets.

In forthcoming papers a mathematical proof of the
correctness of the algorithm will be presented. The proof
makes it possible to assure numerical stability of the im-
plementations of the algorithm and its full optimization.

@amcs

D. Cendrowska

s

Cristianini N. and Shawe-Taylor J. (2000): An Introduction to
Support Vector Machines and Other Kernel-Based Learn-
ing Methods. — Cambridge: Cambridge University Press.

Duda R.O., Hart P.E. and Stork D.G. (1995): Pattern Classifica-
tion. — New York: Wiley.

Franc V. and Hlava¢ V. (2003): An iterative algorithm learning
the maximal margin classifier. — Pattern Recogn., Vol. 36,
No. 9, pp. 1985-1996.

Jankowski N. (2003): Ontogenic Neural Networks. — Warsaw:
EXIT, (in Polish).

Jézwik A. (1975): Method of investigaton of separability of two
finite setsin n-dimensional space. — Scientific Works of
the Institute of Organization and Manegement, Series: Ap-
plied Cybernetics and Computer Science, Vol. 18, (in Pol-
ish).

Jézwik A. (1983): Arecursive method for the investigation of the
linear separability of two sets. — Pattern Recogn., Vol. 16,
No. 4, pp. 429-431.

Jozwik A. (1998): Algorithm of investigaton of separability of
two sets, prospects of reusing this algorithm to construct
the binary classifier. — Proc. 6-th Conf. Networks and
Information Systems—Theory, Projects and Applications,
L6dz, Poland, pp. 311-316, (in Polish).

References

Kozinec B.N. (1973): Recurrent algorithm separating convex
hulls of two sets, In: Learning Algorithms in Pattern
Recognition (V.N. Vapnik, Ed.). — Moscow: Soviet Ra-
dio, pp. 43-50, (in Russian).

Mangasarian O.L. (2000): Generalized Support Vector
Machines, Advances in Large Margin classifiers,
pp. 135-146, MIT Press, available at ftp:
//ftp.cs.w sc.edu/ math-prog/tech-reports
/98- 14. ps

Vapnik V.N. (2000): The Nature of Satistical Learning Theory.
— New York: Springer.

Received: 15 April 2004
Revised: 9 July 2004
Re-revised: 11 January 2005

