
Int. J. Appl. Math. Comput. Sci., 2005, Vol. 15, No. 1, 63–72

RANGE IDENTIFICATION FOR A PERSPECTIVE DYNAMIC SYSTEM
WITH A SINGLE HOMOGENEOUS OBSERVATION
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Perspective problems arise in machine vision when using a camera to observe the scene. Essential problems include the
identification of unknown states and/ or unknown parameters from perspective observations. Range identification is used
to estimate the states/ positions of a moving object with known motion parameters. Range estimation has been discussed
in the literature using nonlinear observers with full homogeneous observations derived from the image plane. In this paper,
the same range identification problem is discussed with a single homogeneous observation using nonlinear observers. Our
simulation results verify the convergence of the observers when their observability conditions are satisfied.

Keywords: range identification, perspective dynamic systems, nonlinear observer

1. Introduction

In 3D motion estimation from image sequences, there are
basically two sub-categories of identification problems.
One category is to estimate the parameters of the motion
dynamics of a moving object. The other is to recover
the depth information assuming that the motion param-
eters are already known. The solutions to the first sub-
category of problems can be resolved, to the extent possi-
ble, via algorithms such as nonlinear optimization formu-
lations (Choet al., 2001), linear least squares/ total least
squares approximations (Papadimitriouet al., 2000), the
application of epipolar constraints (Soattoet al., 1996),
and nonlinear observers (Chiusoet al., 2002; Ghoshet al.,
1994; Jankovic and Ghosh, 1995). The second sub-
category of problems, which is the main focus of this pa-
per and is referred to as the range identification problem
hereafter, can be solved by nonlinear observers applied to
perspective dynamic systems (PDS), which is a class of
linear systems with homogeneous observation functions.

With a stationary camera observing a moving object,
we assume that the object follows an affine motion de-
scribed by the following system of ordinary differential
equations:

 Ẋ(t)
Ẏ (t)
Ż(t)

=

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 X(t)
Y (t)
Z(t)

+

 b1

b2

b3

 .

(1)

Then, a typical PDS will consist of the above linear dy-
namic system with the following homogeneous output ob-
servations:

y1(t) = X(t)/Z(t), y2(t) = Y (t)/Z(t). (2)

The range identification problem can be described for-
mally in the framework of PDSs. That is, assuming that
the motion parametersai,j and bi for i, j = 1, 2, 3
are known, the range estimation problem is to estimate
the position of an object with an unknown initial con-
dition from observations on the imaging surface (Chen
and Kano, 2002; Dixonet al., 2003; Jankovic and Ghosh,
1995).

Let

y(t) =
[
y1(t), y2(t), y3(t)

]T

=
[
X(t)/Z(t), Y (t)/Z(t), 1/Z(t)

]T
. (3)

The derivative ofy(t) is

ẏ1(t) = a13 + (a11 − a33)y1 + a12y2 − a31y
2
1

− a32y1y2 + (b1 − b3y1)y3,

ẏ2(t) = a23 + a21y1 + (a22 − a33)y2 − a31y1y2

− a32y
2
2 + (b2 − b3y2)y3,

ẏ3(t) = −(a31y1 + a32y2 + a33)y3 − b3y
2
3 .

(4)
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It is based on the above equivalent nonlinear dynamic sys-
tem that nonlinear observers have been designed/ applied
to estimatey3(t) from y1(t) and y2(t).

Assuming that bothy1(t) and y2(t) are available,
several observers have been designed/ applied to the non-
linear dynamics in (4), including the following:

• The Identifier-Based Observer (IBO) proposed in
(Jankovic and Ghosh, 1995), which is motivated by
adaptive control theory.

• The state observer (referred to as the SMO due to its
employment of a sliding mode method) in (Chen and
Kano, 2002), which is a combination of the sliding
mode control method, the adaptive method, and dis-
continuous observer techniques.

• The Range Identification Observer (RIO) in (Dixon
et al., 2003), which facilitates a Lyapunov-based
analysis.

• The Linear Approximation-based Observer (LAO)
in (Ma, 2004), which is motivated by the linear
approximation idea proposed in (Hernandezet al.,
2003; Tomas-Rodriguez and Banks, 2003).

In this paper, we consider the range identification problem
with a single homogeneous observation. That is, we con-
sider the problem when eithery1(t) or y2(t) is known,
instead of both of them. We show that with reduced infor-
mation, the range identification task can be achieved, but
in a less appealing manner.

The paper is organized as follows: Section 2 gives
motivations to study the single observation case. In Sec-
tion 3, the range identification problem with a single ob-
servation is carried out. Section 4 presents our simulation
results and comparisons between the cases wheny1(t)
and (y1(t), y2(t)) are available. Finally, Section 5 con-
cludes the paper.

2. Motivation

The existing vision devices typically use a photographic
camera or a video camera, in conjunction with an off-the-
shelf lens, where a 3D point is projected onto a plane per-
pendicular to the camera’s optical axis. Normally we as-
sume a pinhole camera (perspective) model. This camera-
type projection is a special case of a more general planar
imaging surface as shown in Fig. 1, where the plane is
described by its normal vector~n = [n1, n2, n3]T and a
point on the plane, which is assumed to be[0, 0, 1] with-
out loss of generality.

For any point[Xp, Yp, Zp]T on this plane, where the
subscriptp denotes the projection, we have

n1Xp + n2Yp + n3(Zp − 1) = 0, (5)

O
Z

Y

X

[Xp,Yp,Zp]
T

(0,0,1)

[X,Y,Z]T

n=[n1,n2,n3]
T

Fig. 1. A general planar imaging surface passing through
[0, 0, 1] with normal vector~n = [n1, n2, n3]

T .

where we further assume thatn3 6= 0 to emphasize that
the observations are facing toward theZ axis. Since the
projection of a 3D point[X, Y, Z]T can only be observed
up to a homogeneous line as

Xp = Zp X/Z, Yp = Zp Y/Z, (6)

from Eqns. (5) and (6), we have

Xp = n3X/p, Yp = n3Y/p, Zp = n3Z/p, (7)

with p
∆= n1X + n2Y + n3Z.

Define yg = [yg1, yg2, yg3, yg4]T as

yg1 = X/p, yg2 = Y/p, yg3 = Z/p, yg4 = 1/p. (8)

The range identification of a PDS with the general pla-
nar imaging surface shown in Fig. 1 amounts to estimat-
ing yg4 using (yg1, yg2, yg3). For a conventional camera,
n1 = n2 = 0, n3 = 1, and this equation reduces to

yg1 = X/Z, yg2 = Y/Z, yg3 = 1, yg4 = 1/Z. (9)

Consider a more special situation, as shown in Fig. 2,
when an object is moving on a planeP1OP2, whose pro-
jection on the image plane is a linep1p2 that has either a
constanty1(t) or a constanty2(t). If y2(t) is a constant,
ẏ2 = 0. Then the range identification problem is to iden-
tify y2(t) and y3(t) using y1(t).1 The above discussion
serves as another motivation for investigating the range
identification problem for a PDS with a single homoge-
neous observation. In the following sections,y2(t) will
be treated as unavailable, not necessarily as a constant.

The results presented in this work show that with
reduced information, the range identification task can be
performed, but in a less appealing manner. It can be fur-
ther concluded that more general 3D imaging surfaces,
such as the general plane shown in Fig. 1, a sphere or
an ellipsoid, can be more desirable as far as range iden-
tification is concerned, since they can provide additional

1 The case of estimatingy1(t) and y3(t) from y2(t) is similar.
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Fig. 2. Illustration of a PDS with a single
observation function.

homogeneous output(s), instead ofZ = 1 as in the case
of a camera.

3. Nonlinear Observers for PDS with
a Single Homogeneous Observation

In the case of a single homogeneous observation using
only y1(t), the range identification task can be solved by
a direct application of an IBO since the IBO observer is
designed for a class of nonlinear systems in the form of
(10) below. Further, based on a resemblance in the con-
structions of the IBO and the SMO for the case of fully
homogeneous observations (with bothy1(t) and y2(t)),
a modified SMO is used for the single observation case.

Applying the idea of constructing an RIO to the
case with a single observation is not as straightforward (it
might not be as appropriate either) as extending the idea
of the IBO and the SMO. In an RIO, assuming thaty1 and
y2 are both available,̂f1 and f̂2 are first estimated to ap-
proximatef1 = (b1 − b3y1) y3 and f2 = (b1 − b3y2) y3,
respectively. Then, the estimate ofy3, denoted byŷ3, is
computed by (Dixonet al., 2003):

ŷ2
3 =

f̂2
1 + f̂2

2

(b1 − b3y1)2 + (b2 − b3y2)2
.

Since f̂1 and f̂2 are estimated independently of each
other, we can let

ŷ2
3 =

f̂2
1

(b1 − b3y1)2

for the single case when onlyy1 is available. However,
estimatingy2 from y1 and ŷ3 might not be straightfor-
ward. Further, it is obvious that when the denominators in
the above two equations are small, the estimation errors of
y3 and possiblyy2 can be too conservative. Due to the
above reasons, extending the idea of the RIO to a single
case is not further pursued.

3.1. Direct Application of an IBO

Range identification with a single homogeneous observa-
tion can be solved by a direct application of the IBO ob-
server, which has been applied to estimatey3(t) when
both y1(t) and y2(t) are available (Jankovic and Ghosh,
1995). Consider the following class of nonlinear systems:

ẋ1 = wT (x1,u)x2 + φ(x1,u),
ẋ2 = g(x1,x2,u),
y = x1,

(10)

where x1, x2, u, and y are, in general, vectors. Here
x1 denotes the system states that are available from the
output y; x2 denotes the states of the system to be es-
timated. Comparing the above system (10) with our per-
spective system (4), it is clear thatu(t) = 1. Further,
when bothy1 and y2 are available in (4),x1 and x2 in
(10) are2×1 and1×1 vectors, respectively. When either
y1 or y2 is available in (4),x1 and x2 in (10) become
1×1 and 2×1, respectively. The matrixwT (x1,u) and
the vectorg(x1,x2,u) in (10) are, in general, nonlinear
functions of their parameters.

An identifier-based observer (IBO) for the system
(10) can be designed as

˙̂x1 = GA(x1 − x̂1) + wT (x1,u)x̂2 + φ(x1,u),

˙̂x2 = −G2w(x1,u)P (x1 − x̂1) + g(x1, x̂2,u),

x̂(t+i ) = M
x̂(t−i )
‖x̂(t−i )‖

,

(11)
where the sequence ofti is defined via

ti = min {t : t > ti−1 and ‖x̂(t)‖ ≥ γM}, (12)

and the matrixP is a positive definite solution of the Lya-
punov equationAT P + PA = −Q. In (12),M is an as-
sumed upper bound for the state estimate‖x̂(t)‖, and γ
is a fixed constant. The quantityG in (11) is a constant
scalar gain. From (11) and (12), the states of the observer
are kept bounded, i.e.,‖x̂(t)‖ ≤ γM , whereγ is a con-
stant with γ > 1. Notice that the matrixA in (11) is not
the 3× 3 parameter matrix in (1).

The assumptions of the IBO include (Jankovic and
Ghosh, 1995) the following:

Assumption 1. Assumptions of the IBO:

• x(t) are bounded. That is, there exists a constant
M > 0 such that‖x(t)‖ < M for every t > 0.
Denote byΩ the setΩ = {x ∈ Rn : ‖x(t)‖ < M}.
For a fixed constantγ > 1, write Ωγ = {x ∈ Rn :
‖x(t)‖ < γM}.
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• The functiong(x1,x2,u) satisfies the following lo-
cal Lipschitz condition inΩγ with respect tox2

(Khalil, 2002):

‖g(x1,x2,u)− g(x1,z2,u)‖ < α0 ‖x2 − z2‖,
(13)

whereα0 is a positive constant.

• The matrixw(x,u) is piecewise smooth, uniformly
bounded together with its first time derivative, and
there exist positive constantsβ and ρ such that we
have ∫ t+ρ

t

w(τ)T w(τ) dτ ≥ β. (14)

This assumption is an observability assumption. It re-
sembles the persistence-of-excitation condition, but is
stronger.

The three assumptions in Assumption 1 are strict yet
reasonable assumptions, referring to the practical system
for estimating the 3D states of a point from the observa-
tions of its perspective projections. The first two assump-
tions are standard ones in the control area that guaran-
tee the local existence and uniqueness of a state equation
(Khalil, 2002). For the third assumption, we shall later see
that, for the case of using bothy1 and y2 to estimatey3,
(14) is equivalent to(b1−b3y1)2 +(b2−b3y2)2 > ε2 for
someε > 0. For ε 6= 0, the above expression defines the
complement of a circle on the screen of the camera with
the center at(b1/b3, b2/b3) and radiusε/b3. The point
(b1/b3, b2/b3) is called the focus of expression (FOE). It
is a well-known fact that the range of a feature point at
the FOE cannot be determined. Thus, the above sufficient
condition for observability is also necessary for practical
purposes (Jankovic and Ghosh, 1995). The first assump-
tion requires the 3D point not to become infinitely close
to the center of projection of the camera due to the issue
of the FOE. The second assumption requires the 3D point,
and also its 2D projection on the imaging surface of the
camera, to follow a unique trajectory for a certain initial
state and a certain set of affine motion parameters.

Define

e1 = y1 − ŷ1, e2 = y2 − ŷ2, e3 = y3 − ŷ3.

The constructed IBO observers for the cases when
(y1(t), y2(t)) are available and when onlyy1(t) is avail-
able, take the following forms (Maet al., 2004; Ma, 2004):

IBO
y1+y2

:



[
˙̂y1

˙̂y2

]
= G A

[
e1

e2

]
+

[
b1 − b3y1

b2 − b3y2

]
ŷ3

+

[
a13 + (a11 − a33)y1 + a12y2

a23 + a21y1 + (a22 − a33)y2

]

−

[
a31y

2
1 + a32y1y2

a31y1y2 + a32y
2
2

]
,

˙̂y3 = −G2
[

b1 − b3y1 b2 − b3y2

]
×P

[
e1

e2

]
− (a31y1+ a32y2+ a33)

×ŷ3 − b3ŷ
2
3 ,

ŷ(t+i ) = M
ŷ(t−i )
‖ŷ(t−i )‖

,

(15)

and

IBO
y1

:



˙̂y1 = GA e1 + [a12 − a32y1, b1 − b3y1]

×

[
ŷ2

ŷ3

]
+

[
a13 +(a11−a33)y1 − a31y

2
1

]
,

[
˙̂y2

˙̂y3

]
= −G2

[
a12 − a32y1

b1 − b3y1

]
Pe1

+

[
α̃

−(a31y1 + a32ŷ2 + a33)ŷ3 − b3ŷ
2
3

]
,

ŷ(t+i ) = M
ŷ(t−i )
‖ŷ(t−i )‖

,

(16)
where

α̃ = a23 + a21y1 + (a22 − a33)ŷ2 − a31y1ŷ2

−a32ŷ
2
2 + (b2 − b3ŷ2)ŷ3,

under the corresponding observability conditions

λmin{w([y1(t), y2(t)]T ) wT ([y1(t), y2(t)]T )} > ε > 0,
(17)

and
λmin{w(y1(t))wT (y1(t))} > ε > 0, (18)

whereλmin denotes the smallest eigenvalue of a matrix.2

The sequence ofti is defined in (12). From (15) and (16),
it can be observed that the states of the observers are kept
bounded.

2 The variableλ has been used extensively in this paper in different
places. Here,λ denotes an eigenvalue selector. In Eqns. (21) and
(23), λi (i = 1, 2) denote design parameters. Besides, in (24),λ
denotes the design parameter in general.
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The two observability conditions in (17) and (18) are
of the same complexity. Specifically, they are

(b1 − b3y1)2 + (b2 − b3y2)2 > 0,

λmin

{[
ā2 āb̄

āb̄ b̄2

]}
> 0, (19)

with ā = a12− a32y1 and b̄ = b1− b3y1. The above two
conditions are equivalent to

(b1 − b3y1)2 + (b2 − b3y2)2 > 0,

(b1 − b3y1)2 + (a12 − a32y1)2 > 0. (20)

A detailed proof of the IBO in the general form was pro-
vided in (Jankovic and Ghosh, 1995). For the readability
of the paper, a sketched proof of the IBO is given in Ap-
pendix. The proof of the IBO is not our main contribution.

3.2. Direct Modification of the SMO

The following SMO observer proposed in (Chen and
Kano, 2002) has been applied to the state estimation of
(4) when bothy1(t) and y2(t) are available under As-
sumption 1:

SMO
y1+y2

:



[
˙̂y1

˙̂y2

]
=


λ̂1(t)e1

|e1|+ δ1

λ̂2(t)e2

|e2|+ δ2

 +

[
b1 − b3y1

b2 − b3y2

]

×ŷ3 +

[
a13 + (a11 − a33)y1 + a12y2

a23 + a21y1 + (a22 − a33)y2

]

−

[
a31y

2
1 + a32y1y2

a31y1y2 + a32y
2
2

]
,

˙̂y3 = α [b1 − b3y1, b2 − b3y2]


λ̂1(t)e1

|e1|+ δ1

λ̂2(t)e2

|e2|+ δ2


−(a31y1 + a32y2 + a33)ŷ3 − b3ŷ

2
3 ,

ŷ(t+i ) = M
ŷ(t−i )
‖ŷ(t−i )‖

,

(21)
where δi (i = 1, 2) are design parameters. Herêλi(t)
(i = 1, 2) are adaptively updated by

˙̂
λ1(t) =


2 α1 |e1|, if |e1| > 2δ1,

0, otherwise,

˙̂
λ2(t) =


2 α2 |e2|, if |e2| > 2δ2,

0, otherwise,
(22)

where α, α1, and α2 are positive constants andδi for
i = 1, 2 are design parameters. Furthermore,λ̂1(0) and
λ̂2(0) can be any positive constants.

When only y1(t) is available, the following ob-
server, which is based on a modification of the SMO and
a resemblance between the SMO and the IBO, can also be
used for the state estimation ofy2(t) and y3(t):

SMO
y1

:



˙̂y1 =
λ̂1(t)e1

|e1|+ δ1
+ [a12 − a32y1, b1 − b3y1]

×

[
ŷ2

ŷ3

]
+

[
a13 + (a11 − a33)y1 − a31y

2
1

]
,

[
˙̂y2

˙̂y3

]
= α

[
a12 − a32y1

b1 − b3y1

]
λ̂1(t)e1

|e1|+ δ1

+

[
α̃

−(a31y1 + a32ŷ2 + a33)ŷ3 − b3ŷ
2
3

]
,

ŷ(t+i ) = M
ŷ(t−i )
‖ŷ(t−i )‖

,

(23)

where

α̃ = a23 + a21y1 + (a22 − a33)ŷ2 − a31y1ŷ2

−a32ŷ
2
2 + (b2 − b3ŷ2)ŷ3.

The sequence ofti in (21) and (23) is similar to that
defined in (12). Again, the states of the observers (21)
and (23) are kept bounded. The modified SMO observer
SMO

y1
in (23) achieves an extremely similar performance

to IBO
y1

using properly chosen observer parameters, as

will be seen in Section 4.

The original SMO observer is designed to estimate
y3(t) using y1(t) and y2(t), and its proof was focused on
the specific system (4) instead of the more general nonlin-
ear systems in (10). In the following, an alternative proof
of the SMO for the nonlinear system (10) is provided.

3.3. Extended Proof of the SMO

In this section, we provide an alternative proof of the SMO
for nonlinear systems in the form of (10) under Assump-
tion 1. First, consider the following error dynamics:

ė1 = −λ sgn(e1) + wT (x1,u)e2,

ė2 = −αλ w(x1,u)sgn(e1)

+ g(x1,x2,u)− g(x1, x̂2,u),

(24)
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with e1 = x1− x̂1, e2 = x2− x̂2 and sgn(·) giving the
sign of its argument.3 Assume now that4

g(x1,x2,u)− g(x1, x̂2,u) = 0. (25)

The system (24) becomes


ė1 = −λ sgn(e1) + wT (x1,u)e2,

ė2 = −αλ w(x1,u) sgn(e1).
(26)

First, it can be shown thate1, e2 and ė1 are
bounded. For example,e1 = x1 − x̂1 is bounded due
to the boundedness of the state estimatex1 (by assump-
tion) and x̂1. The boundedness of̂x1 can be seen from
the third equation in (21) and (23), where the states of the
observers are kept bounded. Similarly,e2 is bounded.
Then, from (24),ė1 is bounded due to the boundedness
of e1, e2 and wT (x,u) (by the third proviso in Assump-
tion 1).

Let V1 = 1
2 (e2

1 + e2
2). Then

V̇1 = eT
1 ė1 + eT

2 ė2

= −eT
1 λ sgn(e1) + eT

1 wT e2 − α eT
2 λ w sgn(e1)

= −λ‖eT
1 ‖+ eT

2 w
(
e1 + α(ė1 − wT e2)

)
= −λ‖eT

1 ‖ − α‖wT e2‖2 + eT
2 w(e1 + αė1). (27)

Sincee1, ė1, e2, and w are bounded,eT
2 w(e1 + α ė1)

are bounded. By choosingα and λ large enough,V̇1

can be made

V̇1 ≤ −λ̄‖e1‖2 − ᾱ‖wT e2‖2 ≤ 0, (28)

where λ̄ and ᾱ are two constants different fromλ and
α, respectively. The selection of the design parameter
λ is dependent on the initial condition of the system. It
should be significantly larger than a function of the initial
condition of the system. Further, because of (14), we can

3 More precisely, sgn(e1) should be understood as
[sgn(e1), sgn(e2), . . . , sgn(em)]T assuming that the vec-
tor e1 is an m× 1 vector. That is,e1 = [e1, e2, . . . , em]T .

4 This assumption will be relieved later when deriving (31).

have∫ t+δ

t

V̇1 dτ ≤ −

[
λ̄

∫ t+δ

t

‖e1(τ)‖2dτ

+ᾱ

∫ t+δ

t

‖wT (τ)e2(τ)‖2dτ

]

≤ −

[
λ̄

∫ t+δ

t

‖e1(τ)‖2dτ

+ᾱ β

∫ t+δ

t

‖e2(τ)‖2dτ

]

= −
(
λ̄ e2

1 + ᾱβ e2
2

)
≤ −λ̃V1, (29)

where λ̃ = min(λ̄, ᾱβ). According to Theorem 4.5 in
(Khalil, 2002), the system (26) is exponentially stable due
to (28) and (29).

Now, consider Eqn. (24). Following the converse
theorem (Khalil, 2002), there exists another Lyapunov
function V2 and four positive constantsci for i =
1, 2, 3, 4 such that

c1‖e‖2 < V2 < c2‖e‖2, V̇2|(26) < −c3‖e‖2,∥∥∥∥∂V2

∂e

∥∥∥∥ < c4‖e‖, (30)

where e = [eT
1 , eT

2 ]T , and ‖V̇2‖(26) denotes the time
derivative ofV2 calculated along the trajectory of the sys-
tem (26). Discarding the assumption ofg(x1,x2,u) −
g(x1, x̂2,u) = 0 as stated in (25) and usingV2 as the
Lyapunov function for the system (24), we can obtain

V̇2|(24) =
d
dt

V2|(26)

+
∥∥∥∥∂V2

∂e

∥∥∥∥ (g(x1,x2,u)− g(x1, x̂2,u)) ,

≤ −c3‖e‖2 + c4‖e‖α0‖x2 − x̂2‖

≤ −(c3 − c4α0)‖e‖2,

(31)

where the functiong(x1,x2,u) is assumed to satisfy the
local Lipschitz condition (13) as stated in Assumption 1.
V̇2|(24) can be made a negative definite function by choos-
ing c3 > c4α0, so that the system (24) becomes exponen-
tially stable.

Replacingλ sgn(e1) by λ̂ e1
|e1|+δ1

in (24), we arrive
at the error dynamics when using the SMO observer. Fol-
lowing the same procedures from Eqns. (24) to (27), in
(27), the first element becomes−λ̂ eeeT

1
eee1

‖eee1‖+δ1
. Again, by
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choosingα and λ̂ large enough, Eqn. (28) can be made
true. The following proof remains the same as those from
Eqns. (28) to (31).

Remark 1. e1
|e1|+δ1

is introduced to replacesgn(e1) to
reduce the chattering and the singularity effect because
e(t) might be zero. Besides, whenδ1 → 0, eee1

|eee1|+δ1
→

sgn(e1).

3.4. PDS with an Alternative Output Definition

Besides definingy(t) as in (3), we can also let

y(t) = [y1(t), y2(t), y3(t)]T

= [X(t)/Y (t), Z(t)/Y (t), 1/Y (t)]T . (32)

The derivative ofy(t) then becomes

ẏ1 = a11y1 + a12 + a13y2

−(a21y1 + a22 + a23y2)y1

+(b1 − b2y1)y3,

ẏ2 = a31y1 + a32 + a33y2

−(a21y1 + a22 + a23y2)y2

+(b3 − b2y2)y3,

ẏ3 = −(a21y1 + a22 + a23y2)y3 − b2y
2
3 .

(33)

The PDS system in (33) can be understood as the
PDS in (4) goes through another perspective projection,
which might be called a “chained perspective projection”,
when only X(t)/Y (t) = X(t)/Z(t)

Y (t)/Z(t) is measurable. In
comparison, the PDS in (4) uses the two coordinates of a
projected point on the image plane as the measurements,
while the chained PDS system in (33) requires only a
slope. The system (33) can also be understood as a re-
sult from a camera facing towards theY axis, instead of
the Z axis as in (4). Due to this, the resulting PDS in
(33) is equivalent to (4) by switching orders of the motion
parameters as

[a]i,j =

 a11 a13 a12

a31 a33 a32

a21 a23 a22

 , [b]j =

 b1

b3

b2

 . (34)

We thus show that, sticking to the perspective projection,
different output definitions result in perspective dynamics
systems in a similar form. Thus, in Section 4, simulation
results for the PDS in (4) are only presented without loss
of generality.

4. Simulation Results

The observersIBO
y1

and SMO
y1

are implemented via Mat-

lab simulations. First, we show an example of simulation
results using the first example in (Chen and Kano, 2002),
where the target is assumed to move according to the fol-
lowing affine motion: Ẋ(t)

Ẏ (t)
Ż(t)

 =

 −0.2 0.4 −0.6
0.1 −0.2 0.3
0.3 −0.4 0.4


×

 X(t)
Y (t)
Z(t)

 +

 0.5
0.25
0.3

 ,

(X0, Y0, Z0) = (1, 1.5, 2.5),

y0 = (X0/Z0, Y0/Z0, 1/Z0). (35)

In all the simulations, the output is corrupted with uni-
form noise bounded by±10−2. Here y′0 is chosen to be
(0, 0, 0). The observer parameters are:5

• IBO: G = 10, A = 1, P = −1/2,M = 10, γ = 1.

• SMO: α = 5, λ̂1(0) = 1, α1 = 10, δ1 = 0.2,
M = 10, γ = 1.

State Estimation of  

State Estimation of  

State Estimation of  

Fig. 3. State estimation of(y2, y3) using y1

for the motion dynamics in (35).

State estimation using onlyy1 via IBO
y1

and SMO
y1

are presented in Fig. 3, where the true state trajectories
are plotted in solid lines and the estimates are represented

5 For the cases with a single homogeneous function and with both
(y1, y2).
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by dotted and dashed lines for the IBO and SMO, re-
spectively. It can be observed that the state estimation of
(y2, y3) can be achieved and the performance ofIBO

y1
and

SMO
y1

are extremely close.

Figure 4 shows a comparison betweenIBO
y1+y2

and

IBO
y1

for y3. The simulation time is set to be 80 sec-

onds to clearly show the error convergence. It is obvious
that IBO

y1+y2
generally outperformsIBO

y1
, during the tran-

sient period, but both converge to the true value. A sim-
ulation comparison betweenSMO

y1+y2
and SMO

y1
is not pro-

vided due the similar performance of the SMO with the
IBO.

0 10 20 30 40 50 60 70 80
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

error of state estimation y
3

single
y

1
+y

2

Fig. 4. Estimation error comparison betweenIBO
y1+y2

and

IBO
y1

for the motion dynamics in (35).

Other examples of simulation results are presented in
Figs. 5 and 6 for the following affine motion:

 Ẋ(t)
Ẏ (t)
Ż(t)

 =

 −0.2 0.4 −0.6
0.1 −0.2 0.3
−0.4 0.4 −0.4



×

 X(t)
Y (t)
Z(t)

 +

 0.5
0.25
0.3

 ,

(X0, Y0, Z0) = (1, 1.5, 2.5),

y0 = (X0/Z0, Y0/Z0, 1/Z0). (36)

Remark 2. Range identification with general 3D planar
imaging surfaces:It has been shown in the above sim-
ulations that state estimation usingy1 and y2 generally

State Estimation of  

State Estimation of  

State Estimation of  

Fig. 5. State estimation of(y2, y3) using y1 for
the motion dynamics in (36).
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Fig. 6. Estimation error comparison betweenIBO
y1+y2

and

IBO
y1

for the motion dynamics in (36).

outperforms the situation when using only a single obser-
vation. Motivated by these results, it is straightforward
to ask: if using full homogeneous observations is “better”
(in the sense of the state estimation accuracy) than using
partial observations, will a general planar imaging surface
as shown in Fig. 1 outperform the traditional camera-type
imaging surface (Zp = 1)? We believe that the answer
is “yes” intuitively, because when using a general planar
imaging surface and considering the nonlinear system in
(10), x1 becomes a3× 1 vector, compared to the2× 1
vector as in the case ofZp = 1. However, it is obvious
that this benefit is achieved at the cost of more complex
imaging systems.
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5. Concluding Remarks

For a perspective dynamic system (PDS) with a single ho-
mogeneous observation function, the range identification
problem is discussed using nonlinear observers previously
used for the full observation case. Our simulation results
show that the convergence speed of the observer for the
single observation case is slower than those with full ob-
servations. However, both the observers have similar per-
formance. This study also shows that a more general 3D
imaging surface can be more desirable since it can provide
more homogeneous output(s).

The sensitivity of the state estimation of a PDS with
respect to motion parameters is not investigated in this pa-
per. However, it would not be surprising that the effect
can be slightly more severe for the single case than that
with full observations.
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Appendix

Sketched Proof of the IBO(Jankovic and Ghosh, 1995)

Consider the following differential equation for the esti-
mation error from (10) and (11):

ė1 = GAe1 + wT (x1,u)e2,

ė2 = −G2w(x1,u)Pe1 + g(x1,x2,u)− g(x1, x̂2,u).

Define a linear change of the coordinatesξ = Te via

T =

[
G−1In1 0

0 G−2In2

]
,

where n1 and n2 correspond to the dimensions ofx1

and x2, respectively. It can be verified that the error dy-
namics in the new stateξ can be written in the following
form:

ξ̇1 = G(Aξ1 + wT (t)ξ2), (37)

ξ̇2 = Gw(t)Pξ1 + G−2(g(x1,x2,u)− g(x1, x̂2,u)),

wherew(t) is considered a function of time sincex1(t)
and u(t) are fixed functions of time known at every time
instant. Assume thatg(x1,x2,u) − g(x1, x̂2,u) = 0,
and define the new time coordinate vias = Gt. The dif-
ferential equation (37) becomes

dξ1

ds
= Aξ1 + w̄T (s)ξ2,

dξ2

ds
= w̄(s)Pξ1, (38)

wherew̄(s) = w(G−1s). The above system is in the form
satisfied by the error differential equation in the parameter
identification problem considered in (Morgan and Naren-
dra, 1977), and it can be shown that the above system is
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exponentially stable from Assumption 1. For the system
given by (38), it can be verified that the proof of Theo-
rem 2 in (Morgan and Narendra, 1977) guarantees the ex-
istence of a Lyapunov functionV1(ξ) and three positive
constantsdi, i = 1, 2, 3 such that

d1‖ξ(s)‖2 < V1(ξ) < d2‖ξ(s)‖2,

d
ds

V1(ξ)|(38) ≤ 0,

∫ s+ρ

s

d
dτ

V1(ξ)|(38) dτ ≤ −d3‖ξ(s)‖2,

where V̇1(ξ)|(38) means that the time derivative ofV1 is
calculated along the trajectory of the system (38). Fol-
lowing the converse theorem in (Khalil, 2002), there ex-
ist another Lyapunov functionV2(ξ, s) and four positive
constantsci, i = 1, 2, 3, 4 such that

c1‖ξ(s)‖2 < V2(ξ, s) < c2‖ξ(s)‖2,

V̇2(ξ, s)|(38) < −c3‖ξ(s)‖2,∥∥∥∥∂V2(ξ, s)
∂ξ

∥∥∥∥ < c4‖ξ(s)‖. (39)

Discarding the assumption thatg(x1,x2,u) −
g(x1, x̂2,u) = 0, the error dynamics inξ and s is
given by

dξ1

ds
= Aξ1 + w̄T (s)ξ2, (40)

dξ2

ds
= w̄(s)Pξ1 + G−3(g(x1,x2,u)− g

(
x1, x̂2,u)

)
.

Using the functionV2(ξ, s) as the Lyapunov candidate
for the above system, we can obtain

d
ds

V2(ξ, s)|(40) ≤
(
−c3 + G−1c4α0

)
‖ξ‖2.

It is obvious that V̇2(ξ, s)|(40) can be made a negative
definite function by choosingG > c4α0/c3. For such a
choice of G, the system (40) becomes exponentially sta-
ble. Because the linear relationship betweenξ and e, it
can be concluded thate converges to zero exponentially
between discontinuities.
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