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This paper describes a procedure that uses particle swarm optimization (PSO) combined with the Lagrangian Relaxation
(LR) framework to solve a power-generator scheduling problem known as the unit commitment problem (UCP). The UCP
consists of determining the schedule and production amount of generating units within a power system subject to operating
constraints. The LR framework is applied to relax coupling constraints of the optimization problem. Thus, the UCP is
separated into independent optimization functions for each generating unit. Each of these sub-problems is solved using
Dynamic Programming (DP). PSO is used to evolve the Lagrangian multipliers. PSO is a population based search technique,
which belongs to the swarm intelligence paradigm that is motivated by the simulation of social behavior to manipulate
individuals towards better solution areas. The performance of the PSO-LR procedure is compared with results of other
algorithms in the literature used to solve the UCP. The comparison shows that the PSO-LR approach is efficient in terms of
computational time while providing good solutions.
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1. Introduction

Electric power industry is changing rapidly and the tra-
ditional monopolistic environment is moving to a com-
petitive power supply market. Determining the operating
strategies to meet the demand for electricity for a spe-
cific planning horizon is one of the most important con-
cerns under the current commercial pressure. The Unit
Commitment Problem (UCP) is to determine the sched-
ule and production amount of generating units within
a power system subject to machine and operating con-
straints (Wood and Wollenberg, 1996). This problem is
a mixed combinatorial and continuous optimization prob-
lem in which the states of the units, on or off, and gen-
eration amounts are determined under constraints (She-
ble and Fahd, 1994). The generic UCP is to minimize
the total operational cost and is subject to minimum up-
and down-time constraints, crew constraints, unit capabil-
ity limits, generation constraints and reserve constraints.
The most popular techniques to solve the UCP have been
the priority list (Lee, 1988), dynamic programming (DP)
(Su and Hsu, 1991), integer programming (Garver, 1963),
Langrangian relaxation (LR) (Virmaniet al., 1989), and
stochastic programming (Takritiet al., 1996). Metaheuris-
tic approaches such as genetic algorithms (GA), simu-
lated annealing (SA) (Suzannah, 1998), and tabu search
(Xiaomin and Shahidehpour, 1997) have also been used
since the beginning of the last decade. Recently, Parti-

cle Swarm Optimization (PSO) has been used to solve the
UCP (Tinget al., 2003). Hybrid methods such as memetic
algorithms (Valenzuela and Smith, 2002) and decommit-
ment with priority list and LR (Tsenget al., 2000) have
been shown to be effective in solving large UCPs.

In this paper we propose a new approach to solve the
UCP, a hybrid method that uses a combination of PSO
(Kennedy and Eberhart, 1995) and LR (Fischer, 1973).
We use the abbreviation “PSO-LR” to refer to our ap-
proach. The LR framework is based on dual optimiza-
tion and it decomposes a problem into one master and
more manageable sub-problems. In our approach, the
sub-problems are solved using DP. The connection be-
tween sub-problems is maintained by the Lagrange mul-
tipliers, which are updated in our method by the PSO.
The PSO approach is motivated from the social behav-
ior of bird flocking and fish schooling. Kennedy and
Eberhart introduced PSO in 1995 in terms of social and
cognitive behavior. The PSO has been widely used as
a problem-solving method in engineering and computer
science. Some examples of PSO application are: the
training of a neural network to predict the type of hu-
man tremor (Eberhart and Hu, 1999), optimizing a com-
puter controlled milling machine (Tandon, 2000), gen-
erating interactive and improvised music (Blackwell and
Bentley, 2002), and assigning tasks in distributed com-
puting systems (Salmanet al., 2002). Recently, in the
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area of electric power systems, PSO seems to be gain-
ing popularity. The PSO has been used to solve the op-
timal power flow problem (Abido, 2002), the reactive
power and voltage control problem (Yoshidaet al., 2001),
and the distribution state estimation problem (Nakaet al.,
2003). Other applications of PSO are listed on the website
www.swarmintelligence.org .

The remaining sections of this paper are organized
as follows: Section 2 gives a description of the unit com-
mitment problem. Section 3 includes a brief review of the
PSO algorithm. Section 4 defines our methodology and
tuning efforts. Section 5 shows the implementation of the
proposed algorithm on test problems. Section 6 summa-
rizes the results.

2. Unit Commitment Problem

The UCP involves the determination of the state
(ON/OFF) of power generating units for each time period,
as well as the power output levels subject to the system
and generating unit’s operating constraints. The standard
UCP for N generating units andT time periods is for-
mulated as follows (Wood and Wollenberg, 1996):

min
T∑

t=1

N∑
i=1

[
Ci(Qi,t)Ui,t +Si,t(1−Ui,t−1)Ui,t−1

]
(1)

subject to

1. Demand constraint

N∑
i=1

Ui,tQi,t = dt, t = 1, 2, . . . , T.

2. Power reserve constraint

N∑
i=1

Ui,tQ
max
i ≥ dt + rt, t = 1, 2, . . . , T.

The power reserve is used in the case of a unit failure
or an unexpected increase in the demand.

3. Capacity constraints

Ui,tQ
min
i ≤ Qi,t ≤ Ui,tQ

max
i , t = 1, 2, . . . , T,

i = 1, 2, . . . , N.

4. Minimum up/down time

(xup
t−1,i − T up

i )(Ut−1,i − Ut,i) ≥ 0

(xdown
t−1,i − T down

i )(Ut,i − Ut−1,i) ≥ 0


t = 1, 2, . . . , T, i = 1, 2, . . . , N,

where

Ci(Qi,t): Cost of producingQi,t units of power
by unit i at time periodt, measured in
$/h,

Si,t: Start up cost of uniti at time periodt,
measured in $,

dt: Power demand at time periodt, mea-
sured in MW,

rt: Power reserve at time periodt, mea-
sured in MW,

T up
i : Minimum up time for unit i, measured

in hours,

T down
i : Minimum down time for unit i, mea-

sured in hours.

Decision Variables:

Qi,t: Power produced by uniti at time periodt,
measured in MW,

Ui,t: Up or down status for uniti at time periodt,

Ui,t =

{
1 means that uniti is on for time periodt,

0 means that uniti is off for time periodt.

State Variables:

xup
t,i : Number of consecutive uptime periods un-

til time period t, measured in hours,

xdown
t,i : Number of consecutive downtime periods

until time periodt, measured in hours.

The start up cost occurs when a unit is turned on, but it
depends on how long the unit has been off. If the unit has
been off for a long time, a cold start up cost is applied. If
the unit has been off for a short time, a hot start up cost is
applied. The start up cost is represented by a step function:

Si,t =

{
Sh,i if xdown

t,i ≤ tcoldi ,

Sc,i otherwise,

where tcoldi is the maximum time for the cold start-up.

2.1. Solving the UCP by the Lagrangian Relaxation
Method

The UCP has commonly been formulated as a large scale,
nonlinear and mixed-integer combinatorial optimization
problem with many constraints (Orero and Irving, 1997;
Sheble and Fahd, 1994). The LR method has been applied
successfully to the UCP for years and has been demon-
strating its good performance on handling the UCP (Bert-
sekaset al., 1983; Muckstadt and Koenig, 1977).
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The UCP has two kinds of constraints: separable and
coupling constraints. Separable constraints such as capac-
ity and minimum up and down time constraints are related
with one single unit. On the other hand, coupling con-
straints involve all units. A change in one unit affects the
other units. The demand and power reserve constraints are
examples of coupling constraints. The LR framework re-
laxes the coupling constraints and incorporates them into
the objective function by a dual optimization procedure.
Thus, the objective function can be separated into inde-
pendent functions for each unit, subject to unit capacity
and minimum up and down time constraints. The result-
ing Lagrange function of the UCP is as follows:

L(Q,U ,λ,β) = F (Q,U)+
T∑

t=1

λt

(
dt−

N∑
i=1

Ui,tQi,t

)

+
T∑

t=1

βt

(
dt+rt−

N∑
i=1

Ui,tQ
max
i

)
, (2)

where

F (Q,U) =
T∑

t=1

N∑
i=1

[
Ci(Qi,t) + Si,t(1− Ui,t−1)

]
Ui,t

and the minimization of theL function is subject to Con-
straints 3 and 4 of Eqn. (1). For the sake of simplicity, we
have used the symbolQ, without the subscriptsi and t,
to denote any appropriate vector of elementsQi,t. The
same is also valid for the symbolsU , λ, and β. The
LR approach requires minimizing the Lagrange function
given in (2):

q(λ,β) = min
Q,U

L(Q,U ,λ,β). (3)

Since q(λ,β) provides a lower bound for the objective
function of the original problem, the LR method requires
to maximize the objective function over the Lagrangian
multipliers:

q∗(λ,β) = max
λ,β

q(λ,β).

After eliminating constant terms such asλtdt and
βt(dt + rt) in Eqn. (2), Eqn. (3) can be written as

q(λ,β) = min
Q,U

N∑
i=1

( T∑
t=1

[
Ci(Qi,t)Ui,t

+ Si,t(1− Ui,t)Ui,t − λtQi,tUi,t − βtQ
max
i Ui,t

])
,

which is subject to unit capacity and minimum up and
down time constraints. Notice that these constraints per-
tain to individual units only. Thus, the master problem is
separable by individual units, i.e., solving a sub-problem

for each of the units can solve the master problem. If we
choose the values for the Lagrange multipliers, they could
be treated as fixed numbers. Therefore, for given values
of λ and β, the optimization problem for uniti is

qi(λ,β) = min
Q,U

T∑
t=1

[
Ci(Qi,t) + Si,t(1− Ui,t)

− λtQi,t − βtQ
max
i

]
Ui,t. (4)

The complete Lagrangian relaxation procedure is de-
scribed next.

2.2. Lagrangian Relaxation Procedure

The Lagrangian procedure to solve the UCP starts with
initializing the Lagrange multipliers with values that try to
make q(λ,β) larger (Carter and Price, 2001). Next, they
are considered fixed and the Lagrange function(L) is
minimized by adjustingQi,t andUi,t. This minimization
is done separately for each unit, and different techniques
such as LP and dynamic programming can be used. The
solutions for theN independent sub-problems are used in
the master problem to find a new set of Lagrange multipli-
ers. This iterative procedure continues until a duality gap
criterion is met. The duality gap is used as a measure of
convergence. If the relative duality gap between the pri-
mal and the dual solutions is less than a specific tolerance,
it is considered that the optimum has been reached. The
procedure then ends with finding a feasible UC schedule.

Updating the Lagrangian multipliers using
the sub-gradient method

The multipliers can be updated by using a sub-gradient
method with a scaling factor and tuning constants, which
are determined heuristically (Bertsekas, 1982; Sheble and
Fahd, 1994). This method is explained as follows: A vec-
tor ψ is called a sub-gradient ofL(·) at λ if

L (λ) ≤ L
(
λ
)

+
(
λ− λ

)T
ψ.

If the sub-gradient is unique at a pointλ, then it is the
gradient at that point. The set of all sub-gradients atλ is
called the sub-differential,∂L(λ), and is a closed convex
set. A necessary and sufficient condition for optimality in
sub-gradient optimization is0 ∈ ∂L(λ). In this paper, we
used the sub-gradient optimization algorithm to generate
a sequence of points using the rule

λk+1
t = λk

t + αψk,

where ψk is any sub-gradient ofL(·) at λk
t . The step

size,α, has to be chosen carefully to achieve good perfor-
mance by the algorithm. Hereψk is calculated as follows:

∂L
(
λk

t

)
= dt −

N∑
i=1

Ui,tQi,t.



H.H. Balci and J.F. Valenzuela414

Then

λk+1
t = λk

t + α

(
dt −

N∑
i=1

Ui,tQi,t

)
.

Finding a Feasible Solution to the Primal Problem

Since a solution to the dual problem may not be feasible to
the primal problem, a feasible solution is constructed by
economic dispatching of units that have the variableUi,t

equal to 1 (a state equal to “ON”) in the dual problem
solution. Therefore, at every time period, say timet, the
following optimization problem (known as the Economic
Dispatch) is solved:

min TC =
∑

i=Ωt

Ci (Qi,t)

s.t.
∑

i=Ωt

Qi,t = dt and Qmin
i,t ≤ Qi,t ≤ Qmax

i,t ,

where Ωt is the subscript set of all units committed at
time t in the dual solution. Figure 1 shows a flow diagram
of the complete LR procedure.

Initally assign values for
all � �  and � �

Minimize the Lagrange
function adjusting Qi,t

and Ui,t

Calculate the duality
gap

Is duality gap smaller
than tolerance ?

Final UC schedule

Yes

No

Update  � t
and � t

λt βt

λt
βt

Is the duality gap
smaller than
tolerance?

Fig. 1. Lagrange relaxation procedure for the UCP.

2.3. Dynamic Programming Method for Solving
the Sub-Problem

The Dynamic Programming (DP) method consists in im-
plicitly enumerating feasible schedule alternatives and
comparing them in terms of operating costs. To solve the

sub-problem for uniti using dynamic programming, we
define the functionRt(Ut) by the following equation:

Rt(Ut) = min
Qt

{(
C(Qt)− λtQt − βtQ

max
)
Ut

}
, (5)

which is subject to the capacity constraintUtQ
min ≤

Qt ≤ UtQ
max. Equation (5) denotes the minimum cost

at hour t excluding start-up costs. Here, we have omitted
the subscripti to simplify the notation. If the unit at time
t is off (Ut = 0), the solution of (5) isQt = 0. On the
other hand, if the unit at timet is on (Ut = 1), the solu-
tion of (5) is calculated by taking the first derivative with
respect toQt within the range [Qmin

t , Qmax
t ]. If the unit

has a quadratic cost function as shown below:

C(q) = a+ bq + cq2,

the optimal value ofQt in (5) is given by the following
expression:

Qt = max
{
Qmin,min

{
Qmax,

λt − b

2c

}}
Ut.

We also define the recursive functionFt(xt) to be
the minimum accumulated cost until hourt of operating
the generator in statext during hourt. Thus, the expres-
sion for hourt is

Ft(xt) = min
Ut

{
Rt(Ut) + Ut(1− Ut−1)St(xt)

+ Ft−1(xt−1)
}
,

which is subject to the operating constraints. Since the
costs of decisions taken before and during time 0 are ir-
relevant, the accumulated cost at time 0 is set to zero
(F0(x0) = 0).

2.4. 2-Unit Example

A sample problem is created with two units for three hours
of scheduling (Table 1). We assume that there are no re-
serve constraints(β = 0). Lagrange multipliers for each
hour are assumed to be 11, 6 and 13 $/MWh respectively.
The dynamic programming procedure is used to find the
optimum schedule.

Table 2 shows alternative schedules for Unit 1 and
their Lagrangian function values. Due to minimum
up/down time constraints, Schedules 2, 4 and 6 are in-
feasible. The other schedules do not violate the minimum
up and down time constraints, and therefore they are all
feasible. The lowest cost schedule is number 7, which re-
sults in the minimum cost,−698.68. Thus, with the given
Lagrange multipliers, the best schedule is to turn Unit 1
off at time 1 and turn it back on at time 3 and to produce
220 MW at that hour. Figure 2 shows a graphic represen-
tation of Table 2. The amount of power produced and cost
are shown in the figure for each period.
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Table 1. Unit characteristics (Bard, 1988).

Characteristic Unit 1 Unit 2

Maximum capacity (MW) 220 200

Minimum capacity (MW) 80 50

Cost function ($/h) 400 + 7.654Q + 0.0016Q2 175 + 7.054Q + 0.00515Q2

Minimum up time (hour) 3 2

Minimum down time (hour) 2 2

Initial state (off-line(−) or on-line(+)) 5 −1

Table 2. Lagrangian function for Unit 1.

No. U1,1 U1,2 U1,3 Q1,1 Q1,2 Q1,3 q1(λ, β)

1 1 1 1 220 108.125 220 −576.06

2 0 1 1 0 infeasible infeasible —

3 1 1 0 220 108.125 0 122.61

4 1 0 1 220 infeasible infeasible —

5 1 0 0 220 0 0 −258.68

6 0 1 0 0 infeasible infeasible —

7 0 0 1 0 0 220 −698.68

8 0 0 0 0 0 0 0

-698.68

C1,2= 0
Q1,2= 0C1,1= 0

Q1,1= 0 C1,3= -698.68
Q1,3=  220

C1,2= 381.29
Q1,2= 108.125

C1,1= -258.68
Q1,1=  220

5

-1

6

-2

7

-3

1

-1

8

C1,3= 0
Q1,3= 0

Hour 0 Hour 1 Hour 3Hour 2

C1,3= -698.68
Q1,3=  220

C1,3= 0
Q1,3= 0

� 1 =11 � 2 =6 � 3 =13

-1

C1,2= 0
Q1,2= 0

-2

C1,3= 0
Q1,3= 0

Total Cost

0

-258.68

122.61

-576.06

OFF

OFF
OFF

OFF
OFF

ON

ON

ON

OFF

ON

λ1 = 11 λ2 = 6 λ3 = 13

Fig. 2. State transition diagram for Unit 1.

Similarly, for Unit 2, the state transition diagram em-
phasizing the dynamic programming solution is shown in
Fig. 3. The optimum schedule is OFF, OFF and ON, re-
spectively.

3. Particle Swarm Optimization for the UCP

Particle Swarm Optimization is a computation technique
introduced by Kennedy and Eberhart in 1995, which was
inspired by the social behavior of bird flocking or fish

C2,1= 0
Q2,1= 0

C2,2= 240.575
Q2,2= 50

-1 -2

1

2

Hour 0 Hour 1 Hour 3Hour 2

C2,3= -808.2
Q2,3=  200

� 1 =11 � 2 =6 � 3 =13

-3

C2,2= 0
Q2,2= 0 -4

C2,3= 0
Q2,3= 0

Total Cost

-808.2

-567.625

1

C2,3= -808.2
Q2,3=  200

0

ON

ON

ON

OFF

OFF
OFF

λ1 = 11 λ2 = 6 λ3 = 13

Fig. 3. State diagram for Unit 2.

schooling (Reynolds, 1987). They theorize that the pro-
cess of cultural adaptation can be summarized in terms of
three principles: evaluate, compare and imitate. An or-
ganism, a bird in PSO, evaluates its neighbors, compares
itself to others in the population and then imitates only
those neighbors who are superior. So they behave with
two kinds of information: their own experience and the
knowledge of how the other individuals around them have
performed (Kennedy and Eberhart, 2001).

The PSO approach has some similarities to GA and
evolutionary algorithms. PSO has a population of individ-
uals that move through theD-dimensional search space
and each individual has a velocity that acts as an opera-
tor to obtain a new set of individuals. Individuals, called
particles, adjust their movements depending on both their
own experience and the population’s experience. At each
iteration, a particle moves towards a direction computed
from the best visited position and the best visited posi-
tion of all particles in its neighborhood. Among several
variants of PSO, the global variant considers the neigh-
borhood as the whole population, called theswarm, which
permits the global sharing of information.

In PSO, thep-th particle is represented asλp =
{λp1, λp2, . . . , λpD}, whereλpj is the value of thej-th
coordinate in theD-dimensional space. The best par-
ticle of the swarm is represented by the symbolG =
{g1, g2, g3, . . . , gD} and the best visited position of the
p-th particle is represented asP p = {pp1, pp2, . . . , ppD}.
The rate of the position change, which is the velocity for
particle p, is represented asV p = {vp1, vp2, . . . , vpD}.
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The position of a particle changes according to its velocity,
which is adjusted at each iteration. Particlep is reposi-
tioned according to thed-coordinate of its velocity, which
is calculated as follows (Shi and Eberhart, 1999):

vpd = wvpd + c1 rand(0, 1)(ppd − λpd)

+ c2 rand(0, 1)(gd − λpd).

The factorw is the inertia weight and is similar to
the effect of temperature in simulated annealing. If the
inertia weight is large, the search becomes more global,
while for smaller inertia the search becomes more local.
The coefficientsc1 and c2 are learning factors, which
help particles to accelerate towards better areas of the so-
lution space.

The velocity of each dimension has upper and lower
limits, Vmax and Vmin, and they are defined by the user.
The new position of a particle is updated as follows:

λpd = λpd + vpd.

The PSO algorithm can start with a population of par-
ticles with random positions or with a population of par-
ticles created heuristically. In PSO, a single particle is
a solution in the search space. All particles have fitness
values, which are evaluated by the fitness function to be
optimized, and velocities, which direct the flying of the
particles. The PSO algorithm that maximizes the fitness is
described by the pseudo code below (Kennedy and Eber-
hart, 2001):

Pseudo code of PSO

Initialize population
While (number of generations, or the stopping criterion is
not met)

For p = 1 to number of particles
If the fitness ofλp is greater than the fitness ofP p then

UpdateP p = λp

For k ∈ Neighborhood ofλp

If the fitness ofλk is greater than that ofG then
UpdateG = λk

Next k
For each dimensiond

vpd = wvpd + c1 rand(0, 1)(ppd − λpd)
+ c2 rand(0, 1)(gd − λpd)

if vpd /∈ (Vmin, Vmax)
then vpd = max(min (Vmax, vpd), Vmin)

λpd = λpd + vpd

Next d
Next p

Next generation until criterion

4. Proposed Methodology

In this section, the implementation of PSO-LR to solve
the UCP is explained. The PSO approach is used to
search for the Lagrange multipliersλ for each hour in
a similar fashion as in (Shi and Krohling, 2002). The
sub-gradient approach (with step size equal to 0.0001) is
used to search for the Lagrange multipliersβ for each
hour. For a given set of hourly Lagrange multipliers of
a particle p, the schedulesUp,i,t and Qp,i,t are com-
puted using forward dynamic programming. The values
of λp,t, vp,t, Qp,i,t, Up,i,t, andβp,t are stored in matrices
λ,V ,Q,U , and β, respectively. Figure 4 shows matri-
ces λ and V and Fig. 5 shows sub-matrices ofQ and
U for a particle(p = 1).

� 11��� 12 � 13  .................� 1T

Lagrange multipliers

=

...    ...   ...   ...............  ...

� 21��� 22 � 23  .................� 2T

� 31��� 32 � 33  .................� 3T

� P1��� P2 � P3  .................� PT

�

λ λ λ λ

λ λ λ λ

λ λ λ λ

λ λ λ λ

λλ

v11  v12  v13   .............  v1T

...   ...   ...     ............   ...

Velocities

V =
v21  v22  v23   .............  v2T

v31  v32  v33   .............  v3T

vP1  vP2  vP3   .............  vPT

Fig. 4. Encoding of the Lagrange multipliers
and velocities of particles.

A particle, one row in matrixλ, represents a set of the La-
grange multipliers corresponding to each hour. The fitness
of a particlep is defined as

Fp =
T∑

t=1

N∑
i=1

[
Ci,t (Qp,i,t) + Si,t (1− Up,i,t−1)

]
Up,i,t

+
T∑

t=1

λp,t

[
dt −

N∑
i=1

Qp,i,t

]

+
T∑

t=1

βp,t

[
rt −

N∑
i=1

Qmax
i Up,i,t

]
.

In the PSO approach, the fitness of a particle is interpreted
as the worth of its location in the search space. Thus,
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Q11 Q12 Q13  .............  Q1T

...   ...   ...   ..............   ...

Power Amounts

Q1 =

Q21 Q22 Q23  .............  Q2T

Q31 Q32 Q33  .............  Q3T

QN1 QN2 QN3  .............  QNT

U11  U12  U13   .......... U1T

U21  U22  U23   ..........  U2T

U31  U32  U33   ..........  U3T

 ...    ...     ...   ..........   ...

UN1  UN2  UN3  ........... UNT

Unit states

U1 =

Fig. 5. Encoding of power amounts and unit
states for particle one(p = 1).

as the matricesλ and β are updated in each iteration,
the swarm moves in the solution space toward the optimal
point. The best previous position for each particle and the
best position for the swarm are kept asP p and G, re-
spectively. The pseudo code for the proposed method is
shown below:

Main Procedure of PSO-LR

Initialize population
For each particlep

ComputeUp,i,t andQp,i,t using λp

Compute fitness function,Fp

If Fp is less than the fitness ofP p, then P p = λp.
If Fp is less than the fitness ofG, thenG = λp.
UpdateVp

Updateλp and βp

Next p

Illustrative Example

The problem defined in Section 2 is extended with a load
of 220, 240 and 180 megawatt (MW) at each time pe-
riod, and used here to illustrate the PSO-LR. The problem
involves three Lagrange multipliers (one for each hour).
Here, a particle consists of three Lagrange multipliers. To
show how the particles search for the optimal solution,
we create two independent swarms. In Fig. 6, we show
the movement of the swarms in two dimensions,λ2 and
λ3. The first dimension, which isλ1 for the first hour, is
not shown. Each swarm is composed of 8 particles. One
swarm (shown with lines in Fig. 6) starts at the upper-right
corner of the solution space ofλ2 and λ3, and the other
swarm (shown with dots in Fig. 6) starts at the bottom-left

corner. The figure shows the initial positions and the po-
sitions after the 9-th iteration. The location of the optimal
solution for the test problem is depicted by a square.

Fig. 6. Movement of two swarms after nine iterations.

4.1. Parameter Tuning

The PSO-LR algorithm is tuned using a small test problem
taken from (Valenzuela and Smith, 2002). The problem
consists of four generating units and a time horizon of 8
hours. The system data are given in Tables 3 and 4. The
optimal solution is known to be $74,675 (computed using
enumeration).

Table 3. Test system.

Unit 1 Unit 2 Unit 3 Unit 4

Qmax (MW) 300 250 80 60

Qmin (MW) 75 60 25 20

a0 684.74 585.62 213.00 252.00

a1 16.83 16.95 20.74 23.60

a2 0.0021 0.0042 0.0018 0.0034

Max marginal cost ($/MWh) 18.09 19.05 21.03 24.01

Min marginal cost ($/MWh) 17.15 17.45 20.83 23.74

T up
i (h) 5 5 4 1

T down
i (h) 4 3 2 1

Sh,i ($) (hot start) 500 170 150 0

Sc,i ($) (cold start) 1100 400 350 0.02

tcoldi (h) 5 5 4 0

Initial state (h) 8 8 −5 −6

Table 4. Load and reserve.

Hour 1 2 3 4 5 6 7 8

Demand (MW) 450 530 600 540 400 280 290 500

Reserve (MW) 45 53 60 54 40 28 29 50
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In our approach, we set the number of particles equal
to 20. Since the Lagrangian multipliersλ can also be re-
garded as the marginal costs of supplying the demand at
each hour, the value ofVmax is set to the system maxi-
mum marginal cost, i.e.,Vmax is set to 24.01. The value
of Vmin is set to−24.01. The initial values of the matrix
λ are randomly selected from a uniform distribution be-
tween the system minimum and maximum marginal costs.
The values of the matrixβ are initially set to zero. The
parametersw, c1 and c2 are tuned by running PSO-LR
with different combinations of values for these parameters
(see Table 5). PSO-LR is run ten times for each combina-
tion, and each run is terminated after 50 iterations. The
mean and the number of times that PSO-LR found the op-
timal solution for each combination are shown in Table 5.

Table 5. PSO-LR tuning results.

w c1 c2
Average over

10 runs

No. of times
optimum

is found

1 1 75,012 0

1 2 75,012 0

0.3 2 1 75,012 0

2 2 74,709 9

1 1 75,012 0

1 2 74,945 2

0.6 2 1 74,878 4

2 2 74,675 10

1 1 74,775 7

1 2 74,742 8

0.9 2 1 74,675 10

2 2 74,742 8

The combinations of parameters(w, c1, c2) that pro-
vided the best results were (0.6, 2, 2) and (0.9, 2, 1). For
these two sets of values the optimal solution was found in
all ten runs. We choose these two combinations to further
test our PSO-LR algorithm. We denote these two versions
as PSO-LR1 and PSO-LR2 for the parameter set (0.6, 2,
2) and (0.9, 2, 1), respectively.

5. Computation Results

After tuning, we compare the performance of PSO-LR
with other approaches. For the comparison, we use a
10-unit problem taken from the literature (Kazarliset al.,
1996). They solved this problem using DP, LR, and GA.
The same problem was also solved by Valenzuela and
Smith (2002) using DP, LR, and a memetic algorithm
(MA), and by Tinget al. (2003) using PSO. The optimal
solution is known to be $565,825. The system, load, and

power reserve data of this problem are given in Tables 6
and 7.

In Table 8, we show the best and worst solutions ob-
tained using DP, LR, MA, GA, PSO and our approach
(PSO-LR). In this table, the DP, LR, and MA results are
from (Valenzuela and Smith, 2002), the GA results are
from (Kazarliset al., 1996), and the PSO results are from
(Ting et al., 2003). To compare the relative speed of the
hardware utilized, we give the SPECfp95 of the computer
system utilized in running each algorithm. For example,
Sun Ultra 2 is roughly seven times faster than HP Apollo
720 and two times slower than Dell Dimension 4100.

Notice that for the 10-unit problem, PSO-LR2 found
a solution that is very close to the optimum, and it is also
better than the best solution found by LR and PSO. In or-
der to have a fair comparison regarding the computational
effort, we have estimated the total CPU time of the dif-
ferent algorithms as they were run using a Dell Dim 4100
computer system. The total CPU time of an algorithm is
computed by multiplying the number of runs by the CPU
time of one run and the result multiplied by a speed factor
to obtain the total CPU time. The results are shown in Ta-
ble 9. This table includes also a measure of the quality of
the best solution. This quantity measures the closeness of
the best solution to the optimal solution and it is calculated
by the following equation:

Solution quality= 100
(
1−Best solution− Optimal solution

Optimal solution

)
.

Notice that both PSO-LR1 and PSO-LR2 provide high
quality solutions in one sixth of the computation time of
the other algorithms.

To further test our approach, we use expanded
versions of the problem of (Kazarliset al., 1996). These
new problems are created by repeating each unit of the
original problem 2, 4, 6, 8 and 10 times, respectively.
Thus, test problems with 20, 40, 60, 80 and 100 units
are obtained. Hourly load and reserve amounts are scaled
by the same factors. These problems were also solved by
Kazarliset al. (1996) using GA and Valenzuela and Smith
(2002) using LR and MA. In Table 10 we show the best
results obtained by LR, MA, GA and PSO-LR for these
six test problems. In Table 11, we show the total scaled
CPU time as the algorithms were run using a Dell Dim
4100 computer system. The results show that both PSO-
LR1 and PSO-LR2 are able to find very good solutions in
much smaller times than any of the other algorithms. In
Fig. 7, we have plotted the results shown in Table 11. To
observe the rate of the increase in PSO-LR in greater de-
tail, in Fig. 8 we show the CPU time versus the problem
size. Notice that the rate of the increase in the CPU time
of PSO-LR is polynomial with respect to the problem size
while the GA is exponential.
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Table 6. System data (Kazarliset al., 1996).

Unit
i

Qmax

MW
Qmin

MW a0 a1 a2
T up

i
hour

T down
i

hour Sh,i Sc,i
tcoldi

hour
Initial
state

1 455 150 1000 16.19 0.00048 8 8 4500 9000 5 8
2 455 150 970 17.26 0.00031 8 8 5000 10000 5 8
3 130 20 700 16.60 0.00200 5 5 550 1100 4 −5
4 130 20 680 16.50 0.00211 5 5 560 1120 4 −5
5 162 25 450 19.70 0.00398 6 6 900 1800 4 −6
6 80 20 370 22.26 0.00712 3 3 170 340 2 −3
7 85 25 480 27.74 0.00079 3 3 260 520 2 −3
8 55 10 660 25.92 0.00413 1 1 30 60 0 −1
9 55 10 665 27.27 0.00222 1 1 30 60 0 −1
10 55 10 670 27.79 0.00173 1 1 30 60 0 −1

Table 7. Load for the test problem (Kazarliset al., 1996).

Hour 0 1 2 3 4 5 6 7

Load (MW) 700 750 850 950 1000 1100 1150 1200
Reserve (MW) 70 75 85 95 100 110 115 120

Hour 8 9 10 11 12 13 14 15

Load (MW) 1300 1400 1450 1500 1400 1300 1200 1050
Reserve (MW) 130 140 145 150 140 130 120 105

Hour 16 17 18 19 20 21 22 23

Load (MW) 1000 1100 1200 1400 1300 1100 900 800
Reserve (MW) 100 110 120 140 130 110 90 80

Table 8. Results obtained by different approaches.

Approach Best
solution

Worst
solution

Number
of runs

Population
size

CPU
time (sec) Hardware used SPECfp95

DP 565,827 na 1 na 177 Sun Ultra 2 14.70
LR 566,107 566,817 10 na 54 Sun Ultra 2 14.70
GA 565,827 570,032 20 50 221 HP Apollo 720 2.02
MA 565,827 566,861 10 50 61 Sun Ultra 2 14.70
PSO 574,153 647,305 nr 20 nr nr —

PSO-LR1 565,869 566,793 10 20 4.2 Dell Dim 4100 30.9
PSO-LR2 566,297 567,143 10 20 4.5 Dell Dim 4100 30.9

*nr: Not reported by the author; **na: Not applicable; ***CPU time is per run.

Table 9. Best solution quality and CPU time.

Approach Quality of
best solution

Reported total
CPU time (sec)

CPU
speed factor

Scaled total
CPU time (sec)

DP 100.000 177 0.476 84
LR 99.951 540 0.476 257
GA 100.000 4,420 0.065 289
MA 100.000 610 0.476 290
PSO 98.529 nr — —

PSO-LR1 99.992 42 1.000 42
PSO-LR2 99.917 45 1.000 45

*nr: Not reported by the author.
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Table 10. Best solution for large problems.

Problem size LR GA MA PSO-LR1 PSO-LR2

20 1,128,362 1,126,243 1,128,192 1,128,072 1,128,281

40 2,250,223 2,251,911 2,249,589 2,251,116 2,252,330

60 3,374,994 3,376,625 3,370,820 3,376,407 3,377,718

80 4,496,729 4,504,933 4,494,214 4,496,717 4,499,347

100 5,620,305 5,627,437 5,616,314 5,623,607 5,623,607

Table 11. Scaled total CPU time (in seconds).

Problem size LR GA MA PSO-LR1 PSO-LR2

10 257 289 290 42 45

20 514 958 538 91 96

40 1066 3526 1032 213 218

60 1594 7635 2740 360 384

80 2122 13122 3159 543 595

100 2978 20570 6365 730 856
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Fig. 7. Scaled total CPU time.
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Fig. 8. CPU time versus problem size of PSO-LR.

6. Conclusions

In this paper, a procedure that combines PSO and LR to
solve the unit commitment problem has been proposed.
The results obtained after solving six instances of the UCP
showed that PSO-LR is computationally efficient in solv-
ing these problems. After scaling down the CPU time of
the other algorithms, PSO-LR was on average five times
faster than LR, seven times faster than MA, and seven-
teen times faster than GA, and it provided solutions that
are comparable to these approaches. In terms of the solu-
tion quality, the PSO-LR provided a “best solution” with a
lower cost than GA for problem sizes larger than 20 units,
and than LR for problem sizes 20 and 80 units. PSO-LR
also provided a “best solution”, for the problem size of 10
units, with a much lower cost than using PSO alone. The
results show that both PSO-LR1 and PSO-LR2 are able
to find very good solutions, which indicates that the pro-
posed approach is very robust regarding parameter setting.
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