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In this paper, we propose a numerical algorithm for filtering and robust signal differentiation. The numerical procedure
is based on the solution of a simplified linear optimization problem. A compromise between smoothing and fidelity with
respect to the measurable data is achieved by the computation of an optimal regularization parameter that minimizes the
Generalized Cross Validation criterion (GCV). Simulation results are given to highlight the effectiveness of the proposed
procedure.
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1. Introduction

In many estimation and observation problems, estimating
the unmeasured system dynamics turns on estimating the
derivatives of the measured system outputs from discrete
samples of measurements (Diopet al., 1993; Gauthieret
al., 1992; Ibrir, 1999). A model of the signal dynam-
ics may be of crucial help to achieve the desired objec-
tive. This has been magnificently demonstrated in pio-
neering works by R.E. Kalman (1960) and D.G. Luen-
berger (1971) for signals generated by known linear dy-
namical systems. Roughly speaking, if a signal model is
known, then the resulting smooth signal can be differen-
tiated with respect to time in order to have estimates of
higher derivatives of the system output. For example, con-
sider the problem of estimatingν − 1 first derivatives,
y(i), i = 0, 1, . . . , ν − 1 of the output of a dynamic sys-
tem, say,y(ν) = f(y, ẏ, ÿ, . . . , y(ν−1)), wherey may be
a vector, andf may contain input derivatives. But we
choose not to go into technical details. If the nonlinear
function f is known accurately enough, then asymptotic
nonlinear observers can be designed using the results from
(Ciccarellaet al., 1993; Gauthieret al., 1992; Misawa
and Hedrick, 1989; Rajamani, 1998; Tornambè, 1992; Xia
and Gao, 1989). The proof of the asymptotic conver-
gence of those observers requires various restrictive as-
sumptions on the nonlinear functionf . If f is not known
accurately enough then, estimators for the derivatives of
y may still be obtained via the theory of stabilization

of uncertain systems, see, e.g., (Barmish and Leitmann,
1982; Chen, 1990; Chen and Leitmann, 1987; Dawson
et al., 1992; Leitmann, 1981). The practical convergence
that is reached by the latter approach needs some match-
ing conditions. We shall also mention the approach via
sliding modes as in (Slotineet al., 1987).

However, there are at least two practical situations
where the available model is not of great help. First, the
system model may be too poorly known. Second, it may
be too complex for an extension of linear observer design
theory. In those situations, and as long as practical (in
lieu of asymptotic) convergence is enough for the specific
application at hand, we may consider using differentia-
tion estimators which merely ignore the nonlinear func-
tion f in their design. Differentiation estimators may be
realized in both continuous time or discrete time as sug-
gested in (Ibrir, 2001; 2003). This motivates enough the
study, by observer design theorists, of more sophisticated
numerical differentiation techniques for use in more in-
volved control design problems. The numerical analysis
literature is where to find the main contributions in the
area, see (Anderson and Bloomfield, 1974; Craven and
Wahba, 1979; De Boor, 1978; Eubank, 1988; Gasseret al.,
1985; Georgiev, 1984; Härdle, 1984; 1985; Ibrir, 1999;
2000; 2003; Müller, 1984; Reinsch, 1967; 1971) for more
motivations and basic references. But these results have
to be adapted to observer design problems since they were
often envisioned so as to be used in an off-line basis.
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The main difficulty that we face while designing dif-
ferentiation observers, without anya-priori knowledge of
system dynamics, is noise filtering. For this reason, ro-
bust signal differentiation can be classified as an ill-posed
problem due to the conflicting goals that we aim to realize.
Generally, noise filtering, precision, and the peaking phe-
nomenon are three contradictory performances that char-
acterize the robustness of any differentiation system.

The field of ill-posed problems has certainly been
one of the fastest growing areas in signal processing and
applied mathematics. This growth has largely been driven
by the needs of applications both in other sciences and
in industry. A problem is mathematically ill-posed if its
solution does not exist, is not unique or does not depend
continuously on the data. A typical example is the com-
bined interpolation and differentiation problem of noisy
data. A problem therein is that there are infinitely many
ways to determine the interpolated function values if only
the constraint from the data is used. Additional constraints
are needed to guarantee the uniqueness of the solution to
make the problem well posed. An important constraint in
context is smoothness. By imposing a smoothness con-
straint, the analytic regularization method converts an ill-
posed problem into a well-posed one. This has been used
in solving numerous practical problems such as estimat-
ing higher derivatives of a signal through potentially noisy
data.

As will be shown, inverse problems typically lead
to mathematical models that are not well posed in
Hadamard’s sense, i.e., to ill-posed problems. Specifi-
cally, this means that their solutions is unstable under data
perturbations. Numerical methods that can cope with this
problem are the so-called regularization methods. These
methods have been quite successfully used in the numeri-
cal analysis literature in approaches to the ill-posed prob-
lem of smoothing a signal from its discrete, potentially un-
certain, samples (Anderson and Bloomfield, 1974; Craven
and Wahba, 1979; Eubank, 1988; De Boor, 1978). One
of these approaches proposed an algorithm for the com-
putation of an optimal spline whose first derivatives are
estimates of the first derivatives of the signal. These al-
gorithms suffer from a large amount of computation they
imply. One of the famous regularization criteria which
have been extensively considered in numerical analysis
and statistics (De Boor, 1978) is

J =
1
n

n∑
i=1

(yi − ŷi)
2 + λ

∫ t

0

ŷ(m)(s) ds, (1)

which embodies a compromise between the closeness to
the measured data and smoothness of the estimate. The
balance between the two distances is mastered by a par-
ticular choice of the parameterλ. It was shown that the
minimum of the performance index (1) is a spline func-
tion of order2m, see (De Boor, 1978). Recall that spline

functions are smooth piecewise functions. Since their in-
troduction, splines have proved to be very popular in in-
terpolation, smoothing and approximation, and in compu-
tational mathematics in general.

In this paper we present the steps of a new discrete-
time algorithm which smooths signals from their uncer-
tain discrete samples. The proposed algorithm does not
require any knowledge of the statistics of the measure-
ment uncertainties and is based on the minimization of a
criterion equivalent to (1). The new discrete-time smooth-
ing criterion is inspired by finite-difference schemes. In
this algorithm the regularization parameter is obtained
from the optimality condition of the Generalized Cross-
Validation criterion as earlier introduced in (Craven and
Wahba, 1979). We show that the smooth solution can be
given as discrete samples or as a continuous-time spline
function defined over the observation interval. Conse-
quently, the regularized solution can be differentiated as
many times as possible to estimate smooth higher deriva-
tives of the measured signal.

2. Problem Statement and Solution
of the Optimization Problem

Here, we consider the problem of smoothing noisy
data with possibly estimating the higher derivatives
ŷ(µ)(ti), µ = 0, 1, . . . , ν − 1 from discrete, potentially
uncertain, samplesy` = ȳ(t`)+ε(t`), ` = i−n+1, . . . , i,
measured with an errorε(t`) at n distinct instants, by
minimizing the cost function

J :=
1
n

i∑
`=i−n+1

[
ŷ(t`)− y(t`)

]2

+ λ
i−1∑

`=i−n+m

[
ŷ
(m)
` (∆t)m

]2

, i ∈ Z≥n,

where Z≥n is the set of positive integer numbers
greater than or equal ton. For each moving window
[ti−n+1, . . . , ti] of length n, we minimize (2) with re-
spect toŷ. The first term in the criterion is the well-known
least-squares criterion, and the second term represents an
equivalent functional to the continuous integral∫ ti

ti−n+1

ŷ(m)(t) dt,

such that ŷ(m)(t) is the continuousm-th derivative of
the functionŷ(t). Here ŷ

(m)
i denotes the finite-difference

scheme of them-th derivative of the continuous function
ŷ(t) at time t = ti. In order to compute them-th deriva-
tive of ŷ(t) at time t = ti we will only use the samples
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ŷi−m, ŷi−m−1, . . . , ŷi. Then the last cost function is writ-
ten in the matrix form as

J :=
1
n
‖Y − Ŷ ‖2 + λ‖H Ŷ ‖2, (2)

where

Y =


yi−n+1

yi−n+2

...

yi

 , Ŷ =


ŷi−n+1

ŷi−n+2

...

ŷi

 ,

and H is an (n−m)× (n) matrix consisting of general
rows

(−1)m+j−1Cj−1
m , j = 1, . . . ,m + 1, (3)

whereCk
n is the standard binomial coefficient. Form =

2, 3, and 4, the smoothness conditions are

n−1∑
`=2

[ŷ`−1 − 2ŷ` + ŷ`+1]
2
,

n−1∑
`=3

[−ŷ`−2 + 3ŷ`−1 − 3ŷ` + ŷ`+1]
2
,

n−1∑
`=4

[ŷ`−3 − 4ŷ`−2 + 6ŷ`−1 − 4ŷ` + ŷ`+1]
2
,

n−1∑
`=5

[−ŷ`−4+5ŷ`−3−10ŷ`−2+10ŷ`−1−5ŷ`+ŷ`+1]
2
,

respectively. Consequently, the corresponding matrices
are

H(n−2)×n =


1 −2 1 0 · · · 0
0 1 −2 1 · · · 0
...

...
...

...
...

...

0 0 · · · 1 −2 1

 ,

H(n−3)×n =


−1 3 −3 1 0 · · · 0
0 −1 3 −3 1 · · · 0
...

...
...

...
...

...
...

0 0 0 −1 3 −3 1

 ,

H(n−4)×n =


1 −4 6 −4 1 0 · · · 0
0 1 −4 6 −4 1 · · · 0
...

...
...

...
...

...
...

...

0 0 0 1 −4 6 −4 1

 .

The derivative formulae (3) come from the approxi-
mation of them-th derivative ofŷ by the following finite-
difference scheme:

ŷ
(m)
i =

1
(∆t)m

m+1∑
j=0

(−1)m+jCj
mŷi−m+j+1. (4)

This differentiation scheme is obtained by solving the set
of the following Taylor expansions with respect to the
derivativesŷ

(1)
i , ŷ

(2)
i , . . . , ŷ

(m)
i :

ŷi−1 = ŷi −
δ

1!
ŷ
(1)
i +

δ2

2!
ŷ
(2)
i + · · ·+ δm

m!
ŷ
(m)
i ,

ŷi−2 = ŷi −
2δ

1!
ŷ
(1)
i +

(2δ)2

2!
ŷ
(2)
i + · · ·+ (2δ)m

m!
ŷ
(m)
i ,

...

ŷi−m = ŷi −
mδ

1!
ŷ
(1)
i +

(mδ)2

2!
ŷ
(2)
i +. . .+

(mδ)m

m!
ŷ
(m)
i ,

where δ = ti − ti−1 is the sampling period. We have
selected this finite-difference scheme in order to force the
matrix H ′H to be positive definite. The symbol‖ · ‖ de-
notes the Euclidean norm, andλ is a smoothing parame-
ter chosen in the interval[0, ∞[. We look for a solution
of the last functional in the space of B-spline functions
of order k = 2m. An interpretation of minimizing such
a functional concerns the trade-off between the smooth-
ing and the closeness to the data. Ifλ is set to zero, the
minimization of (2) leads to a classical problem of least-
squares approximation by a B-spline function of degree
2m− 1.

We shall use splines because they often exhibit some
optimal properties in interpolation and smoothing—in
other words, they can often be characterized as solutions
to variational problems. Roughly speaking, splines min-
imize some sort of “energy” functional. This variational
characterization leads to a generalized notion of splines,
namely, variational splines.

For each fixed measurement window, we seek the so-
lution of (2) as

ŷ(t) :=
i∑

j=i−n+1

αjbj,2m(t), ti−n+1 ≤ t ≤ ti, i ∈ Z≥n,

(5)

where α ∈ Rn, and bi,2m(t) is the i-th B-spline basis
function of order2m. For notational simplicity,̂y(t) and
α are not indexed with respect to the moving window. We
assume that the conditions of the optimization problem are
the same for each moving window. Thus, the cost function
(1) becomes

J =
1
n

(Y −Bα)′(Y −Bα) + λα′B′RBα (6)
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such that

R := H ′ H ,

Bi,j := bj,2m(t`), ` = i− n + 1, . . . , i, i ∈ Z≥n.

The optimum value of the control vectorα is obtained via
the optimality conditiondJ /dα = 0. Then we get

− 2
n

B′(Y −B α) + 2λB′ R B α = 0, (7)

or

α = (nλB′ R B + B′ B)−1B′ Y

= (nλRB + B)−1
Y. (8)

Consequently,

Y −B α = nλR B(nλB′ R B + B′ B)−1B′ Y. (9)

From (8), the continuous spline is fully determined.
Hence the discrete samples of the regularized solution are
computed from

Ŷ = Y − nλR B(nλB′ R B + B′ B)−1B′ Y

=
(
I − nλR (I + nλR)−1

)
Y. (10)

As for the last equation, note that the discrete regularized
samples are given as the output of an FIR filter where its
coefficients are functions of the regularization parameter
λ. The sensitivity of the solution to this parameter is quite
important, so the next section will be devoted to the op-
timal calculation of the regularization parameter through
the cross-validation criterion.

3. Computing the Regularization Parameter

In this section we shall present details of a computational
method for estimating the optimal regularization parame-
ter in terms of the criterion matrices. We have seen that the
spline vectorα depends upon the smoothing parameter
λ. In (Craven and Wahba, 1979), two ways of estimating
the smoothing parameterλ were given. The first method
is called the ordinary cross-validation (OCV), which con-
sists in finding the value ofλ that minimizes the OCV-
criterion

R(λ) :=
i∑

`=i−n+1

[
ŷ(t`)− y(t`)

]2
, i = n, n + 1, . . . ,

(11)
where ŷ(t) is a smooth polynomial of degree2m − 1.
Reinsch (1967) suggests, roughly speaking, that if the

variance of the noiseσ2 is known, thenλ should be cho-
sen so that

i∑
`=i−n+1

[
ŷ(t`)− y(t`)

]2 = n σ2. (12)

Let A (λ) be the n × n matrix depending on
ti−n+1, ti−n+2, . . . , ti and λ such that

ŷ(ti−n+1)
...

ŷ(ti)

 = A (λ)


y(ti−n+1)

...

y(ti)

 . (13)

The main result of (Craven and Wahba, 1979) shows
that a good estimate of the smoothing parameterλ (also
called the generalized cross-validation parameter) is the
minimizer of the GCV criterion

V (λ) =
1
n‖ (I −A (λ))Y ‖2[
1
n trace(I −A (λ))

]2 . (14)

This estimate has the advantage of being free from the
knowledge of the statistical properties of noise. Further, if
the minimizer ofV (λ) is obtained, then the estimates of
higher derivatives of the functiony(t) could be obtained
by differentiating the smooth function̂y(t).

Now, we outline a computational method to deter-
mine the smoothing parameter which minimizes the cross-
validation criterionV (λ), where the polynomial smooth-
ing spline ŷ(t) is supposed to be a B-spline of degree
2m− 1. Using the definition ofA (λ), we write

Y − Ŷ = Y −A (λ)Y =
(
I −A (λ)

)
Y. (15)

From (7), we obtain

Y − Ŷ = nλ R B α. (16)

Substituting (8) in (16), we get

Y − Ŷ = nλ R B(nλ B′ R B + B′ B)−1B′Y

= nλR(I + nλR)−1
Y. (17)

By comparison with (15), we deduce that(
I −A (λ)

)
= nλR(I + nλR)−1

. (18)

The GCV-criterion becomes

V (λ) =
1
n‖nλR(I + nλR)−1

Y ‖2[
1
n trace

(
nλR(I + nλR)−1

)]2 . (19)

We propose the classical Newton method to compute the
minimum of V (λ). This yields to the following itera-
tions:

λk+1 = λk −
˙V (λk)

V̈ (λk)
, (20)
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where ˙V et V̈ are the first and second derivatives ofV
with respect toλ, respectively.

Let
p = nλ,

v = (pR + I)−1Y,

W = (pR + I)−1.

Then the criterionV becomes

V (p) =
1
n‖pRv‖2[

1
n trace(p R)W

]2 . (21)

Let

N =
1
n
‖pRv‖2 =

p2

n
v′R′Rv, (22)

D =
[

1
n

trace(pRW )
]2

. (23)

Differentiating the last two equations with respect toλ,
we obtain

dN

dλ
= 2pv′R′R

[
I + p2R W R− p R

]
v, (24)

and

dD

dλ
=

2
n

trace(pRW )
[
trace(R W )

+ trace(p R2W (p R W − I))
]
. (25)

Finally, the second derivatives ofN and D are respec-
tively

d2N

dλ2
= 2nv′ R′ R(I + S)v

+2pn

{
2v′R′R(I+S)

dv

dp
+v′R′R

dS

dp
v

}
,(26)

d2D

dλ2
= 2

[
trace

(
RW + p R2 W (p R W − I)

)]2
+ 2 trace(p R W )

{
trace

(
R

dW

dp

)
+ trace

(
R2W (p R W − I)

)
+ trace

(
p R2 dW

dp
(p R W − I)

)
+ trace

(
p R2 W

(
R W + p R

dW

dp

))}
, (27)

such that

S = p2R WR− p R, (28)

dS

dp
= 2p R

{
W +

p

2
dW

dp

}
R−R, (29)

dW

dp
= p(RW )2 −RW, (30)

dv

dp
= pRWRv −Rv. (31)

Finally, the derivatives

˙V =
d
dλ

(
N

D

)
,

V̈ =
d2

dλ2

(
N

D

)
can be easily computed in terms of the first and second
derivatives ofN and D .

Remark 1. It is possible to recursively use the last al-
gorithm if we take the values of the obtained spline as
noisy data for another iteration. In this case the amount
of noise in the data is reduced in each step by choosing
a new smoothing parameter. The user could fixa priori
a limited number of iterations according to the specified
application and the time allowed to run the algorithm.

4. Connection with Adaptive Filtering

From (10), we have

Ŷ = A (λ)Y, (32)

where A (λ) = I − nλR (I + nλR)−1. If we write
A (λ) = (ai,j(λ))1≤i,j≤n, then

ŷi = an,1(λ)yi−n+1 + an,2(λ)yi−n+2

+ · · ·+ an,n(λ)yi. (33)

Let ŷ(z) and y(z) be the z-transforms of the discrete
signals ŷi and yi, respectively. Then by taking thez-
transform of (33), we obtain

ŷ(z)
y(z)

= an,1(λ)z−n+1 + an,2(λ)z−n+2

+ · · ·+ an,n(λ). (34)

The resulting system (34) takes the form of an adaptive
FIR filter, where its coefficients(an,i)1≤i≤n(λ) are up-
dated by computing a newλ in each iterationi ∈ Z≥n .
The updating law in our case is based on the minimiza-
tion of the generalized cross-validation criterionV (λ).
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If we see attentively the formulation of the generalized
cross-validation criterion given by (19), we realize that
this criterion is simply a weighted least-squares (LS) per-
formance index. The LS part is given by the numerator
term ‖nλR(I + nλR)−1

Y ‖2 which is exactly the error
between the smoothed discrete samples and the noisy dis-
crete data. The weighting parameter is given by the term
(1/n)/[(1/n)trace(I − A (λ))]2. Consequently, the fil-
ter (34) can be seen as a weighted least-squares (WLS)
adaptive FIR filter.

The smoothing strategy given in this paper has a re-
lationship with the classical LMS (Least Mean Squares)
adaptive filtering discussed in the signal processing lit-
erature. Although our method of updating the filter co-
efficients is not quite identical to the principle of LMS
adaptive filtering, the philosophy of smoothing remains
the same. To highlight this fact, let us recall the princi-
ple of LMS adaptive filtering. In such a filtering strat-
egy, the time invariance of filter coefficients is removed.
This is done by allowing the filter to change coefficients
according to some prescribed optimization criterion. At
each instant, the desired discrete samplesŷi are compared
with the instantaneous filter output̃yi. On the basis of this
measure, the adaptive filter will change its coefficients in
an attempt to reduce the error. The coefficient update re-
lation is a function of the error signal.

Fig. 1. Scheme of the LMS adaptive filter.

By comparison with the algorithm presented in this
paper, the imposed signal̂yi is not knowna priori, but its
formulation in terms of the noisy samples and the smooth-
ing parameterλ is known. The main advantage of the
GCV-based filter is that the minimum of the GCV perfor-
mance index is computed independently of the knowledge
of the statistical properties of noise. In addition, the infor-
mation on the smoothing degreem is incorporated in the
quadratic performance index (2), which makes the algo-
rithm not only capable of filtering the discrete samples of
the noisy signal but also capable of reliably reproducing
the continuous higher derivatives of the signal considered.

5. Numerical Algorithm

Here, we summarize the regularization procedure in the
following steps:

Step 1. Specify the desired spline of orderk = 2m
and construct the optimal knot sequence which cor-
responds to the breakpointsti−n+1, ti−n+2, . . . , ti.
See (De Boor, 1978) for more details on optimal knot
computing.

Step 2. Construct B-spline basis functions that corre-
spond to the optimal knots calculated in Step 1.

Step 3. Construct matricesH, B, R, T , and Q.

Step 4. Compute the optimal value of the smoothing pa-
rameterλ using (23)–(27).

Step 5. Compute the spline vectorα.

Step 6. Compute the derivatives of the spline using the
formulae

D`
( ∑

i

αibi,k

)
(t) =

∑
i

αi
`+1bi,k−`(t),

whereD` is the `-th derivative with respect to time,
and

αr
`+1 :=


αr for ` = 0,

1
k − `

αr
` − αr−1

`

tr+k−` − tr
for ` > 0.

(35)

Step 7. In order to gradually reduce the amount of noise
in the obtained smooth spline, the user has to repeat
all the steps from the beginning by taking the values
of the spline at(ti−n+2, . . . , ti+1) as noisy data for
the next iteration.

6. Simulations

In the following simulations we suppose that we measure
the noisy signal

y(t) = cos(30t) sin(t) + ε(t) (36)

for each δ = 0.01 s. We assume thatε(t) is a norm-
bounded noise of unknown variance. The exact first
derivatives of the signaly are

ẏ(t) = −30 sin(30t) sin(t) + cos(30t) cos(t), (37)

ÿ(t) = −901 cos(30t) sin(t)− 60 sin(30t) cos(t). (38)

In Fig. 2 we show the noisy signal (36). In Fig. 3
we plot the exact signal (signal without noise) with the
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Fig. 2. Noisy signal.
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Fig. 3. Optimal spline vs. the exact signal.
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Fig. 4. First derivative of the optimal
spline vs. the exact one.

continuous-time spline function, the solution to the min-
imization problem (2). In the whole simulation the mov-
ing window of observation is supposed to be constant of
length 10. In Figs. 4 and 5 we depict the exact derivatives
of the original signal with their estimated values given by
the differentiation of the optimal continuous spline with
respect to time. In Fig. 6, we compare the output of an
LMS adaptive FIR filter of order 7 with the exact sam-
ple of the signaly(t). We see clearly the superiority of
the GCV-based filter in the first instants of the filtering
process in comparison with the transient behaviour of the
adaptive FIR filter presented in Fig. 6.

7. Conclusion

In this paper we have presented a new numerical pro-
cedure for reliable filtering and high-order signal differ-
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entiation. The design strategy consists in determining
the continuous spline signal which minimizes the discrete
functional being the sum of a least-squares criterion and
a discrete smoothing term inspired by finite-difference
schemes. The control of smoothing and the fidelity to the
measurable data is ensured by the computation of one op-
timal regularization parameter that minimizes the general-
ized cross-validation criterion. The developed algorithm
is able to estimate higher derivatives of a smooth signal
only by differentiating its basis functions with respect to
time. Satisfactory simulation results were obtained which
prove the efficiency of the developed algorithm.

References

Anderson R.S. and Bloomfield P. (1974):A time series approach
to numerical differentiation. — Technom., Vol. 16, No. 1,
pp. 69–75.

Barmish B.R. and Leitmann G. (1982):On ultimate boundness
control of uncertain systems in the absence of matching
assumptions. — IEEE Trans. Automat. Contr., Vol. AC-27,
No. 1, pp. 153–158.

Chen Y. H. (1990):State estimation for non-linear uncertain
systems: A design based on properties related to the un-
certainty bound. — Int. J. Contr., Vol. 52, No. 5, pp. 1131–
1146.

Chen Y. H. and Leitmann G. (1987):Robustness of uncertain
systems in the absence of matching assumptions. — Int. J.
Contr., Vol. 45, No. 5, pp. 1527–1542.

Ciccarella G., Mora M.D. and Germani A. (1993):A
Luenberger-like observer for nonlinear systems. — Int. J.
Contr., Vol. 57, No. 3, pp. 537–556.

Craven P. and Wahba G. (1979):Smoothing noisy data with
spline functions: Estimation the correct degree of smooth-
ing by the method of generalized cross-validation. — Nu-
mer. Math., Vol. 31, No.4, pp. 377–403.

Dawson D.M., Qu Z. and Caroll J.C. (1992):On the state obser-
vation and output feedback problems for nonlinear uncer-
tain dynamic systems. — Syst. Contr. Lett., Vol. 18, No.3,
pp. 217–222.

De Boor C., (1978):A Practical Guide to Splines. — New York:
Springer.

Diop S., Grizzle J.W., Morral P.E. and Stefanoupoulou A.G.
(1993):Interpolation and numerical differentiation for ob-
server design. — Proc. Amer. Contr. Conf., Evanston, IL,
pp. 1329–1333.

Eubank R.L. (1988):Spline Smoothing and Nonparametric Re-
gression. — New York: Marcel Dekker.

Gasser T., Müller H.G. and Mammitzsch V. (1985):Kernels for
nonparametric curve estimation. — J. Roy. Statist. Soc.,
Vol. B47, pp. 238–252.

Gauthier J.P., Hammouri H. and Othman S. (1992):A simple ob-
server for nonlinear systems: Application to bioreactors.
— IEEE Trans. Automat. Contr., Vol. 37, No. 6, pp. 875–
880.

Georgiev A.A. (1984):Kernel estimates of functions and their
derivatives with applications. — Statist. Prob. Lett., Vol. 2,
pp. 45–50.

Härdle W. (1984): Robust regression function estimation. —
Multivar. Anal., Vol. 14, pp. 169–180.

Härdle W. (1985):On robust kernel estimation of derivatives of
regression functions. — Scand. J. Statist., Vol. 12, pp. 233–
240.

Ibrir S. (1999):Numerical algorithm for filtering and state ob-
servation. — Int. J. Appl. Math. Comp. Sci., Vol. 9, No.4,
pp. 855–869.

Ibrir S. (2000): Méthodes numriques pour la commande et
l’observation des systèmes non linéaires. — Ph.D. thesis,
Laboratoire des Signaux et Systèmes, Univ. Paris-Sud.

Ibrir S. (2001): New differentiators for control and observa-
tion applications. — Proc. Amer. Contr. Conf., Arlington,
pp. 2522–2527.

Ibrir S. (2003):Algebraic riccati equation based differentiation
trackers. — AIAA J. Guid. Contr. Dynam., Vol. 26, No. 3,
pp. 502–505.

Kalman R.E. (1960):A new approach to linear filtering and pre-
diction problems. — Trans. ASME J. Basic Eng., Vol. 82,
No. D, pp. 35–45.

Leitmann G. (1981):On the efficacy of nonlinear control in un-
certain linear systems. — J. Dynam. Syst. Meas. Contr.,
Vol. 102, No.2, pp. 95–102.

Luenberger D.G. (1971):An introduction to observers. — IEEE
Trans. Automat. Contr., Vol. 16, No.6, pp. 596–602.

Misawa E.A. and Hedrick J.K. (1989):Nonlinear observers.
A state of the art survey. — J. Dyn. Syst. Meas. Contr.,
Vol.111, No.3, pp. 344–351.

Müller H.G. (1984):Smooth optimum kernel estimators of densi-
ties, regression curves and modes. — Ann. Statist., Vol. 12,
pp. 766–774.

Rajamani R. (1998):Observers for Lipschitz nonlinear systems.
— IEEE Trans. Automat. Contr., Vol. 43, No. 3, pp. 397–
400.

Reinsch C.H. (1967):Smoothing by spline functions. — Numer.
Math., Vol. 10, pp. 177–183.

Reinsch C.H. (1971):Smoothing by spline functions ii. — Nu-
mer. Math., Vol. 16, No.5, pp. 451–454.

Slotine J.J.E., Hedrick J.K. and Misawa E.A. (1987):On sliding
observers for nonlinear systems. — J. Dynam. Syst. Meas.
Contr., Vol. 109, No.3, pp. 245–252.

Tornambè A. (1992):High-gain observers for nonlinear sys-
tems. — Int. J. Syst. Sci., Vol. 23, No.9, pp. 1475–1489.

Xia X.-H. and Gao W.-B. (1989):Nonlinear observer design
by observer error linearization. — SIAM J. Contr. Optim.,
Vol. 27, No. 1, pp. 199–216.

Received: 26 January 2004
Revised: 28 May 2004


