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The ElGamal encryption scheme can be used for both digital signatures and encryption, and its security results from the
difficulty of calculating discrete logarithms in a finite field. This algorithm usually works in a multiplicative group of
GF (p) and in this case the progress in the discrete logarithm problem forces the users of such a basic ElGamal public key
cryptosystem to permanently increase a prime modulusp in order to ensure the desired security. But the task of finding a
multiplicative group ofGF (p) is unfeasible for an ordinary user. It is possible to overcome this inconvenience by forming
an ElGamal encryption scheme which works in a multiplicative group ofGF (pm). Therefore, it is shown in the paper how
to implement this cryptosystem for work in the multiplicative group ofGF (pm), in its subgroup, and in an algebraic system
named the spurious multiplicative group ofGF (pm).
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1. Introduction

Public-key cryptographic algorithms are designed to resist
chosen-plaintext attacks and their security is based both
on the difficulty of finding the secret key from the pub-
lic key and the difficulty of determining the plaintext from
the cryptogram. At present, the most common public-key
cryptosystem is the RSA algorithm. It is conjectured that
the security of RSA depends on the problem of factoring
large numbers. It has never been mathematically proven
that you need to factor the modulusn to calculate a plain-
text knowing a cryptogram and a public key{e, n}. It is
conceivable that an entirely different way to break RSA
can be discovered (perhaps this way is already known for
some cryptanalysts). Therefore, cryptographers attempt to
activate alternative public-key encryption algorithms, e.g.
the basic ElGamal encryption scheme.

It is well known that the progress in the discrete loga-
rithm problem forces the users of the basic ElGamal pub-
lic key cryptosystem, working in a multiplicative group
of GF (p), to permanently increase a prime modulusp in
order to ensure the desired security. For long-term secu-
rity, at least 2000-bit moduli should be used at present.
Common system-wide parameters need even larger key
sizes, since computing the database of discrete logarithms
for one particularp will discredit the secrecy of all pri-
vate keys computed usingp. But the task of finding a
multiplicative group ofGF (p) is infeasible for an ordi-

nary user if p > 22000 ≈ 0.115 × 10603. As shown in
the sequel, it is possible to overcome this inconvenience
by forming an ElGamal public key cryptosystem which
works in a multiplicative group ofGF (pm) provided that
a primitive polynomialp(x) of degreem over GF (p)
will be used to constructGF (pm). Since the root of the
primitive polynomialp(x) is known, one can easily deter-
mine any generator of a multiplicative group ofGF (pm),
viz. any primitive element of this field. As it turns out, the
cipher works also in an arbitrary subgroup ofGF (pm),
and even in such an algebraic system which awkwardly
simulates the multiplicative group ofGF (pm). Thus, the
latter algebraic system, named the spurious multiplicative
group of GF (pm), briefly denoted bySMG(pm), is de-
scribed.

2. Implementation of the ElGamal
Encryption Scheme in a Multiplicative
Group of GF (pmmm)

Although it is known that the basic ElGamal encryption
scheme can be generalized to work in any finite cyclic
group, particularly in a multiplicative group ofGF (pm),
that the operations on elements of the multiplicative group
of GF (pm), namely, multiplication and exponentiation,
are easy to implement and that the discrete logarithm
problem in this group should be computationally infeasi-
ble (Menezeset al., 1998, Stinson, 1995), no serious prac-
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tical approach to implement such a system can be found in
the literature. Therefore, the ElGamal encryption scheme,
based on the multiplicative group ofGF (pm), is consid-
ered in this paper.

A concise description of slightly modified algo-
rithms, characterizing the presented approach, is given be-
low.

Key generation: Each entity creates its public key and the
corresponding private key. So each entityA ought to do
the following:

• Choose a primitive polynomialp(x) of the degree
m over GF (p) in order to construct a group, iso-
morphic to the multiplicative group ofGF (pm). The
group having the ordern = pm − 1, consists of
the setG = {1, . . . , pm − 1} and of an opera-
tion of the multiplication of elements from this set,
which is performed by means of a functionP (x, y),
x, y ∈ G. The function Pow(x, k), carrying out
the operation of rising any element fromG to a k-th
power,k ∈ [−n+1, n−1], is also defined. The gen-
erator of this group isp, since the polynomialp(x)
is primitive.

• Select a random integerr ∈ [1, n − 2], such that
(r, n−1) = 1, and compute the other generatorα =
Pow(p, r).

• Choose a random integera ∈ G, and computeβ =
Pow(α, a).

• A′s public key isα and β, together withp(x) and
functionsP and Pow, if these last three parameters
are not common to all entities.

• A′s private key isa.

Encryption: Entity B encrypts a messagem for A,
which A decrypts. ThusB should make the following
steps:

• Obtain A′s authentic public keyα, β, and p(x)
together with functionsP and Pow if these param-
eters are not common.

• Represent the messagem as a number from the
set G.

• Choose a random integerk ∈ [1, n− 1].

• Determine numbersc1 = Pow(α, k) and c2 =
P (m,Pow(β, k)).

• Send the ciphertextc = c1, c2 to A.

Decryption: To find plaintextm from the ciphertextc =
c1, c2, A should perform the following operations:

• Use the private keya to computeg = Pow(c1, a)
and then computeg−1 = Pow(g,−1).

• Retrieve the plaintext by computingm =
P (g−1, c2).

3. Remarks on the Implementation of the
ElGamal Encryption Scheme Using
a Multiplicative Group of GF (pmmm), Its
Subgroup and a Spurious Multiplicative
Group of GF (pmmm)

It is assumed that to construct a multiplicative group of
GF (pm) we will use primitive polynomials, but to de-
termine an arbitrary primitive polynomial of a higher de-
gree is not that simple. There exist a few useful tables,
cf. e.g. (Živkovíc, 1994), where about 600 primitive poly-
nomials of degree from 311 to 3604 overGF (2) are
listed. It is a pity that it is difficult to find similar tables
for odd p. Nevertheless, using computer–algebra systems
one may easily determine a random irreducible polyno-
mial of degreem over GF (p), with p odd, satisfying
pm ∈ [21000, 25000], and work with the ElGamal encryp-
tion scheme based on an arbitrary subgroup of the multi-
plicative group ofGF (pm) with the key size 1000 – 5000
bits long.

A detailed description of the implementation of the
ElGamal encryption scheme in Maple 8 using a multi-
plicative group of GF (pm), its subgroup and a spuri-
ous multiplicative group ofGF (pm) is given in (Kós-
cielny, 2003). In all these three cases we can use the same
routines P and Pow and the primitive polynomial, ir-
reducible polynomial, and an arbitrary polynomial over
GF (p), respectively. Since the notion of a spurious mul-
tiplicative group ofGF (pm) is rather new, a concise in-
troduction to this algebraic system is presented in the next
section.

4. SMG(pmmm) — a Spurious Multiplicative
Group of GF (pmmm)

For all prime p, for any positive integerm and for any
polynomial f(x) of degreem over GF (p) there exists
an agebraic system〈Gx, ·〉, consisting of the setGx of
all pm − 1 non-zero polynomials of degreedg ≤ m− 1
over GF (p) and of an operation of the multiplication of
these polynomials modulo polynomialf(x). Such an al-
gebraic system is a generalization of the multiplicative
group of GF (pm), since the elements of the setGx
are the same as the elements of the multiplicative group
of GF (pm). Therefore, it will be called the spurious
multiplicative group ofGF (pm) and will be denoted by
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SMG(pm). SMG(pm) is obtained using the mapping
σ, defined by the functionσ(v(x)) = v(p), convert-
ing a polynomial v(x) belonging to the setGx into a
number from the setG. It is then clear that multiplica-
tion in SMG(pm) can be performed by the same rou-
tines or by the same hardware as in the multiplicative
group of GF (pm), but the interior of the multiplication
table of SMG(pm) is not a Latin square. In principle,

Table 1. Table of operation inSMG(23) constructed using
f(x) = x3 + 1 and the mappingσ.

· 1 2 3 4 5 6 7
1 1 2 3 4 5 6 7
2 2 4 6 1 3 5 7
3 3 6 5 5 6 3 0
4 4 1 5 2 6 3 7
5 5 3 6 6 3 5 0
6 6 5 3 3 5 6 0
7 7 7 0 7 0 0 7

SMG(pm) is a commutative groupoid, in which the op-
eration may be neither closed, nor fully associative, since
divisors of 0 exist iff(x) is not irreducible. The existence
of such groupoids, which seems to be important for cryp-
tography, has been noticed by the author recently (maybe
other cryptographers experimented with similar algebraic
systems). Thus, all their properties are not yet known
to him. However, using the ElGamal cipher based on
SMG(pm), we must remember that there exist non-zero
elements belonging to this groupoid which do not have
their multiplicative inverses. The set of all reversible ele-
ments forms an Abelian group under multiplication (func-
tion P ), which is not generally cyclic. It is then easy to
observe that any message can be encrypted by means of
the ElGamal cipher based onSMG(pm), but the sender,
after the cryptogramc = c1, c2 has been generated,
should verify if c1 is reversible, i.e. ifPow(c1,−1) ex-
ists and can be computed. It is a necessary condition for
succesful deciphering.

An example of the table of operation inSMG(23),
constructed using the polynomialx3 + 1 = (x + 1)(x2 +
x + 1) is given in Tab. 1. For example, let us multiplyx
by x2 (mod x3 + 1). The result will be 1. But since
in the case consideredp = 2, we haveσ(x) = 2 and
σ(x2) = 4, and therefore2 · 4 = 4 · 2 = 1. Similarly,
(x + 1) · (x2 + x + 1) = x3 + 1 ≡ 0 (mod x3 + 1), and
thus 7 · 3 = 3 · 7 = 0.

The reader can find more details concerning the con-
struction of an arbitrarySMG(pm) in (Kościelny, 2003).

5. Conclusions

It has been shown that the ElGamal public-key encryption
algorithm based on a multiplicative group ofGF (pm),
on its subgroups and on anSMG(pm) is user-friendly,
because in such a scheme the key-generation and en-
cryprion/decryption algorithms are simple and effective,
even if a key size of order up to 10000 bits or more
is needed. Particularly interesting seems to be the use
of SMG(pm), which makes the cryptosystem partly un-
predictable and expands its keyspace. In the latter case,
if we use, e.g.SMG(220000), we can construct about
220000 ≈ 0.398×106021 spurious multiplicative groups in
which the 20000 bit key size fast ElGamal cryptosystem
can work. However, the problem presented here is quite
new and far from being fully discussed.
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