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This paper uses the theory of entire functions to study the linear quadratic optimization problem for a class of continuous
2D systems. We show that in some cases optimal control can be given by an analytical formula. A simple method is also
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1. Introduction other hand, a few scientific works (Shankar and Willems,
2000; Idczak and Walczak, 2000) are devoted to continu-
The research termed ‘multidimensional systems’ was ini- ous mD systems.
tially motivated by the need for a mathematical descrip-
tion of some problems that had arisen in the area of cir-
cuits and multidimensional signal, image and video pro-
cessing (Bose, 1982; Fornasini and Marchesini, 1978).
The next studies showed that also many information pro-
cesses in various fields posses such a unique mathema
ical nature and they can be fully described in the form
of multidimensional dynamical systems (Kaczorek, 1985;
Gatkowski and Wood, 2001). The unique key feature of
an mD system is that the process dynamics depend on
m indeterminates and hence information is propagated in
many independent directions. A natural way is the repre-
sentation ofm D systems by a polynomial-based descrip-
tion of the process dynamics. Although very promising, it
is related to serious numerical problems. One of the prin-
cipal advantages of a dynamic system formulation is that
it provides a framework in which it is possible to examine
traditional optimal control concepts. In the caserof
systems the propagation of dynamics in the independent
directions can be realized by either (i) functions of dis- 1.1. Preliminaries and Motivation
crete variables, (ii) continuous variables, or (iii) continu-
ous variables in one direction and discrete variables in the The simplest classes of linear 2D discrete systems used in
other. Recently, close attention has been paid to discrete-applied problems and mathematical theory can be written
continuous mD processes (Kaczorek, 1995; Dymkov, as follows:
2001) where at least along one direction system dynam-
ics are defined in terms of continuous variables. On the (¢t +1,s) = Az(t,s) + Dx(t,s + 1) + g(t,s), (1)

This paper reports an application of the theory of
entire functions to control problems. This approach has
been used, in particular, in optimization problems of
some classes of continuous-discrete 2D models (Dymkov,
&999)' It is shown that in some cases the optimization
problem can be reduced to a linear programming prob-
lem in the appropriate Hilbert space of entire functions.
This paper uses entire function theory to study the linear
quadratic optimization problem for continuous 2D sys-
tems. It is shown that in the scalar case the optimal con-
trol can be given by an analytical formula. We discuss
a method of finding an approximate solution with pre-
assigned accuracy and also indicate some applications of
entire functions to the 1D optimization problem. The ob-
tained results provide a theoretical background for the de-
sign problem of optimal controllers for relevant processes.
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or as a couple of equations This paper reports an application of a subclass of en-
tire functions, i.e. functions regular in the complex plane
x(t+1,8)=Anx(t, s) + A2y(t, s) C except the pointz = co (Ibragimov, 1984), to control
+Dpox(t, s+ 1) + gi(t, s), systems. This class has a complex topological structure
() but we only employ a simpler subclass of entire functions,

y(t,s +1)=Anz(t,s) + Asy(t, s) i.e. the space of entire functions of exponential type and
+D21y(t +1,8) + g2(t, 5), finite degree.

We say that a complex functiofi: C — C is an
entire function of the exponential type and a finite degree
o if f isregular onC and for anye > 0 there is a con-
stant M = M (e) such that the inequalityf exp{(c —
e)lzs|} < |f(2)] < Mexp{(c + ¢)|z|} holds for all
z € C and somez, € C,2; — 00,58 — oo. Let W,
{x(t +1,5) = Awz(t,s) + g1 (L, 5), (3) denote the set of entire functions of exponential type and a

z(t, s + 1) = Asz(t, s) + g2(t, s). finite degrees non-exceedingr such that its restriction

) o ) . to R consists of some functions from the spabg(R).
The main characteristic feature of such models is their than it is known thatiV,, is a Hilbert space (also termed
overdetermination (in the sense that the number of equa-,o Wiener-Paley space (Ibragimov, 1984)) where the in-

tions for this case is greater than that of the unknown ., product is defined byf, g)w = [, f(z)g(z)dz and
functions) and, as a consequence, it is a problem to Cor-,a gver-bar means the cc;mplex coﬂﬁjugate.

rectl fine the notion of th lution. In thi n . ,
ectly define the notion of the solutio S Sense, Some properties of the Wiener-Paley space are rel-

such a system is similar to a one-dimensional discrete- R . .

. . ) . . evant to optimization theory. In particular, according

time system with parametric uncertainty. For this reason . i ; : ?
to Wiener's theorem, functions from this space admit

the classes of completely integrable systems for.wh|ch thethe following description. The sel, coincides with
boundary Cauchy problem has a unique solution are of . .
. the set of the analytical (regular) extensidn(z) for
the strongest interest. These models can be also treate . : :
as discrete versions of Pfaff partial differential equations e Fourier transformation of the functionf(t) from
Ly([—o,0],R):  F(z) = (1/v2m) [ f(t)e"*"dt.

that have been used in elasticity theory, magnetohydrody—Moreover the spacaV,, is compact in the sense that for
il ag

2&91215?3 and other engineering problems (see, e.g., Perovémy sequencé f,,(z)} of functions fromW,, there exists

] . a subsequencéf,, (z)} thatis uniformly convergent on
Recently, in modernm-D theory, continuous and  every compact se from C (with respect to theL,-
continuous-discrete versions of discrete multidimensional norm) to some function from the spad&,. Note that
systems were actively investigated. Some of these, €.9., there is also another property of the Wiener-Paley space
which can be used for solving optimization problems. In

given on the space of the functions defined on the integer-
valued latticeZ . Another state-space 2D objects were
investigated by (Gaishun, 1983). In the simplest case they
can be given in the form

z(t+1,8)= Z A; d(j)m(?’s) + Bul(t, s), (4) particular, according to the Kotelnikov theorem there is
jeZs ds? an isomorphism betweefl’, and the space of square
dz(t, s) summable sequences of complex numbgrs
= Ax(t,s) + Dx(t — 1,s) + Bu(t,s), (5)
ds few (o) el f(2) i( 1)he sinm(z — k)
o ) = - - 7 N
were considered in (Kaczorek, 1995; Dymkov, 1999). The MR W F m(z — k)

continuous version of Roesser’s systems of the form . ) i )
Otherwise, the functiory is determined by numbers;.

_ This fact is used to give the complete solution to tHe
0x(t,s) /0t =Anx(t, s)+Ay(t, s)+Biu(t, s), ,
=t 5)/ n2(t, 8)+Auzy(h, s)+ Brult, o (6) optimal control problem.
Oy(t, s)/0s= A x(t, s)+ Axny(t, s)+ Bau(t, s)

was investigated by ldczak and Walczak (2000), and others2. Linear Quadratic Optimization
In this paper we consider a continuous version of the  for Continuous 2D Systems

system (3). First applications of such equations were con- . : L : .
nected with differential geometry to find manifolds with we con5|d_er the linear t|me-_|nvar|ant continuakis sys-
tem described by the equations

a given tangential subspace (Rashevski, 1947). In elec-

trodynamics, for example, this model describes the elec- Ox(ty,ta)
tric potentials for the given electric field (Armand, 1977; ot; Azt t2) + Brult, ta), 7
Perov, 1975). Some details concerning stability theory dx(t1,to) )

and related topics can be found in (Gaishun, 1983). o, Agx(t1,t2) + Bau(ty, t2),
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where (t1,t3) € S = [—m, 7] X [-7, 7], x € R" is the
state vector depending on parametarand to, u € R™
is the input control vector of the same parametgrst,;
A; and B;, i = 1,2 are constant matrices of dimen-
sions (n x n) and (n x m), respectively. Also assume
that u(t1,t2) is a function from the spac€*(Q2, R™)

g

controllability conditions with fixed time segment are not
known till now. Nevertheless, we assume that the analysed
control system has a nonempty set of admissible controls.
The controllability problem for Pfaff differential
equations can be stated in a differ manner. In fact, more
than one distinct concepts of controllability can be defined

of continuously differentiable functions defined on the set for this case (Chramtzov, 1985). The simplest one is as

Q, where) is some domain irR? containing S .

Definition 1. A function z: S — R” is called the
solution to (7) for a given functionu(ty, ;) if z(-) €
C1(Q,R"), where Q is some domain inR? including
S, and thisxz(t1,t2) satisfies (7) for all(t,, ) € S.

Definition 2. We say that Eqns. (7) acempletly solvable
for a given functionu(tq, t2) if for each pointzy € R”
there exists a unique solution = x(t1,ta,20) of (7)
satisfying the initial conditionz(—m, —7) = .

It is well known that the following Frobenious com-
mutativity relations (Gaishun, 1983):

A1As=Asx Ay,
6u(t1, tz)

Oty ou(
u(ty,t
=AzB1U(t1,t2)+B137;2)7
2

A Byu(ty, ta)+Bo (8)

(thtg) ES,

are necessary and sufficient conditions for the complete
solvability of (7). For this reason we define the admissible

control functions as follows:

Definition 3. A function u: S — R™ is calledadmis-
sibleif u(-) € C*(S,R™) and u(-) satisfies (8) for all
(tl,tg) €S.

The optimization problem is to minimize the cost
functional

J(u)://S(\x(tl,t2)|2+\u(tl,t2)|2)dt1dt2, ©)

wherez(t;, t2) is the solution of (7) corresponding to the
given admissible controk(t;,t2) and satisfying to fol-
lowing boundary conditions:

z(—m,—m) =x9, x(m,7) =g, (20)
where z., o € R™ are given points. For simplicity, we
setx, = 0.

Remark 1. To guarantee the existence of admissible
controls which solve the controllability problem (10), we

have to formulate some additional conditions. The lemma
given below presents the conditions which guarantee the

follows:

Definition 4. The system (7) is calledontrollableif for
eachz®, z* € R" there are a momert* = (¢,t5) € R?

and an admissible control functiom(ty,t2), (0 < ¢; <

t1, 0 <ty < t3) such that the solution = x(t1, t2, zo)

of (7) corresponding to this control satisfies the conditions
x(—m, —7) = 2%, 2(T*) = z(t],t3) = z*.

Denote by© the subclass of systems (7) for which
the conditions (8) and

rank [By, Bs] = rank [By, B, P] = m,
P =ABy — AsBy,

Ja€R': rank[aB; + (1 —a)By] =m

hold. Then the following result gives the required control-
lability conditions (Chramtzov, 1985):

Lemma 1. The system (7) of the clag3 is controllable
if, and only if, rank F'(o) = n for somea € R!, where

F(a) = {B(oz),A(oz)B(oz)7 o ,A"il(oz)B(oz)},
B(a) = aB; + (1 — a) By,
Ala) = ad; + (1 — a)A,.

The previous studies of the structural properties of
discrete 2D systems were often realized on their repre-
sentations in the form oflD dynamical systems (For-
nasini and Marchesini, 1978; Dymkov, 1999). Such a
kind of representation based on the Fourier transform is
applied to the model under consideration. To realize this
approach for (7) we use the class of finite functions, whose
Fourier transforms belong to the class of entire functions
(Ibragimov, 1984). We suppose that the control function
in (7) is finite on S in the following sense: for each
ty € [—m,w] the functionu(ty,t2) = 0, Vi, & [—m, 7.

In accordance with the Wiener-Paley theorem the analytic
extensiona(z,t2) to the complex plan€ of the follow-

ing function (i.e. of the Fourier transform of the function
u(tl, tg)):

~ 1 f —iw
U(W,tg) = \/72771_ /u(tl,tg)e t1 dtl (11)

existence of the admissible controls defined on some timeis an element of the Wiener-Paley spaié, for each

segment of the form—=, 7] x [¢t],t5]. The proper zero

ty € [—m,w]. Applying the Fourier transform to (8) for
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each fixedt, € [—m, 7] yields the following singular dif-
ferential equation:

da(w,t
B 3 2) | By 1) = 0,
dtq
weR, tye€[—mm], (12)

where B(w) = A2 By — A1 By — iwBs. Itis known that
the solvability of singular systems (12) is determined, in
general, by the properties of the penéi(\,w) = AB; +
B(w). In this paper we consider the special case of the
regular pencilL(\,w) whenn = m and the matrixB;

has the inverseB; *. In this case the solution of (12) is as
follows:

Ww, ty) = e Bty (),

(13)

where B(w) = A+ iwB = Bfl(AgBl — A1By) +
iw(—B7 ' By), v(w) = @(w, —).

Thus the Fourier transforms of the control func-
tions u(t1,t2) that are finite on[—=, x| for a fixed ¢o
and satisfy the differential equality of (8) are described
by (13), wherev(z) is an arbitrary entire function from
the Wiener-Paley spac#/;.

Remark 2. Note that, in general, the inverse Fourier trans-
formation of the function (13) with)(z) from W is not

a function from the clas€”! (S, R™), which is required
for the admissible control functions. It is well known that
the classL,[—m, 7] of square integrable functions is in-
variant under the Fourier transform. In this case we deter-
mine first functionsi(ty, t2), a(,t2) € Lo[—m, 7|, t2 €
[—m, 7], which together with the corresponding solution
Z(t1,t2) of (7), (10) minimize the cost functional (9).
Such control functions are called generalized optimal con-
trols for the problem (7), (9)—(10). Then the approximate
optimal controlu®P(t1,t2) from the required class of ad-
missible functions is determined as a proper approxima-
tion of the obtained function®(t;) = a(ty,t2), t1 €
[-m, 7] from Ly[—m, ] for fixed ¢t € [—m, 7] by the
functions from the spac&![—n,7]. Hence, the solu-
tion x?P(tq,t) of (7) corresponding ta:*P(¢,,t2) satis-
fies approximately the boundary conditions (10) and they
provide the approximate optimal cost value. It is shown
that the accuracy of this approximation can be easily
evaluated.

It is easy to determine the solution of (7) along the
two edges of the rectangl§:

— €A2(t2+7r)560,

.13(—7'('7 t2)
z(m, —m) = e gy + / e™ A B (7, —m) dr,
x(m,ty) = eAz(t2+”)x(7r, —),

ty € [—m,mw]. (14)

Since z(m,m) = €>™2p(r,—7) = 0, we have
z(m,—m) = 0. We suppose that the matrid; hasn

single eigenvalueg )y, ..., A\, }. In this case

n—1

Z (673 (t)Alla

=0

Aqt —

(&)

where the «;(t)’s are the coefficients of the Lagrange-
Sylvester interpolation polynomial corresponding Aq.
Moreover, for the eigenvalueg\y, ..., A, } of the matrix
A; we have
n—1
et = Z Neay(t), Kk
=0

1,2,....n.

Denote by A the Vandermond matrix of the:-
th degree defined by the eigenvaluds\;,..., \,}
of A;, and let D diag {eM™, ... M7}, G
{B1,A1By,...,A?"'B;}. Then from (14) we have

—e2m g, = /eAl(”_T)Blu(T, —m)dr

T n—1
= / Z Al Byo(m — T)u(r, —m) dr
J =0

ag(m — 1)

u(r, —m)dr

n—1
> Ajai(m =)
T | i=0
=GA! u(r, —m)dr
“r n—1
> Apai(m =)
i=0
[ e MTu(r, —m)dr
=GA'D
[ e Tu(r, —m)dr
[ @(—iAy, —7)
=GA'D : :
| a(—iAn, =)

which yields
™y + GATIDU = 0,
where

U = (a(—iry, —7),..., 0(—i\,, —))
and @(w, —7) is given by (11).
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Extend now the functiorv(w) = 4(w,—m) to the Suppose now that the eigenvalues of the matfix are
complex plane as an entire function of the exponential located in the unit disc of the complex plane. In this case
type from the spacéV,.. Then the following interpola-  there exists the inversgwl — A;)~! for eachw € R!
tion problem arises: Find a function(z) from the space  which allows writing

W, such that the equalities -
Z(w, ta) = (iwl — Al)—l [Ble—(A+sz)(t2+-,r)

Fo = f, (15)

where & = (v(—i)\1),...,v(—i\,)), hold at the given X (v1(w) + QW)v(w)) + emeA2tm)
points z; = —i\q, ..., 2z, = —i)\, oOf the complex plane w2 s+ Ag(ta-+7)
C,andF = GA™'D, f = —e 241z, T e o

In general, the interpolation problem (15) does not _ e—iwﬂe(t2+7r)A2f:|. 21)
have a unigue solution. Let’y be a nonsingular subma-
trix defined by the(iy, ..., 4, )-th rows and(ji, . .., jp)- We consider now the particular case wher= m =
th columns of the matrixt” where p = rank . Then 1 4,5, + 0, where we give the complete solution to the
(15) yields problem. In this case, from the formula above we have

b = Fy' f — Fy' Fyoy, (16) iw, 1) = e~ (4 (W) + Q(w)v(w)),

where F). is determined by those rows and columns of

~ — (i, —1 —b(w)(ta+m)
the matrix F which are not used inFy, and the vector T(w,t2) = (iw —a1)” bre

v is composed in accordance with this partitionas= x (v1(w) + Q(w)v(w))
(vm,vy). The latter can be written in coordinate form
s —1 _iwn jaz(te+m)
U‘z:zk :/Bkv k:j17~--5jp' (17) +(ZW Cll) € e o,
Note that the components of thHe — p)-vector o, where
and, hence, the-vector 3 are free variables. The set of b(w) = a1by — a1by + iwbg ~ G+ iwh,
all solutions to (15) can be written as b1 by
u(z) = v (2) + Q(2)v(2), (18) The isometric property of the Fourier transform in the

space Lo[—7, «] implies that the functional (8) can be
wherew; (z) is a particular solution to (15))(z) issome  rewritten via the functiorw(w) as
polynomial of the p-th degree, whose roots are given
numbersz;,, k = 1,2,...,p, and v(z) is an arbitrary J(u) = // (|o(ty, t2)]* + |ults, t2)?) dty dts
function such that)(z)v(z) € W,. The set of such func- o
tions is denoted by/. By the Lagrange formula, a partic-
ular solution to (15) can be chosen as

/Oodwi (12(w, t2)[* + [a(w, t2)|?) dts

p
z
n@) =Y a2 - 2
— ' (2)(2 — ) ¥(w)
=1 _ 2 d
= | ¢ (W) |vw) + — w
po @)
o(z) = H sin —(z — z). (19) e
i=1 p x 2
Note thaty(z) cannot be chosen as the simplest in- + vi(w) = 22(w) w5
terpolation polynomial of the formy(z) = [0, (z — z;) —oo
sincey(z)/(z—z;) ¢ W, foreveryi. Thusthe setofall  \where
admissible controls (their Fourier transforms) driving the B2 1 _ p—dma
point z to the pointz, is given by the formula O*(w) = (W 1) < 5 ) 1Q(w)[?,
i(w, tg) = e~ ATWBEAT) (4, (W) + Q(w)v(w)). (20) R
The problem is now how to find the function(z) (W) = —5—nWQW)
that minimizes the functional (8). Applying the Fourier o o )
transform to the first equation of (7) with respect to the n bi(e?™) — 1) vo(w)Q(w)
variablet; yields (iw —a1)?
efiunr T ts) + iwl — A)E w,ty) = B:d w, ta). b iwm(p2maz _ —27b(w) __ 1
(m,t2) + ( 1)Z(w, t2) = Bri(w, t2) | bizoe™(e )(e )Q(w),

(iw —ay)?
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V2 (w) = b? +1 1 — e 4ma oy (@) 2 forms a basis in the spadé. Let fi, fo,..., fn,... de-
\ Jiw — aq]? 2 L note the re-numbered orthonormalized vectors of the basis
{9}, k € P. Now the required vectorge; } can be de-
zp (et — 1) termined from the formula
2liw — aq|?
| 1| €L :yk(rkrkfl)il/27 k: 1727"'7 (24)
+ 2Reb1(e_2ﬂb(w) — 1) wm(e?m2 — 1)330_ where
(iw —ay1)? _
(f1, f2) -+ (f1, fe—1) f
Since the second integral above is not dependenton ¢, = | ... .................. ,
v(w), the problem is to minimize the functional C(fi ) - (s Fen)f
J(u :/ 2w v(w) = Hw 2dw 22 (flafl)"'(flafk)
w) - Plll(w) =) (e2) E= o , k=12, (25)
L (fkafl) cee (fk?fk)

in the classV where l(w) = —(w)/p?(w) is a known
function. Now, introduce the Hilbert space of the func-
tions that are square integrable &' with the weight
function ¢?(w) and call it Lo ,,. In this space the inner
product is given by(f,g) = [~ ¢*(w)f(w)g(w) d(w).
Hence the minimization of (22) is reduced to the follow-
ing problem: Find a functions from the classl” that pro-
vides the best approximation to the known functidw)

in the spaceLs , .

Hence we have proven the following result:

Theorem 1. Let n = m = 1 and a1b; # 0. Then the

generalized optimal control for the problem (7), (9)—(10)
is given as

1

Re (€*@0(w)) dw,
27r

’LLO (tl, tg) (26)

8\8

Since the sefl/ is a closed subspace from the space where

L, ,, there exists a unique best approximatior(to) and
this approximation is the projection of the functidfw)
onto V. This projection can be written as a linear combi-
nationv = Z;C:l crep Of the vectors of some orthonor-
malized basis, es, . . ., chosen inV, where the Fourier
coefficientsc;, are calculated by the formulg, = (i, ey,),

k = 1,2,.... The basis inV can also be chosen in
a different manner. First, use the Kotelnikov theorem to
choose the required basis, (Hurgin and Yakovlev, 1971).
To highlight this, note that each functiof(z) € W, can

be expanded into the following power series:

> k)P

k=—o0

sinmz
—_1)*

—k’

If v(z) € V and Q(z) is an arbitrary polynomial of the
p-th degree, then)(2)Q(z) € W, (see the definition of
V). Hence

oo .
STz

1
W=7 2 wgn wy

(23)
where a;, = (—1)*v(k)Q(k). Since the function (23) is
the entire function if the numbers = 0,1,...,p—1 are
roots of the polynomialQ(z), we haveQ(z) = z. Thus
the collection of the functions

sinmwz

gk(z):m, kGP:Z\{O,l,...

apf]'}

= wZCkek

+U1

(@),

s(w) = aleb;chle + iw(ty — Zb)—?(tg +m)), (27)
Cr = (l,ek) = (Fkrk_1)_1/2
(fr, f1) - (s fem)(L 1)
X , (28)
(frs f1) o (frer fro—1) (L Ik)

and vy (w) is some particular solution of (23) to the inter-
polation problem (15).

Note that the inner produdtf;, f;) can be easily cal-
culated from the residual theory as

sm W

(f“f”:/cy W=
= (@p—1=5)N2G k)G -1’ ’
TR pE— L
T Sl -1 NG - 1)
* (k)
TG opo1E P!
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Based on the inverse Fourier transforni(t) < Theorem 2. The Fourier transform of the optimal control
Ly[—m, nr] ofagiven functiom®(z) € W, we areableto  in (29) is given by
determine the generalized optimal control function for the m n
problem under consideration. The approximate optimal ul(z) = Zﬂs ZFSJ'D(WJ' —72),
control from the clas<C! € [—m, n] can be established s=1  j=1
as an approximation to the given functiefi(¢). In par-

. ) S ; . where the numberg, = v, + iv,, (herei? = —1), s =
ticular, this approximation can be obtained by cutting the ere the numbersl, = v, + 7, (here ) s

power series (27), where we consider the finite sum 1,2,..., are determined as
s Bs FijFgjD(mz; — mz5) = fi,
v (W) = v1(w) + QW) Z Creg(w). ; ; ;
k=1

for | = 1,2,...,m. Here D(z) = sinz/z, D(0) = 1,

It should be noted that the inverse Fourier transforms Fi;, fi, | =1,2,...,m, j =1,2,...,n are elements of
for the functionsv; (w), ex(w), k =1,...,s are contin- the (m x n)-matrix F' and then-vector f, respectively.
uously differentiable functions. The accuracy of this ap- prgof. The solution of (29) for a given control function
proximation can be evaluated from the following inequal- a1 pe written as follows:
ities: .

2 z(t)=e M g4 / At pu(r)dr, te[-m, 7). (30)
w -7

1090 - Ol = Q) Y Crentw)

k=s+1
The matrix functione* can be represented in the form

7@( B S Gene)] d
< w ’ ek (w ‘ w n—1 .
e k=s+1 et = Z a;(t) A,
=0
S 2 - here the «;(t)'s are the coefficients of the Lagrange-
= [ 2 < 2. W i . . .
/@ (w)‘k;rlckek(w)’ dw —k;1|ck| Silvester interpolation polynomiak(A) that is deter-

mined by the matrixA. Then from (29) we have that the
admissible control functions satisfy

3. Optimal Control of 1D Systems with o7
Energy Performance Criteria ; HA™ / ai(m = rju(7) dr
In this section, based on the proposed method, we give n—1
a complete solution to the following continuous 1D opti- =— Z o (2m)H A'xg. (31)
mization problem: i=0
T Set
_ n—1
/|u(t)|2dt—>min, = Az + bu, G = [Hb,HAb,..., HA" 1]
. (29)  and

R = —[Hzy, HAxg, ..., HA" 'z].

) . . Similarly as in the previous section, it can be estab-
Here x is an n-phase vectorA is an (n x n)-matrix, |ished that the Fourier transforii(w) of the admissible
b and x, are givenn-vectors, u(t), t € [—m, 7] isa  control, which solves the controllability problem (29), can

control function from the spacé. [, x] of measure-  pe extended to the complex plane as the entire function of
able and square summable functions fear, 7], H is the form

te[-mmn], a(-w)=uxz9, Hazx(r)=0.

a given (m x n)-matrix. We suppose that the system is x

controllable and hence the set of_ admissible cont_rols is i(z) = (2m) V2 /U(T)e_m dt. (32)
nonempty. The existence of an optimal control for this op-

timization problem can be stated on the analogy of (Vasil- o

jev, 1981). In addition to that, we suppose thhthas sin- Denote byw = (wy,...,w,) the n-vector, whose
gle eigenvalues. WriteG = [Hb, HAb, ..., HA" 1b], coordinatesw;, = u(—i\;), k = 1,...,n are the val-
R = —[Hxg,HAxq,...,HA" 120]. V is the (n x ues of the function (32) at the points, = —i\;, k =
n) Vandermonde matrix, generated by the eigenvaluesl,2,...,n of the complex planeC. Then (31) yields
A,y A, Of A F = GVIA, f = (2m)" 2RV 1y, Fi—f (33)

g= (62/\17r, el 62>‘"ﬂ)'.
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where F = GV7'A, f = (2n)Y?RV-lgy, g =
(27 ... e**»7™)' The Kotelnikov theorem implies that
eachu(z) € W, can be represented as

Z upD(mz — km), Z lug|* < oo, (34)

k=—o00 k=—o0

u(z) =

where uy = w(k) = zy + iy, D(z) = 2z 'sinz,
D(0) = 1. Since

7sin7r(w—k:) sin(w — n) duw — 1, k=n,
m(w — k) m(w —n) )0, k#n,
k,n=0,£1,..., we get
= [ Ju@P dw=3" [P = 3 (@ +9})
oo k— k=—o0

Finally, the following optimization problem appears:

Minimize the functional

J(u) = i uRU, — mu}cn (35)
k—oo
in the spacdV;, subject to the constraint
F i upDy, = f, (36)
k—oo
where Dy, = (D(rz — kn),...,D(rz, — kr)), and

ur = xp — iy, denotes the complex conjugate fay,.
Next, set D(wz; — mk) = ai(z;) + ibp(z;), j =
1,2,...,n,wherea,(z;) andby(z;) are some real num-
bers. Then the problem (35), (36) can be rewritten as

Y (@} +yi) — min, (37)
k=—o00
subject to the constraints
oo n
Z ZFsz (zrar(z1) — yrbr(21)) = fs,
k=—oc0 =1

Z Z Fy (ykak(zl) + mkbk(zl)) =

k=—oc0 =1
s=1,2,....m

The Lagrange function for the problem (37), (38) is
P (u,v,7)

1 o0
== > (@R +up)

2 k=—o00
+> v |:fs_ > Fa(wear(z) _ykbk(zl))}
s=1 k=—ocl=1
—Z%{ Z ZFél Yrar(z +$kbk(zl))}
k=—o0l=1

and the stationarity conditions

Tp = ZZFSZ (vsar(z1) + vsbe(21)),

s=11=1

m n

vk = > Fal(vsar(z) — vsbi(21)),

s=1[=1
k=0,%£1,42,...,
hold. Substituting this into the first equation from (38),
we have

n m n

ZZZF”F”Z[V’“ ar(zt)ar(z1) + br(z0)br(21))

l=1r=1t=1
e (br(20)an (1) = ai(z0bs(20))]| = fs (39)

s =1,2,...,m. Applying (34) to the functionu(z) =
D(nz —wz) at z = z yields

Z D(nzy — km)D(wz; — k).

k=—o00

D(mz; — 7zy)

Since [ag(z¢) + ibg(2¢)][ar(z1) — ibk(21)] = D(wze —
kr)D(nz; — k), from (39) we have

n

Ziimmhmmmﬂw)

I=1r=1t

—yIm (D(rz = 720)) | = fo. (40)

On the analogy with the above calculations, the sec-
ond equation of (38) leads to

n m

S B[yt (Dlra = 7))
=1r

=11t=1

Re (Dlrz —7z)) | =0, (4D)

Next, sets, = v, + iv,, r = 1,2,...,m. Combining
(40) and (41) leads to the required relations. Substituting
the given valuesy, = x, + iy into (34) gives

oo

Z (xg + iyr)D(7z — k)

k=—o0

Z Z Z Fa [Vs (ar(z0) + vsbi(21))

k=—oc0 s=1 [=1

+ +1 (% (ak(zl) — Vsbk(ZlD) }D(ﬁz — km)

u’(z) =

n o0

Z Z Fy Z [VS (mz1 — km)D(mz — kn)

s=11 k=—o00

+ivsD(mz; — km)D(mz — k’]T):| .
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Using the representation (34) far(z) = D(nz — 7z) Applying residual theory to the improper integrals yields

yields the required optimal control -
/ giw(m+t) { im, T+t >0,
dw =

u’(2) = ZZ Fy {VSD(ﬂ'Z —mz)+ivsD(mz — 7TZl)i| E w —im, T+t <0,
s=11=1
m n e“‘"(t_ﬂ') 1T t—m>0
N 7_ d _ ) 9
—;ﬁsZFlew T), / v {—m, t—m<0.
s= =1 —00
which completes the proof. = Finally,
It is also possible to prove that the Fourier transform _ao/2m, —m<t<n
of the optimal controls can be represented by the series ud(t) = 07 et - =
expansion for the basis, = Q~!(2)(z — k) ' sinz, 0, |t| > 7.
k = 0,1,..., where Q(z) is some polynomial of a fi-

nite degree. Therefore the approximate solution can be©n the other hand, the Hamilton-Pontryagin function for

obtained by the cutting of this power series in much the the @nalysed optimal control problem I(x, u, ¢, A) =
same way as in the previous section. —Au? + 1u, where the adjoint variable) is defined by
the following adjoint differential equation:

dy _ _oH _

4. Example =——— =0, —n<t<T.
P dt Ox ’ T=teT
To illustrate the proposed method we consider the simple

optimal control problem From the Pontryagin maximum principle (Gabasov

and Kirillova, 1988) it follows that the conditioh\| +

i=u, tel|-mn], x(—7)=m, [(t)| # 0, Vt e [—m, | is fulfilled. If we suppose that
A = 0, then the maximum of the functiofl (z, u, ¥, A)

= on u € R is achieved only ifiy = 0, which contradicts

z(m) =0, J(u)= /uz(t) dt — min. the above condition. Hence we can set= 1, and then

the function H(x, u,v, \) reaches an extremum an €
R for u = 4 /2. Thus we have the following differential
problem associated with the maximum principle:

—T

Here A =0, b =1 and H = 1. The notation required
for this case is as follows:

de ¢ d¢
R=—Hzy=xz9, G=Hb=1, V=1, A=e'=1, T3 EZO’ t € [-m, 7],
F=1 g=1f=-x/V2r. x(—7) =z, x(mw)=0.
From Theorem 2 we getD(0) = —zo/v/2m. Since It is easy to see that the solution to this system is
D(0) = 1, we haves = —zo/v/2r and given by the formulae
0/ N —_— B sinmz H = _%o H—_ro, _*To
u(z) = —xoD(—72)/V2mr = —x9 ( — )/\/271 ¥(t) o z(t) o 5
The optimal control function is the Fourier image of the and hence the optimal control is
function u°(2):
) WO =L o T
ul(t) = — /uo (w)e! dw=—20 [ ZLTY iwt g, which coincides with the result obtained above.
vV 2T 27 Tw
T imw _ —imw 5. Conclusion
__ T / e = e et g
272 K 21w The theory of complex-valued functions is commonly em-
>~ ployed in the solution of various engineering and scientific
- o0 pico () oo pieo(t—) problgms. Th'is paper presen'teq a.systerr.latic application
=12 [ / dw — / dw:|. of entire function theory to optimization topics. This tech-
T w w

nigue was used for investigating optimal control for linear

— 0o —00
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