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This paper uses the theory of entire functions to study the linear quadratic optimization problem for a class of continuous
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1. Introduction

The research termed ‘multidimensional systems’ was ini-
tially motivated by the need for a mathematical descrip-
tion of some problems that had arisen in the area of cir-
cuits and multidimensional signal, image and video pro-
cessing (Bose, 1982; Fornasini and Marchesini, 1978).
The next studies showed that also many information pro-
cesses in various fields posses such a unique mathemat-
ical nature and they can be fully described in the form
of multidimensional dynamical systems (Kaczorek, 1985;
Gałkowski and Wood, 2001). The unique key feature of
an mD system is that the process dynamics depend on
m indeterminates and hence information is propagated in
many independent directions. A natural way is the repre-
sentation ofmD systems by a polynomial-based descrip-
tion of the process dynamics. Although very promising, it
is related to serious numerical problems. One of the prin-
cipal advantages of a dynamic system formulation is that
it provides a framework in which it is possible to examine
traditional optimal control concepts. In the case ofmD
systems the propagation of dynamics in the independent
directions can be realized by either (i) functions of dis-
crete variables, (ii) continuous variables, or (iii) continu-
ous variables in one direction and discrete variables in the
other. Recently, close attention has been paid to discrete-
continuousmD processes (Kaczorek, 1995; Dymkov,
2001) where at least along one direction system dynam-
ics are defined in terms of continuous variables. On the

other hand, a few scientific works (Shankar and Willems,
2000; Idczak and Walczak, 2000) are devoted to continu-
ousmD systems.

This paper reports an application of the theory of
entire functions to control problems. This approach has
been used, in particular, in optimization problems of
some classes of continuous-discrete 2D models (Dymkov,
1999). It is shown that in some cases the optimization
problem can be reduced to a linear programming prob-
lem in the appropriate Hilbert space of entire functions.
This paper uses entire function theory to study the linear
quadratic optimization problem for continuous 2D sys-
tems. It is shown that in the scalar case the optimal con-
trol can be given by an analytical formula. We discuss
a method of finding an approximate solution with pre-
assigned accuracy and also indicate some applications of
entire functions to the 1D optimization problem. The ob-
tained results provide a theoretical background for the de-
sign problem of optimal controllers for relevant processes.

1.1. Preliminaries and Motivation

The simplest classes of linear 2D discrete systems used in
applied problems and mathematical theory can be written
as follows:

x(t+ 1, s) = Ax(t, s) +Dx(t, s+ 1) + g(t, s), (1)
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or as a couple of equations
x(t+ 1, s)=A11x(t, s) +A12y(t, s)

+D12x(t, s+ 1) + g1(t, s),

y(t, s+ 1)=A21x(t, s) +A22y(t, s)
+D21y(t+ 1, s) + g2(t, s),

(2)

given on the space of the functions defined on the integer-
valued latticeZ+. Another state-space 2D objects were
investigated by (Gaishun, 1983). In the simplest case they
can be given in the form{

x(t+ 1, s) = A1x(t, s) + g1(t, s),
x(t, s+ 1) = A2x(t, s) + g2(t, s).

(3)

The main characteristic feature of such models is their
overdetermination (in the sense that the number of equa-
tions for this case is greater than that of the unknown
functions) and, as a consequence, it is a problem to cor-
rectly define the notion of the solution. In this sense,
such a system is similar to a one-dimensional discrete-
time system with parametric uncertainty. For this reason
the classes of completely integrable systems for which the
boundary Cauchy problem has a unique solution are of
the strongest interest. These models can be also treated
as discrete versions of Pfaff partial differential equations
that have been used in elasticity theory, magnetohydrody-
namics and other engineering problems (see, e.g., Perov,
1975).

Recently, in modernm-D theory, continuous and
continuous-discrete versions of discrete multidimensional
systems were actively investigated. Some of these, e.g.,

x(t+ 1, s) =
∑

j∈Z+

Aj
d(j)x(t, s)

dsj
+Bu(t, s), (4)

dx(t, s)
ds

=Ax(t, s) +Dx(t− 1, s) +Bu(t, s), (5)

were considered in (Kaczorek, 1995; Dymkov, 1999). The
continuous version of Roesser’s systems of the form{

∂x(t, s)/∂t=A11x(t, s)+A12y(t, s)+B1u(t, s),

∂y(t, s)/∂s=A21x(t, s)+A22y(t, s)+B2u(t, s)
(6)

was investigated by Idczak and Walczak (2000), and others.

In this paper we consider a continuous version of the
system (3). First applications of such equations were con-
nected with differential geometry to find manifolds with
a given tangential subspace (Rashevski, 1947). In elec-
trodynamics, for example, this model describes the elec-
tric potentials for the given electric field (Armand, 1977;
Perov, 1975). Some details concerning stability theory
and related topics can be found in (Gaishun, 1983).

This paper reports an application of a subclass of en-
tire functions, i.e. functions regular in the complex plane
C except the pointz = ∞ (Ibragimov, 1984), to control
systems. This class has a complex topological structure
but we only employ a simpler subclass of entire functions,
i.e. the space of entire functions of exponential type and
finite degree.

We say that a complex functionf : C → C is an
entire function of the exponential type and a finite degree
σ if f is regular onC and for anyε > 0 there is a con-
stantM = M(ε) such that the inequalityM exp{(σ −
ε)|zs|} < |f(z)| < M exp{(σ + ε)|z|} holds for all
z ∈ C and somezs ∈ C, zs → ∞, s → ∞. Let Wσ

denote the set of entire functions of exponential type and a
finite degreeσ non-exceedingπ such that its restriction
to R consists of some functions from the spaceL2(R).
Then it is known thatWσ is a Hilbert space (also termed
the Wiener-Paley space (Ibragimov, 1984)) where the in-
ner product is defined by(f, g)W =

∫
R f(x)g(x) dx and

the over-bar means the complex conjugate.

Some properties of the Wiener-Paley space are rel-
evant to optimization theory. In particular, according
to Wiener’s theorem, functions from this space admit
the following description. The setWσ coincides with
the set of the analytical (regular) extensionF (z) for
the Fourier transformation of the functionsf(t) from
L2([−σ, σ],R): F (z) = (1/

√
2π)

∫ σ

−σ
f(t)e−izt dt.

Moreover, the spaceWσ is compact in the sense that for
any sequence{fn(z)} of functions fromWσ there exists
a subsequence{fnk

(z)} that is uniformly convergent on
every compact setK from C (with respect to theL2-
norm) to some function from the spaceWσ. Note that
there is also another property of the Wiener-Paley space
which can be used for solving optimization problems. In
particular, according to the Kotelnikov theorem there is
an isomorphism betweenWσ and the space of square
summable sequences of complex numbersl2:

f ∈Wσ ↔ {ck}∈ l2, f(z)=
∞∑

k=−∞

(−1)kck
sinπ(z − k)
π(z − k)

.

Otherwise, the functionf is determined by numbersck.
This fact is used to give the complete solution to the1D
optimal control problem.

2. Linear Quadratic Optimization
for Continuous 2D Systems

We consider the linear time-invariant continuous2D sys-
tem described by the equations

∂x(t1, t2)
∂t1

=A1x(t1, t2) +B1u(t1, t2),

∂x(t1, t2)
∂t2

=A2x(t1, t2) +B2u(t1, t2),
(7)



An application of the Fourier transform to optimization of continuous 2-D systems 47

where (t1, t2) ∈ S = [−π, π] × [−π, π], x ∈ Rn is the
state vector depending on parameterst1 and t2, u ∈ Rm

is the input control vector of the same parameterst1, t2;
Ai and Bi, i = 1, 2 are constant matrices of dimen-
sions (n × n) and (n × m), respectively. Also assume
that u(t1, t2) is a function from the spaceC1(Ω,Rm)
of continuously differentiable functions defined on the set
Ω, whereΩ is some domain inR2 containingS .

Definition 1. A function x: S → Rn is called the
solution to (7) for a given functionu(t1, t2) if x(·) ∈
C1(Ω,Rn), where Ω is some domain inR2 including
S, and thisx(t1, t2) satisfies (7) for all(t1, t2) ∈ S.

Definition 2. We say that Eqns. (7) arecompletly solvable
for a given functionu(t1, t2) if for each pointx0 ∈ Rn

there exists a unique solutionx = x(t1, t2, x0) of (7)
satisfying the initial conditionx(−π,−π) = x0.

It is well known that the following Frobenious com-
mutativity relations (Gaishun, 1983):

A1A2 =A2A1,

A1B2u(t1, t2)+B2
∂u(t1, t2)

∂t1

=A2B1u(t1, t2)+B1
∂u(t1, t2)

∂t2
, (t1, t2)∈S,

(8)

are necessary and sufficient conditions for the complete
solvability of (7). For this reason we define the admissible
control functions as follows:

Definition 3. A function u: S → Rm is calledadmis-
sible if u(·) ∈ C1(S,Rm) and u(·) satisfies (8) for all
(t1, t2) ∈ S.

The optimization problem is to minimize the cost
functional

J(u) =
∫∫

S

(|x(t1, t2)|2 + |u(t1, t2)|2) dt1dt2, (9)

wherex(t1, t2) is the solution of (7) corresponding to the
given admissible controlu(t1, t2) and satisfying to fol-
lowing boundary conditions:

x(−π,−π) = x0, x(π, π) = xπ, (10)

wherexπ, x0 ∈ Rn are given points. For simplicity, we
set xπ = 0.

Remark 1. To guarantee the existence of admissible
controls which solve the controllability problem (10), we
have to formulate some additional conditions. The lemma
given below presents the conditions which guarantee the
existence of the admissible controls defined on some time
segment of the form[−π, π] × [t∗1, t

∗
2]. The proper zero

controllability conditions with fixed time segment are not
known till now. Nevertheless, we assume that the analysed
control system has a nonempty set of admissible controls.

The controllability problem for Pfaff differential
equations can be stated in a differ manner. In fact, more
than one distinct concepts of controllability can be defined
for this case (Chramtzov, 1985). The simplest one is as
follows:

Definition 4. The system (7) is calledcontrollable if for
eachx0, x∗ ∈ Rn there are a momentT ∗ = (t∗1, t

∗
2) ∈ R2

and an admissible control functionu(t1, t2), (0 ≤ t1 ≤
t∗1, 0 ≤ t2 ≤ t∗2) such that the solutionx = x(t1, t2, x0)
of (7) corresponding to this control satisfies the conditions
x(−π,−π) = x0, x(T ∗) = x(t∗1, t

∗
2) = x∗.

Denote byΘ the subclass of systems (7) for which
the conditions (8) and

rank [B1, B2] = rank [B1, B2, P ] = m,

P = A1B2 −A2B1,

∃ α ∈ R1 : rank [αB1 + (1− α)B2] = m

hold. Then the following result gives the required control-
lability conditions (Chramtzov, 1985):

Lemma 1. The system (7) of the classΘ is controllable
if, and only if, rankF (α) = n for someα ∈ R1, where

F (α) =
{
B(α), A(α)B(α), . . . , An−1(α)B(α)

}
,

B(α) = αB1 + (1− α)B2,

A(α) = αA1 + (1− α)A2.

The previous studies of the structural properties of
discrete2D systems were often realized on their repre-
sentations in the form of1D dynamical systems (For-
nasini and Marchesini, 1978; Dymkov, 1999). Such a
kind of representation based on the Fourier transform is
applied to the model under consideration. To realize this
approach for (7) we use the class of finite functions, whose
Fourier transforms belong to the class of entire functions
(Ibragimov, 1984). We suppose that the control function
in (7) is finite on S in the following sense: for each
t2 ∈ [−π, π] the functionu(t1, t2) ≡ 0, ∀t1 6∈ [−π, π].
In accordance with the Wiener-Paley theorem the analytic
extensionũ(z, t2) to the complex planeC of the follow-
ing function (i.e. of the Fourier transform of the function
u(t1, t2)):

ũ(ω, t2) =
1√
2π

π∫
−π

u(t1, t2)e−iωt1 dt1 (11)

is an element of the Wiener-Paley spaceWπ for each
t2 ∈ [−π, π]. Applying the Fourier transform to (8) for
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each fixedt2 ∈ [−π, π] yields the following singular dif-
ferential equation:

B1
dũ(ω, t2)

dt2
+B(ω)ũ(ω, t2) = 0,

ω ∈ R, t2 ∈ [−π, π], (12)

whereB(ω) = A2B1 − A1B2 − iωB2. It is known that
the solvability of singular systems (12) is determined, in
general, by the properties of the pencilL(λ, ω) = λB1 +
B(ω). In this paper we consider the special case of the
regular pencilL(λ, ω) when n = m and the matrixB1

has the inverseB−1
1 . In this case the solution of (12) is as

follows:

ũ(ω, t2) = e−B̂(ω)(t2+π)v(ω), (13)

where B̂(ω) = Â + iωB̂ = B−1
1 (A2B1 − A1B2) +

iω(−B−1
1 B2), v(ω) = ũ(ω,−π).

Thus the Fourier transforms of the control func-
tions u(t1, t2) that are finite on[−π, π] for a fixed t2
and satisfy the differential equality of (8) are described
by (13), wherev(z) is an arbitrary entire function from
the Wiener-Paley spaceWπ.

Remark 2. Note that, in general, the inverse Fourier trans-
formation of the function (13) withv(z) from Wπ is not
a function from the classC1(S,Rm), which is required
for the admissible control functions. It is well known that
the classL2[−π, π] of square integrable functions is in-
variant under the Fourier transform. In this case we deter-
mine first functionsũ(t1, t2), ũ(·, t2) ∈ L2[−π, π], t2 ∈
[−π, π], which together with the corresponding solution
x̃(t1, t2) of (7), (10) minimize the cost functional (9).
Such control functions are called generalized optimal con-
trols for the problem (7), (9)–(10). Then the approximate
optimal controluap(t1, t2) from the required class of ad-
missible functions is determined as a proper approxima-
tion of the obtained functionv0(t1) = ũ(t1, t2), t1 ∈
[−π, π] from L2[−π, π] for fixed t2 ∈ [−π, π] by the
functions from the spaceC1[−π, π]. Hence, the solu-
tion xap(t1, t2) of (7) corresponding touap(t1, t2) satis-
fies approximately the boundary conditions (10) and they
provide the approximate optimal cost value. It is shown
that the accuracy of this approximation can be easily
evaluated.

It is easy to determine the solution of (7) along the
two edges of the rectangleS:

x(−π, t2) = eA2(t2+π)x0,

x(π,−π) = e2πA1x0 +

π∫
−π

e(π−τ)A1B1u(τ,−π) dτ,

x(π, t2) = eA2(t2+π)x(π,−π), t2 ∈ [−π, π]. (14)

Since x(π, π) = e2πA2x(π,−π) = 0, we have
x(π,−π) = 0. We suppose that the matrixA1 has n
single eigenvalues{λ1, . . . , λn}. In this case

eA1t =
n−1∑
i=0

αi(t)Ai
1,

where theαi(t)’s are the coefficients of the Lagrange-
Sylvester interpolation polynomial corresponding toA1.
Moreover, for the eigenvalues{λ1, . . . , λn} of the matrix
A1 we have

eλkt =
n−1∑
i=0

λi
kαi(t), k = 1, 2, . . . , n.

Denote by Λ the Vandermond matrix of then-
th degree defined by the eigenvalues{λ1, . . . , λn}
of A1, and let D = diag {eλ1π, . . . , eλnπ}, G =
{B1, A1B1, . . . , A

n−1
1 B1}. Then from (14) we have

−e2πA1x0 =

π∫
−π

eA1(π−τ)B1u(τ,−π) dτ

=

π∫
−π

n−1∑
i=0

Ai
1B1αi(π − τ)u(τ,−π) dτ

= G

π∫
−π


α0(π − τ)

...

αn−1(π − τ)

u(τ,−π) dτ

= GΛ−1

π∫
−π


n−1∑
i=0

λi
1αi(π − τ)

...
n−1∑
i=0

λi
nαi(π − τ)

u(τ,−π) dτ

= GΛ−1D


π∫
−π

e−λ1τu(τ,−π) dτ

...
π∫
−π

e−λnτu(τ,−π) dτ



= GΛ−1D


ũ(−iλ1,−π)

...

ũ(−iλn,−π)

 ,
which yields

e2πA1x0 +GΛ−1DÛ = 0,

where

Û =
(
ũ(−iλ1,−π), . . . , ũ(−iλn,−π)

)
and ũ(ω,−π) is given by (11).
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Extend now the functionv(ω) = ũ(ω,−π) to the
complex plane as an entire function of the exponential
type from the spaceWπ. Then the following interpola-
tion problem arises: Find a functionv(z) from the space
Wπ such that the equalities

F v̂ = f, (15)

where v̂ = (v(−iλ1), . . . , v(−iλn)), hold at the given
points z1 = −iλ1, . . . , zn = −iλn of the complex plane
C, andF = GΛ−1D, f = −e−2πA1x0.

In general, the interpolation problem (15) does not
have a unique solution. LetFH be a nonsingular subma-
trix defined by the(i1, . . . , ip)-th rows and(j1, . . . , jp)-
th columns of the matrixF where p = rankF . Then
(15) yields

v̂H = F−1
H f − F−1

H Frv̂r, (16)

where Fr is determined by those rows and columns of
the matrix F which are not used inFH , and the vector
v is composed in accordance with this partition asv =
(vH , vr). The latter can be written in coordinate form

v|z=zk
= βk, k = j1, . . . , jp. (17)

Note that the components of the(n − p)-vector v̂r

and, hence, thep-vector β are free variables. The set of
all solutions to (15) can be written as

u(z) = v1(z) +Q(z)v(z), (18)

wherev1(z) is a particular solution to (15),Q(z) is some
polynomial of the p-th degree, whose roots are given
numberszjk

, k = 1, 2, . . . , p, and v(z) is an arbitrary
function such thatQ(z)v(z) ∈Wπ. The set of such func-
tions is denoted byV . By the Lagrange formula, a partic-
ular solution to (15) can be chosen as

v1(z) =
p∑

i=1

βi
ϕ(z)

ϕ′(z)(z − zi)
,

ϕ(z) =
p∏

i=1

sin
π

p
(z − zi). (19)

Note thatϕ(z) cannot be chosen as the simplest in-
terpolation polynomial of the formψ(z) =

∏p
i=1(z−zi)

sinceψ(z)/(z−zi) 6∈Wπ for every i. Thus the set of all
admissible controls (their Fourier transforms) driving the
point x0 to the pointxπ is given by the formula

ũ(ω, t2) = e−(Â+iωB̂)(t2+π)(v1(ω) +Q
(
ω)v(ω)

)
. (20)

The problem is now how to find the functionv(z)
that minimizes the functional (8). Applying the Fourier
transform to the first equation of (7) with respect to the
variable t1 yields

e−iωπ(π, t2) + (iωI −A1)x̃(ω, t2) = B1ũ(ω, t2).

Suppose now that the eigenvalues of the matrixA1 are
located in the unit disc of the complex plane. In this case
there exists the inverse(iωI − A1)−1 for eachω ∈ R1

which allows writing

x̃(ω, t2) = (iωI −A1)−1
[
B1e

−(Â+iωB̂)(t2+π)

×
(
v1(ω) +Q(ω)v(ω)

)
+ eiωπeA2(t2+π)

− e−iωπe2πA1+A2(t2+π)x0

− e−iωπe(t2+π)A2f
]
. (21)

We consider now the particular case whenn = m =
1, a1b1 6= 0, where we give the complete solution to the
problem. In this case, from the formula above we have

ũ(ω, t2) = e−b(ω)(t2+π)
(
v1(ω) +Q(ω)v(ω)

)
,

x̃(ω, t2) = (iω − a1)−1b1e
−b(ω)(t2+π)

×
(
v1(ω) +Q(ω)v(ω)

)
+ (iω − a1)−1eiωπea2(t2+π)x0,

where

b(ω) =
a1b1 − a1b2

b1
+ iω

b2
b1

.= â+ iωb̂.

The isometric property of the Fourier transform in the
spaceL2[−π, π] implies that the functional (8) can be
rewritten via the functionv(ω) as

J(u) =
∫∫

S

(
|x(t1, t2)|2 + |u(t1, t2)|2

)
dt1 dt2

=

∞∫
−∞

dω

π∫
−π

(
|x̃(ω, t2)|2 + |ũ(ω, t2)|2

)
dt2

=

∞∫
−∞

ϕ2(ω)
∣∣∣∣v(ω) +

ψ(ω)
ϕ2(ω)

∣∣∣∣2 dω

+

∞∫
−∞

(
ν2(ω)−

∣∣∣∣ ψ(ω)
ϕ2(ω)

∣∣∣∣2
)

dω,

where

ϕ2(ω) =
(

b21
|iω − a1|2

+ 1
)(

1− e−4πâ

2

)
|Q(ω)|2,

ψ(ω) =
1− e−4πâ

2
v1(ω)Q(ω)

+
b21(e

−2πb(ω) − 1)2

(iω − a1)2
v0(ω)Q(ω)

+
b1x0e

iωπ(e2πa2 − 1)(e−2πb(ω) − 1)
(iω − a1)2

Q(ω),
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ν2(ω) =
(

b21
|iω − a1|2

+ 1
)(

1− e−4πâ

2

)
|v1(ω)|2

+
x2

0(e
4πa2 − 1)

2|iω − a1|2

+ 2Re
b1(e−2πb(ω) − 1)e−iωπ(e2πa2 − 1)x0

(iω − a1)2
.

Since the second integral above is not dependent on
v(ω), the problem is to minimize the functional

J(u) =

∞∫
−∞

ϕ2(ω)|v(ω)− l(ω)|2 dω (22)

in the classV where l(ω) = −ψ(ω)/ϕ2(ω) is a known
function. Now, introduce the Hilbert space of the func-
tions that are square integrable onR1 with the weight
function ϕ2(ω) and call it L2,ϕ. In this space the inner
product is given by(f, g) =

∫∞
−∞ ϕ2(ω)f(ω)g(ω) d(ω).

Hence the minimization of (22) is reduced to the follow-
ing problem: Find a functionv from the classV that pro-
vides the best approximation to the known functionl(ω)
in the spaceL2,ϕ .

Since the setV is a closed subspace from the space
L2,ϕ, there exists a unique best approximation tol(ω) and
this approximation is the projection of the functionl(ω)
onto V . This projection can be written as a linear combi-
nation v =

∑∞
k=1 ckek of the vectors of some orthonor-

malized basise1, e2, . . . , chosen inV, where the Fourier
coefficientsck are calculated by the formulack = (l, ek),
k = 1, 2, . . . . The basis inV can also be chosen in
a different manner. First, use the Kotelnikov theorem to
choose the required basis, (Hurgin and Yakovlev, 1971).
To highlight this, note that each functionf(z) ∈Wπ can
be expanded into the following power series:

f(z) =
1
π

∞∑
k=−∞

(−1)k sinπz
z − k

,
∞∑

k=−∞

|f(k)|2 <∞.

If v(z) ∈ V andQ(z) is an arbitrary polynomial of the
p-th degree, thenv(z)Q(z) ∈ Wπ (see the definition of
V ). Hence

v(z) =
1
π

∞∑
k=−∞

ak
sinπz

Q(z)(z − k)
, (23)

where ak = (−1)kv(k)Q(k). Since the function (23) is
the entire function if the numbersk = 0, 1, . . . , p− 1 are
roots of the polynomialQ(z), we haveQ(z) = z. Thus
the collection of the functions

gk(z) =
sinπz

Q(z)(z − k)
, k ∈ P = Z\{0, 1, . . . , p− 1}

forms a basis in the spaceV . Let f1, f2, . . . , fn, . . . de-
note the re-numbered orthonormalized vectors of the basis
{gk}, k ∈ P . Now the required vectors{ek} can be de-
termined from the formula

ek = yk(ΓkΓk−1)−1/2, k = 1, 2, . . . , (24)

where

yk =

 (f1, f2) · · · (f1, fk−1)f1
. . . . . . . . . . . . . . . . . . . . . .

(fk, f1) . . . (fk, fk−1)fk

,

Γk =

 (f1, f1) . . . (f1, fk)
. . . . . . . . . . . . . . . . .

(fk, f1) . . . (fk, fk)

, k = 1, 2, . . . (25)

Hence we have proven the following result:

Theorem 1. Let n = m = 1 and a1b1 6= 0. Then the
generalized optimal control for the problem (7), (9)–(10)
is given as

u0(t1, t2) =
1√
2π

∞∫
−∞

Re (es(ω)v0(ω)) dω, (26)

where

v0(ω) = ω
∞∑

k=1

Ckek(ω) + v1(ω),

s(ω) =
a1b2 − a2b1

b1
+ iω

(
t1 −

b2
b1

(t2 + π)
)
, (27)

Ck = (l, ek) = (ΓkΓk−1)−1/2

×

 (f1, f1) . . . (f1, fk−1)(l, l1)
. . . . . . . . . . . . . . . . . . . . . . . . .

(fk, f1) . . . (fk, fk−1)(l, lk)

 , (28)

and v1(ω) is some particular solution of (23) to the inter-
polation problem (15).

Note that the inner product(fi, fj) can be easily cal-
culated from the residual theory as

(fk, fl) =

∞∫
−∞

ϕ2(ω) sin2 πω

Q2(ω)(ω − k)(ω − l)
dω

= π2

p−1∑
j=0

ϕ2(j)
(j!(p−1−j)!)2(j−k)(j−l)

, k 6= l,

(fk, fl) = π2

p−1∑
j=0

ϕ2(j)
(j!(p− 1− j)!)2(j − l)2

+ π2 ϕ2(k)
k2(k − 1)2 · · · (k − p− 1)2

, k = l.
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Based on the inverse Fourier transformv0(t) ∈
L2[−π, π] of a given functionv0(z) ∈Wπ we are able to
determine the generalized optimal control function for the
problem under consideration. The approximate optimal
control from the classC1 ∈ [−π, π] can be established
as an approximation to the given functionv0(t). In par-
ticular, this approximation can be obtained by cutting the
power series (27), where we consider the finite sum

v(s)(ω) = v1(ω) +Q(ω)
s∑

k=1

Ckek(ω).

It should be noted that the inverse Fourier transforms
for the functionsv1(ω), ek(ω), k = 1, . . . , s are contin-
uously differentiable functions. The accuracy of this ap-
proximation can be evaluated from the following inequal-
ities:

‖v(s)(t)− v0(t)‖2L2
=
∥∥∥Q(ω)

∞∑
k=s+1

Ckek(ω)
∥∥∥2

W

≤
∞∫

−∞

|Q(ω)|2
∣∣∣ ∞∑

k=s+1

Ckek(ω)
∣∣∣2 dω

=

∞∫
−∞

ϕ2(ω)
∣∣∣ ∞∑

k=s+1

Ckek(ω)
∣∣∣2 dω ≤

∞∑
k=s+1

|Ck|2.

3. Optimal Control of 1D Systems with
Energy Performance Criteria

In this section, based on the proposed method, we give
a complete solution to the following continuous 1D opti-
mization problem:

π∫
−π

|u(t)|2 dt→ min, ẋ = Ax+ bu,

t ∈ [−π, π], x(−π) = x0, Hx(π) = 0.

(29)

Here x is an n-phase vector,A is an (n × n)-matrix,
b and x0 are givenn-vectors, u(t), t ∈ [−π, π] is a
control function from the spaceL2[−π, π] of measure-
able and square summable functions on[−π, π], H is
a given (m × n)-matrix. We suppose that the system is
controllable and hence the set of admissible controls is
nonempty. The existence of an optimal control for this op-
timization problem can be stated on the analogy of (Vasil-
jev, 1981). In addition to that, we suppose thatA has sin-
gle eigenvalues. WriteG = [Hb,HAb, . . . ,HAn−1b],
R = −[Hx0,HAx0, . . . ,HA

n−1x0]. V is the (n ×
n) Vandermonde matrix, generated by the eigenvalues
λ1, . . . , λn of A; F = GV −1Λ, f = (2π)−1/2RV −1g,
g = (e2λ1π, . . . , e2λnπ)′.

Theorem 2.The Fourier transform of the optimal control
in (29) is given by

u0(z) =
m∑

s=1

βs

n∑
j=1

FsjD(πzj − πz),

where the numbersβs = νs + iγs, (here i2 = −1), s =
1, 2, . . . , are determined as

m∑
s=1

βs

n∑
j=1

n∑
i=1

FljFsjD(πzi − πzj) = fl,

for l = 1, 2, . . . ,m. Here D(z) = sin z/z, D(0) = 1,
Flj , fl, l = 1, 2, . . . ,m, j = 1, 2, . . . , n are elements of
the (m× n)-matrix F and then-vector f , respectively.

Proof. The solution of (29) for a given control function
can be written as follows:

x(t)=eA(t+π)x0+

t∫
−π

eA(t−τ)bu(τ) dτ, t∈ [−π, π]. (30)

The matrix functioneAt can be represented in the form

eAt =
n−1∑
i=0

αi(t)Ai,

where theαi(t)’s are the coefficients of the Lagrange-
Silvester interpolation polynomialr(A) that is deter-
mined by the matrixA. Then from (29) we have that the
admissible control functions satisfy

n−1∑
i=0

HAib

π∫
−π

αi(π − τ)u(τ) dτ

= −
n−1∑
i=0

αi(2π)HAix0. (31)

Set
G = [Hb,HAb, . . . ,HAn−1b]

and
R = −[Hx0,HAx0, . . . ,HA

n−1x0].

Similarly as in the previous section, it can be estab-
lished that the Fourier transform̃u(w) of the admissible
control, which solves the controllability problem (29), can
be extended to the complex plane as the entire function of
the form

ũ(z) = (2π)−1/2

π∫
−π

u(τ)e−izt dt. (32)

Denote byw̃ = (w̃1, . . . , w̃n) the n-vector, whose
coordinatesw̃k = ũ(−iλk), k = 1, . . . , n are the val-
ues of the function (32) at the pointszk = −iλk, k =
1, 2, . . . , n of the complex planeC. Then (31) yields

Fw̃ = f, (33)
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where F = GV −1Λ, f = (2π)1/2RV −1g, g =
(e2λ1π, . . . , e2λnπ)′. The Kotelnikov theorem implies that
eachu(z) ∈Wπ can be represented as

u(z) =
∞∑

k=−∞

ukD(πz − kπ),
∞∑

k=−∞

|uk|2 <∞, (34)

where uk = u(k) .= xk + iyk, D(z) = z−1 sin z,
D(0) = 1. Since
∞∫

−∞

sinπ(w − k)
π(w − k)

sinπ(w − n)
π(w − n)

dw =

{
1, k = n,

0, k 6= n,

k, n = 0,±1, . . . , we get

J(u)=

∞∫
−∞

|u(w)|2 dw=
∞∑

k−∞

|uk|2 =
∞∑

k=−∞

(x2
k + y2

k).

Finally, the following optimization problem appears:
Minimize the functional

J(u) =
∞∑

k−∞

ukūk −→ min
uk

(35)

in the spaceWπ, subject to the constraint

F
∞∑

k−∞

ukD̂k = f, (36)

where D̂k = (D(πz1 − kπ), . . . , D(πzn − kπ))′, and
ūk = xk − iyk denotes the complex conjugate foruk.
Next, set D(πzj − πk) .= ak(zj) + ibk(zj), j =
1, 2, . . . , n, whereak(zj) and bk(zj) are some real num-
bers. Then the problem (35), (36) can be rewritten as

∞∑
k=−∞

(x2
k + y2

k) −→ min, (37)

subject to the constraints

∞∑
k=−∞

n∑
l=1

Fsl

(
xkak(zl)− ykbk(zl)

)
= fs,

∞∑
k=−∞

n∑
l=1

Fsl

(
ykak(zl) + xkbk(zl)

)
= 0,

s = 1, 2, . . . ,m.

(38)

The Lagrange function for the problem (37), (38) is

Φ(u, ν, γ)

=
1
2

∞∑
k=−∞

(x2
k + y2

k)

+
m∑

s=1

νs

[
fs−

∞∑
k=−∞

n∑
l=1

Fsl

(
xkak(zl)− ykbk(zl)

)]

−
m∑

s=1

γs

[ ∞∑
k=−∞

n∑
l=1

Fsl

(
ykak(zl) + xkbk(zl)

)]
,

and the stationarity conditions

xk =
m∑

s=1

n∑
l=1

Fsl

(
νsak(zl) + γsbk(zl)

)
,

yk =
m∑

s=1

n∑
l=1

Fsl

(
γsak(zl)− νsbk(zl)

)
,

k = 0,±1,±2, . . . ,

hold. Substituting this into the first equation from (38),
we have

n∑
l=1

m∑
r=1

n∑
t=1

FslFrt

∞∑
k−∞

[
νr

(
ak(zt)ak(zl) + bk(zt)bk(zl)

)
+γr

(
bk(zt)ak(zl)− ak(zt)bk(zl)

)]
= fs, (39)

s = 1, 2, . . . ,m. Applying (34) to the functionu(z) =
D(πz − πzt) at z = zl yields

D(πzl − πzt) =
∞∑

k=−∞

D(πzt − kπ)D(πzl − kπ).

Since [ak(zt) + ibk(zt)][ak(zl) − ibk(zl)] = D(πzt −
kπ)D(πzl − kπ), from (39) we have

n∑
l=1

m∑
r=1

n∑
t=1

FslFrt

[
νrRe

(
D(πzl − πzt)

)
−γrIm

(
D(πzl − πzt)

) ]
= fs. (40)

On the analogy with the above calculations, the sec-
ond equation of (38) leads to

n∑
l=1

m∑
r=1

n∑
t=1

FslFrt

[
νrIm

(
D(πzl − πzt)

)
+γrRe

(
D(πzl − πzt)

) ]
= 0. (41)

Next, setβr = νr + iγr, r = 1, 2, . . . ,m. Combining
(40) and (41) leads to the required relations. Substituting
the given valuesuk = xk + iyk into (34) gives

u0(z) =
∞∑

k=−∞

(xk + iyk)D(πz − kπ)

=
∞∑

k=−∞

m∑
s=1

n∑
l=1

Fsl

[
νs

(
ak(zl) + γsbk(zl)

)
+ +i

(
γs

(
ak(zl)− νsbk(zl)

)) ]
D(πz − kπ)

=
m∑

s=1

n∑
l=1

Fsl

∞∑
k=−∞

[
νsD(πzl − kπ)D(πz − kπ)

+ iγsD(πzl − kπ)D(πz − kπ)
]
.
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Using the representation (34) foru(z) = D(πz − πzl)
yields the required optimal control

u0(z) =
m∑

s=1

n∑
l=1

Fsl

[
νsD(πz − πzl)+iγsD(πz − πzl)

]

=
m∑

s=1

βs

n∑
l=1

FslD(πz − πzl),

which completes the proof.

It is also possible to prove that the Fourier transform
of the optimal controls can be represented by the series
expansion for the basislk = Q−1(z)(z − k)−1 sinπz,
k = 0, 1, . . . , whereQ(z) is some polynomial of a fi-
nite degree. Therefore the approximate solution can be
obtained by the cutting of this power series in much the
same way as in the previous section.

4. Example

To illustrate the proposed method we consider the simple
optimal control problem

ẋ = u, t ∈ [−π, π], x(−π) = x0,

x(π) = 0, J(u) =

π∫
−π

u2(t) dt→ min.

Here A = 0, b = 1 and H = 1. The notation required
for this case is as follows:

R=−Hx0 =x0, G=Hb=1, V =1, Λ=e0 =1,

F = 1, g = 1, f = −x0/
√

2π.

From Theorem 2 we getβD(0) = −x0/
√

2π. Since
D(0) = 1, we haveβ = −x0/

√
2π and

u0(z) = −x0D(−πz)/
√

2π = −x0

(
sinπz
πz

)
/
√

2π.

The optimal control function is the Fourier image of the
function u0(z):

u0(t) =
1√
2π

∞∫
−∞

u0(ω)eiωt dω=−x0

2π

∞∫
−∞

sinπω
πω

eiωt dω

=− x0

2π2

∞∫
−∞

eiπω − e−iπω

2iω
eiωt dω

=− x0

4π2i

[ ∞∫
−∞

eiω(π+t)

ω
dω −

∞∫
−∞

eiω(t−π)

ω
dω
]
.

Applying residual theory to the improper integrals yields

∞∫
−∞

eiω(π+t)

ω
dω =

{
iπ, π + t > 0,

−iπ, π + t < 0,

∞∫
−∞

eiω(t−π)

ω
dω =

{
iπ, t− π > 0,

−iπ, t− π < 0.

Finally,

u0(t) =

{
−x0/2π, −π ≤ t ≤ π,

0, |t| > π.

On the other hand, the Hamilton-Pontryagin function for
the analysed optimal control problem isH(x, u, ψ, λ) =
−λu2 + ψu, where the adjoint variableψ is defined by
the following adjoint differential equation:

dψ
dt

= −∂H
∂x

= 0, −π ≤ t ≤ π.

From the Pontryagin maximum principle (Gabasov
and Kirillova, 1988) it follows that the condition|λ| +
|ψ(t)| 6= 0, ∀ t ∈ [−π, π] is fulfilled. If we suppose that
λ = 0, then the maximum of the functionH(x, u, ψ, λ)
on u ∈ R is achieved only ifψ = 0, which contradicts
the above condition. Hence we can setλ = 1, and then
the functionH(x, u, ψ, λ) reaches an extremum onu ∈
R for u = ψ/2. Thus we have the following differential
problem associated with the maximum principle:

dx
dt

=
ψ

2
,

dψ
dt

= 0, t ∈ [−π, π],

x(−π) = x0, x(π) = 0.

It is easy to see that the solution to this system is
given by the formulae

ψ(t) = −x0

π
, x(t) = −x0

2π
t− x0

2
,

and hence the optimal control is

u0(t) =
ψ

2
= −x0

2π
, −π ≤ t ≤ π,

which coincides with the result obtained above.

5. Conclusion

The theory of complex-valued functions is commonly em-
ployed in the solution of various engineering and scientific
problems. This paper presented a systematic application
of entire function theory to optimization topics. This tech-
nique was used for investigating optimal control for linear
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2D continuous-discrete systems with mixed constraints
(Dymkov, 2001). Attention was restricted to the case of
linear dynamics since this is the area where considerable
progress can be being done. Work to extend this approach
to other models is already made. Results of that will be
reported in due course.
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