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A modification of Dempster’s and Pawlak’s constructs forms a new foundation for the identification of upper and lower sets
formulas. Also, in this modified Dempster-Pawlak construct we require that subsets of the power set be restricted to the well-
known information granules of the power set. An aggregation of upper information granules amongst each other and lower
information granules amongst each other determine upper and lower set formulas for both crisp and fuzzy sets. The results
are equivalent to the Truth Table derivation of FDCF and FCCF, Fuzzy Disjunctive Canonical Forms and Fuzzy Conjunctive
Canonical Forms, respectively. Furthermore, they collapse toDNF ≡ CNF, i.e., the equivalence of Disjunctive Normal
Forms and Conjunctive Normal Forms, in the combination of concepts once the LEM, LC and absorption, idempotency and
distributivity axioms are admitted into the framework. Finally, a proof of the containment is obtained between FDCF and
FCCF for the particular class of strict and nilpotent Archimediant-norms andt-conorms.
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1. Introduction

We first reinterpret and modify the Dempster-Pawlak for-
malism with information granules to identify upper and
lower sets that determine upper and lower set formulas for
both crisp and fuzzy sets. The aim is to provide an answer
to a question that most skeptics of fuzzy theory have been
asking for a long time.

One of the questions that non-fuzzy researchers usu-
ally ask is: “Why are the two-valued formulas applied in
fuzzy theory without any modification in the combination
of concepts when propositions and their denotations are
fuzzy?”. That is, they suspect that there ought to be a re-
assessment of the formulas in combination of fuzzy sets
with “AND”, “OR”, “IMP”, etc.

In other words, they wonder why there are no new
formulas since the axiomatic foundation of fuzzy set the-
ory relaxes the Law of Excluded Middle, LEM,A ∪
c(A) = I, to be A ∪ c(A) ⊆ I and its dual Law of
Contradiction, LC,A ∩ c(A) = ∅, to be A ∩ c(A) ⊇ ∅,
where c(A) is the complement ofA. Furthemore, it is
known that the axioms of absorption, idempotency and
distributivity are no longer applicable for the general class
of t-norms andt-conorms. Thus, they question the use of
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the two-valued formulas and ask that they be re-examined
since LEM, LC and axioms such as distributivity, idem-
potency and absorption are no longer applicable to the
general class of connectives known ast-norms andt-
conorms.

A related question is: “What happens to the equiva-
lence between Disjunctive and Conjunctive normal forms,
i.e., is DNF ≡ CNF, if the formulas of the two-valued
theory are fuzzified by a direct substitution of fuzzy val-
ues in these formulas?”.

In the classical, two-valued set theory, we always
compute the formula for “A AND B” = A∩B, which is
DNF (A AND B), and for “A OR B” = A ∪ B, which
is CNF (A OR B). They are the usual formulas used in
applications. There are, however, other formulas, such as

“A AND B” = (A ∪B) ∩
(
c(A) ∪B

)
∩

(
A ∪ c(B)

)
,

which is CNF (A AND B), and

“A OR B” = (A ∩B) ∪
(
c(A) ∩B

)
∪

(
A ∩ c(B)

)
,

which is DNF (A OR B).
The shorter forms are used because it is known and

easy to show that

A ∩B ≡ (A ∪B) ∩
(
c(A) ∪B

)
∩

(
A ∪ c(B)

)
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and

A ∪B ≡ (A ∩B) ∪
(
c(A) ∩B

)
∪

(
A ∩ c(B)

)
.

These equivalences are essentially due to the fact that
the classical, two-valued, set theory axioms contain LEM,
its dual LC, and idempotency, distributivity and absorp-
tion.

For example, in the demonstration of

A ∩B
?≡ (A ∪B) ∩

(
c(A) ∪B

)
∩

(
A ∪ c(B)

)
,

we first apply idempotency and get(A∪B)∩ (A∪B)∩
(c(A) ∪B) ∩ (A ∪ c(B)). Next, we apply commutativity
and distributivity, to obtain(A∩ c(A))∪B from the first
and third terms and get(B ∩ c(B)) ∪A from the second
and fourth terms.

As a result, we obtain[(
A ∩ c(A)

)
∪B

]
∩

[(
B ∩ c(B)

)
∪A

]
.

Next, with the application of LC,A∩ c(A) = ∅ and
B∩ c(B) = ∅, we getB∩A. Then, using commutativity,
we finally getA ∩B ≡ A ∩B.

Because of this equivalence, the shorter form
amongst the DNF and CNF is used in computations and
applications. Clearly, since axioms of distributivity, idem-
potency, absorption and LEM and/or LC are no longer ap-
plicable in fuzzy theory, we suspect that, in general,

A ∩B 6= (A ∪B) ∩
(
c(A) ∪B

)
∩ (A ∪ c(B)

)
.

In fact, it was shown (Türkşen, 1986) that

DNF (A AND B) ⊆ CNF (A AND B),

where

DNF (A AND B) =A∩B,

CNF (A AND B) = (A∪B)∩
(
c(A)∪B

)
∩

(
A∪c(B)

)
for somet-norms andt-conorms.

Also, this is shown to be true for certain well-known
t-norms andt-conorms of fuzzy theory (Türkşen, 1999;
2001).

It should be recalled that all of the 16 combinations
of any two crisp sets have DNF and CNF, Disjunctive Nor-
mal Form and Conjunctive Normal Form, respectively, as
shown in Table 1.

Furthermore, it is well known that we have

DNF (·) ≡ CNF (·)

for all the 16 possible combinations shown in Table 2 for
the two-valued set and logic theory, whose axioms are
shown in Table 3.

Table 1. Classical Disjunctive Normal and Fuzzy Disjunctive
Canonical Forms, DNF and FDCNF, and Classical
Conjunctive Normal and Fuzzy Conjunctive Canonical
Forms, CNF and FCCF, where∩ is a conjunction,∪
is a disjunction andc is a complementation operator.

No. Fuzzy Disjunctive Canonical Forms/Disjunctive

Normal Forms

1 (A∩B)∪
(
A∩c(B)

)
∪

(
c(A)∩B

)
∪

(
c(A)∩c(B)

)
2 φ

3 (A ∩B) ∪
(
A ∩ c(B)

)
∪

(
c(A) ∩B

)
4

(
c(A) ∩ c(B)

)
5

(
A∩ c(B)

)
∪

(
c(A)∩B

)
∪

(
c(A)∩ c(B)

)
6 (A ∩B)

7 (A ∩B) ∪
(
c(A) ∩B

)
∪

(
c(A) ∩ c(B)

)
8

(
A ∩ c(B)

)
9 (A ∩B) ∪

(
A ∩ c(B)

)
∪

(
c(A) ∩ c(B)

)
10

(
c(A) ∩B

)
11 (A∩B)∪

(
c(A)∩ c(B)

)
12

(
A ∩ c(B)

)
∪

(
c(A) ∩B

)
13 (A ∩B) ∪

(
A ∩ c(B)

)
14

(
c(A) ∩B

)
∪

(
c(A) ∩ c(B)

)
15 (A ∩B) ∪

(
c(A) ∩B

)
16

(
A ∩ c(B)

)
∪

(
c(A) ∩ c(B)

)
No. Fuzzy Conjunctive Canonical Forms/Conjunctive

Normal Forms

1 I

2 (A∪B)∩
(
A∪c(B)

)
∩

(
c(A)∪B

)
∩

(
c(A)∪c(B)

)
3 (A ∪B)

4
(
A∪ c(B)

)
∩

(
c(A)∪B

)
∩

(
c(A)∪ c(B)

)
5

(
c(A)∪ c(B)

)
6 (A ∪B) ∩

(
A ∪ c(B)

)
∩

(
c(A) ∪B

)
7

(
c(A) ∪B

)
8 (A ∪B) ∩

(
A ∪ c(B)

)
∩

(
c(A) ∪ c(B)

)
9 (A ∪ c(B)

)
10 (A∪B)∩

(
c(A)∪B

)
∩

(
c(A)∪ c(B)

)
11

(
A ∪ c(B)

)
∩

(
c(A) ∪B

)
12 (A ∪B) ∩

(
c(A) ∪ c(B)

)
13 (A ∪B) ∩

(
A ∪ c(B)

)
14

(
c(A)∪B

)
∩

(
c(A)∪ c(B)

)
15 (A ∪B) ∩

(
c(A) ∪B

)
16

(
A∪ c(B)

)
∩

(
c(A)∪ c(B)

)

There are Truth Table derivations of DNF and CNF
expressions for all the 16 combinations of concepts with
the application of the Normal Form (Canonical Form)
Derivation Algorithm (see Appendix A). An example of
the Truth Table for “A AND B” is shown in Table 4.
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Table 2. Meta-Linguistic Expressions of Combined Concepts
for any A and B which may be crisp or fuzzy.

Number Meta-linguistic expressions

1 UNIVERSE
2 EMPTY SET
3 A OR B

4 NOT A AND NOT B

5 NOT A OR NOT B

6 A AND B

7 A IMPLIES B

8 A AND NOT B

9 A OR NOT B

10 NOT A AND B

11 A IF AND ONLY IF B

12 A EXCLUSIVE OR B

13 A

14 NOT A

15 B

16 NOT B

Table 3. Axioms of classical set and logic operations.

Involution c
(
c(A)

)
= A

Commutativity A ∪B = B ∪A

A ∩B = B ∩A

Associativity (A ∪B) ∪ C = A ∪ (B ∪ C)

(A ∩B) ∩ C = A ∩ (B ∩ C)

Distributivity A∪(B∩C) = (A∪B)∩(A∪C)

A∩(B∪C) = (A∩B)∪(A∩C)

Idempotence A ∪A = A

A ∩A = A

Absorption A ∪ (A ∩B) = A

A ∩ (A ∪B) = A

Absorption byX andl A ∪X = X

A ∩ φ = φ

Identity A ∪ φ = A

A ∩X = A

Law of contradiction A ∩ c(A) = φ

Law of excluded middleA ∪ c(A) = X

De Morgan’s laws c(A ∩B) = c(A) ∪ c(B)

c(A ∪B) = c(A) ∩ c(B)

Table 4. Classical truth table interpretations of “A AND B”.

Truth assignments toTruth assignments to Primary
classical meta- the meta-linguistic conjunctions

linguistic variables expression
A B “A AND B”

T (A) T (B) T (A AND B) A ∩B

T (A) F (B) F (A AND B) A ∩ c(B)

F (A) T (B) F (A AND B) c(A) ∩B

F (A) F (B) F (A AND B) c(A) ∩ c(B)

The early investigations (Türkşen, 1986) showed that the
substitution of fuzzy values in the interval[0, 1] into the
classical DNF and CNF formulas, instead of crisp values
of the lattice {0, 1}, leads to the result thatDNF (·) ⊆
CNF (·) for some well-known class oft-norms andt-
conorms.

However, there remained the crucial question:
“Could we derive Fuzzy Disjunctive Canonical Forms,
FDCF, and Fuzzy Conjunctive Canonical Forms, FCCF,
directly from Fuzzy Truth Tables in a manner analogous
to the classical Truth Table derivation of DNF and CNF?”,
using the Normal Form (Canonical Form) Derivation Al-
gorithm (see Appendix A).

This concern was investigated in several papers
(Türkşen, 1999; 2001) with a positive constructive result.
It was shown that DNF is equivalent in form only to FDCF
and CNF is equivalent in form only to FCCF, as shown
in Table 1, for all the 16 possible combination concepts
shown in Table 2.

In this paper, in order to support and generalize these
earlier results, we first show that there is a connection
with both Dempster’s upper and lower bounds on sets
(Dempster, 1967) and Pawlak’s upper and lower approx-
imations on sets (Pawlak, 1991). Secondly, we modify
the Dempster-Pawlak construction schema and restrict the
subsets of the power set to a particular subset of informa-
tion granules in the power set.

Thirdly, the formation of FDCF and FCCF from the
lower and upper set approximations, respectively, of the
Dempster-Pawlak constructs should establish the natu-
ral containment of FDCF in FCCF due to the construc-
tion schema. However, the question of whether FDCF
is always contained in FCCF is resolved with a proof
based on generator functions (see Appendix B). That is,
FDCF (·) ⊆ FCCF (·) holds by the construction of these
upper and lower sets for all of the 16 combination of con-
cepts and for all connectives, i.e.,t-norms andt-conorms.

Recall that in previous papers, this inclusion re-
lationship was shown to hold only for the well-known
t-norms and t-conorms, such as(Max,Min,−), i.e.,
(∨,∧,−) (algebraic sum, product,−), i.e., (⊕,�,−),
and Łukasiewicz operators or bold operators, i.e.,
(B⊕, B�,−), where “−” stands for standard complemen-
tation.

But at the time it was not possible to show the con-
tainment in general for allt-norms andt-conorms. In this
sense, this paper generalizes the previous results, as well
as establishes a connection with Dempster’s and Pawlak’s
constructs.
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2. Dempster’s and Pawlak’s Formulations

In order to handle the uncertainty associated with impre-
cise sources of information in the identification of sets,
Dempster and Pawlak propose alternative schemas with
perspectives and contents fitting their own agenda. With
a multi-valued mapping, Dempster (1967) proposes the
construction of upper and lower probabilities. In order
to formulate upper and lower probabilities, he first pro-
poses a multi-valued mapping from a space to another. On
the other hand, Pawlak (1991) approaches the same con-
cern from the perspective of rough sets. We shall briefly
summarize Dempster’s and Pawlak’s proposals, and then
show a correspondence between these two construction
schemas.

2.1. Dempster’s Construction

Let X and S be two spaces, and consider a multi-valued
mappingΓ, Γ: X → (S), whereP (S) is the power set
of S, i.e., P (S) = 2|S|. Furthermore, letT be a target
set, T ⊆ S, i.e., T ∈ P (S). Then the upper and lower
sets of this multi-valued mapping,Γ, are defined for any
target setT as follows:

T ∗ =
{
x | x ∈ X, Γ(x) ∩ T 6= ∅

}
, (1)

and

T∗ =
{
x | x ∈ X, Γ(x) ⊆ T, Γ(x) 6= ∅

}
, (2)

respectively, where, for a target setT , we are interested
in determining the upper and lower sets,T ∗ and T∗, re-
spectively, under the multi-valued mappingΓ (Dempster,
1967).

Clearly, we haveT∗ ⊆ T ∗ from the construction.
Dempster’s construction is motivated by concern for the
transformation of probabilities from the spaceX with
a probability measure to the spaceS via a multi-valued
mapping in order to define upper and lower probability
estimates for an unsharp information source. However,
prior to these probabilities, Dempster’s upper and lower
sets T ∗ and T∗ identify upper and lower sets, respec-
tively, for the target setT constructed with the subsets of
P (S) identified byΓ(x).

For further clarity of the expressions (1) and (2), we
provide a graphical representation of the expressions (1)
and (2) in Figs. 1 and 2.

2.2. Pawlak’s Construction

Let X be a given universal set andR an equivalence
relation onX. The relationR induces a partition onX.
Let [x]R be the equivalence class containingx ∈ X. It is
to be noted that each[x]R is simply a subset ofX. That
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T ⊆ S, T ∈ P (S) = 2|S|

T∗ = {x ∈ X, Γx ⊆ T, Γ(x) 6= ∅}

Fig. 1. Lower set representation of Dempster’s formalism.
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T ⊆ S, T ∈ P (S) = 2|S|

T ∗ = {x ∈ X, Γx ∩ T 6= ∅}

Fig. 2. Upper set representation of Dempster’s formalism.

is, if x is a typical element ofX, then “the equivalence
class of x” is [x] = {t: tRx}. Given a setX and an
equivalence relationR, we define a new setX/R, the set
of equivalence classes ofX modulo R.

Thus, the set of all[x]R will form a partition of X,
denoted byX/R. Next, let A ⊆ X. Then upper and
lower estimates ofA, based onX/R, are defined as fol-
lows:

A∗
R = ∪

{
[x]R | [x]R ∩A 6= ∅

}
,

and

A∗R = ∪
{
[x]R | [x]R ⊆ A

}
.

Clearly, we haveA∗R ⊆ A∗
R. Pawlak’s rough set

constructsA∗R andA∗
R identify an approximate cover of

A with the information granules ofX/R (Pawlak, 1991).
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2.3. Restatement of Dempster’s and Pawlak’s
Constructs

Both Dempster’s and Pawlak’s constructions rely on a set
inclusion for the lower estimate and a non-empty intersec-
tion for the upper estimate.

In fact, the two approaches are analogous and each
can be expressed in the language of the syntax and se-
mantics of the other.

2.3.1. Pawlak to Dempster Transformation

Consider Pawlak’s construct with the universe of dis-
course U , and the equivalence relationR on U . In
Dempster’s notation, letX be U/R and S be U . Let
Γ of Demspter be the multi-valued mapping that causes
the transformation of the equivalence classes to the cor-
responding set; i.e.,Γ maps each equivalence class or
member of the partition to all the elements that are in it.
Thus we haveΓ: U/R → P (U) and Γ([u]R) = {t |
tRu, t ∈ U} ∈ P (U).

Let A ⊆ U . Then A∗R = ∪{[x]R | [x]R ⊆
A} in Pawlak’s notation, andA∗ = {[x]R | [x]R ∈
U/R, Γ([x]R) ⊆ A} in Dempster’s notation. Note that
Γ([x])R) is just the set[x]R. Thus A∗R and A∗ are
composed of the same information granules fromU/R,
and capture the same information. A similar argument
can be written for the correspondence between the upper
estimates.

A minor structural difference between these two ap-
proaches is that the union of these equivalence classes is
taken in Pawlak’s approach, whereas a set of these classes
is collected in Dempster’s approach. Note that in Demp-
ster’s approach, probability measures are computed and
addedover the upper and lower sets in order to arrive at
the upper and lower probabilities.

2.3.2. Dempster to Pawlak Transformation

Now let us recall the two spacesX and S and the multi-
valued mappingΓ: X → P (S) in Dempster’s approach.
Let a relationR on X be defined asxRy if and only if
Γ(x) = Γ(y). That is, two elementsx, y ∈ X are consid-
ered equivalent if they map to exactly the same set of val-
ues in S. Naturally, this is an equivalence relation onX
and it induces the partitionX/R. Let T ⊆ S. In Demp-
ster’s approach, we haveT∗ = {x | x ∈ X, Γ(x) ⊆
T, Γ(x) 6= ∅}. Note that if x ∈ T∗ and yRx, then
y ∈ T∗, becauseΓ(x) = Γ(y). ThereforeT∗ can be writ-
ten as the union of partiton members or classes inX/R,
and thus expressed in Pawlak’s notation. Naturally, one
can state a similar argument for the correspondence of the
upper estimates.

Since it is shown that there is a natural correspon-
dence between Pawlak’s and Dempster’s notations, we
shall refer to them as the Dempster-Pawlak notation, or
as the D-P schema, in deriving the upper and lower set
formulas in the combination of concepts depending on
whether they are represented by crisp or fuzzy sets.

3. Sets and Logic Constructs

Let a propositionP be expressed by a predicateA which
could be either a crisp or a fuzzy set depending on howA
is obtained or defined. In previous works (Türkşen, 1999;
2001), such propositions and their predicates were labeled
as “descriptive” propositions and words, respectively.

Suppose that valuesx are taken from a universe of
discourseX. For a given valuex ∈ X with the mem-
bership valueµA(x) let T be true in the Type 1 fuzzy
theory. In this way, the truth of a descriptive proposition
P is equated to the setA being true with the membership
degree ofµA(x).

Next, let two linguistic concepts,P1 and P2, i.e.,
propositions, or their expressions be represented by two
setsA and B, respectively. These two propositions and
hence their set representations can be combined in 16 pos-
sible meta-linguistic expressions. These 16 expressions
are shown in Table 5 together with their usual target set
expressions written in a set notation (crisp or fuzzy).

Table 5. 16 meta-linguistic expressions together with their
“usual target set expressions” (crisp or fuzzy).

Number Meta-linguistic Usual target set

expressions expression

1 Universe I

2 Empty set ∅
3 A OR B A ∪B

4 NOT A AND NOT B c(A) ∩ c(B)

5 NOT A OR NOT B c(A) ∪ c(B)

6 A AND B A ∩B

7 A IMPLIES B c(A) ∪B

8 A AND NOT B A ∩ c(B)

9 A OR NOT B A ∪ c(B)

10 NOT A AND B c(A) ∩B

11 A IF AND ONLY IF B (A ∩B)∪
(
c(A) ∩ c(B)

)
12 A EXCLUSIVE ORB (A ∪B)∩

(
c(A) ∪ c(B)

)
13 A A

14 NOT A c(A)

15 B B

16 NOT B c(B)
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3.1. Restriction and Modification

We propose a restriction and a modification of the D-P
formalism:

1. Restrict the subset of the power set to the family of
information granulesGn, where

Gn =
{
A1 ∩A2 ∩ · · · ∩An, . . . , c(A1)

∪ c(A2) ∪ · · · ∪ c(An)
}

for all possible combinations of subsetsAi, i =
1, . . . , n in a universe of discourse by∪, ∩,
and c(·).

2. Modify the condition for the upper set identification
from a “non-empty set intersection” to “set inclu-
sion” (this is shown in Fig. 3).

ONE-TO-MANY VALUED MAPPING 
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T ⊆ S, T ∈ G ⊆ P (S) = 2|S|

T ∗ = {x ∈ X, T ⊆ Γx}

Fig. 3. Modification of Dempster’s formalism.

It is to be noted that:

1. The restriction of the subsets of the power set to the
family G is formed by the primitive information
granules that are all directly identified by the set op-
erators on subsets in a universe of discourse and their
combinationscover the set of all meta-linguistic ex-
pressions for both crisp and fuzzy cases.

2. The modification, however, strengthens the upper set
condition to “set inclusion” from “non-empty set in-
tersection”, which provides a conceptual and intu-
itive appeal.

In other words, letE be the target set of a meta-
linguistic expression. ThenG coversE from below, be-
cause there exists at least oneG ∈ G, such thatG ⊆ E.
BecauseE must contain as many information granules as

there are contained in it, i.e.,G ⊆ E, it makes a seman-
tic sense thatE contains as many information granules
that are true as thedisjunctionof all such Gs. Thus the
disjunction of those information granules forms a lower
set formula forE. This is in agreement with Dempster’s
formalism but requires a disjunctive aggregation of the in-
formation granules so obtained in Pawlak’s formalism.

G also coversE from above, because there is at
least oneG ∈ G such thatE ⊆ G. Furthermore, be-
cause any suchG containsE, it makes a semantic sense
that we take theconjunctionof all such Gs that contain
E. Thus, the conjunction of these information granules
forms an upper set formula for E. It is to be noted that
this is a further modification to the D-P formalism. That
is, we take the conjunctive aggregation of the informa-
tion granules so obtained after the proposed change from
“non-empty set intersection” to “set inclusion”.

In summary, the disjunction of the proposed collec-
tion of information granulesG ⊆ E will give us a lower
set formula forE, and the conjunction of the proposed
collection of information granulesG, E ⊆ G will give us
an upper set formula forE with the modified D-P formal-
ism of E. It should be noted that both the upper and lower
set formulas are defined so far with inclusion, i.e., “⊆”.
This creates anomalies in the construction schema for the
identification of granulesG ∈ G. This issue will be re-
solved in the next section, where it depends on particular
classes of five meta-linguistic expressions, dependent on
the linguistic operator “AND”, and five meta-linguistic ex-
pressions dependent on the linguistic operator “OR”, and
the remaining six special cases that include bi-conditional,
exclusive-or and confirmation and negation of two single-
tons.

4. Upper and Lower Canonical Forms

Let us now consider again two linguistic conceptsA and
B, i.e., the two predicates (words)A and B and the
16 meta-linguistic expressions that can be generated for
them. We start with the usual target set expressions shown
in Table 5 as the target sets in the sense of Dempster and
Pawlak and the sets whose upper and lower set formulas
are to be determined by the proposed modification of the
Dempster-Pawlak formalism.

Our aim is to demonstrate how we could generate
FDCF and FCCF expressions directly with the use of in-
formation granules and with the proposed modification of
the Dempster-Pawlak approach stated above without re-
sorting to the Truth Table derivation that was discussed in
our previous papers (Türkşen, 1999; 2001).

Let E be any of these 16 expressions, andG2 be the
family of information granules that are the eight possible
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combinations of two predicatesA and B under conjunc-
tion, disjunction and complementation operations:

G2 = {G1, G2, . . . , G8},

whereG1 = A ∩B, . . . , G8 = c(A) ∪ c(B), such that

G2 =
{
A ∩B, c(A) ∩B,A ∩ c(B), c(A) ∩ c(B),

A ∪B, c(A) ∪B,A ∪ c(B), c(A) ∪ c(B)
}
.

It should be noted that the first four of these infor-
mation granules,G1, . . . , G4, i.e., A ∩ B, c(A) ∩ B,
A∩c(B) and c(A)∩c(B), form a disjoint partition of the
universe, whereas the last four of these information gran-
ules, (G5, . . . , G8), i.e., A∪B, c(A)∪B, A∪c(B) and
c(A) ∪ c(B), have overlaps.

As a result of our discussions and the proposed mod-
ifications stated in Section 3 for each target setE, we
define the upper and lower subset formulas to be one of
the information granules as follows:

`(E) =
{
G | G ∈ G, G ⊆ E

}
,

u(E) =
{
G | G ∈ G, E ⊆ G

}
.

(3)

It is to be observed that each element of`(E) comes
from the subsets of the conjunctive information granules,
i.e., A∩B, c(A)∩B, A∩c(B) and c(A)∩c(B), whereas
each element ofu(E) comes from the disjunctive infor-
mation granules, i.e.,A ∪ B, c(A) ∪ B, A ∪ c(B) and
c(A) ∪ c(B).

With these lower and upper subsets, we determine
the lower and upper set formulas of the target setE in
the proposed modification of the Dempster-Pawlak for-
malism as

L(E) = ∪`(E), U(E) = ∩u(E). (4)

It is to be noted that the disjunction of`(E)s is taken
to form the lower setL(E) since they are all contained
in the target set and they are disjoint among themselves.
Thus L(E) forms the greatest lower bound.

But the conjunction ofu(E)s is taken to form the up-
per set,U(E), since they all contain the target set and are
not disjointed. ThusU(E) forms the least upper bound.

At a first glance, it appears thatL(E) ⊆ E ⊆ U(E)
by the construction schema. However, the inclusion re-
lation L(E) ⊆ U(E) requires an investigation in thet-
norm and conorm space. It can be shown thatL(E) ⊆
U(E) for strict and nilpotent Archimedeant-norms and
t-conorms, as well as(Max,Min) (Bilgic, 1995) (Ap-
pendix B).

Since L(E) turns out to be equal to FDCF and
U(E) turns out to be equal to FCCF, by the construc-
tion, we have determined thatFDCF ⊆ FCCF not only
for the well-known specifict-norms andt-conorms, but
for all cases oft-norms andt-conorms that are strict and
nilpotent Archimedians.

Now let us return to the task at hand. That is, we
are to drive the upper and lower set formulas that repre-
sent each of the 16 meta-linguistic expressions. In each
case, the selections of information granules are taken from
G. It should be noted that the selection of each informa-
tion granule that makes up the sets`(E)s and u(E)s is
made with definitions given by (3) and( 4), i.e.,`(E) is
the set of information granules that are contained inE
and u(E) is the set ofEs that are contained by infor-
mation granulesG ∈ G, where E is the usual target
set in common use. Furthermore, we determine the lower
set formula by the disjunctive aggregation of`(E)s, i.e.,
L(E) = ∪L(E) and the upper set formula by the con-
junctive aggregation ofu(E)s, i.e., U(E) = ∩u(E) as
indicated by (3) and (4).

However, there is yet another issue to be clarified, as
has been pointed out earlier. That is, in eqns. (3) we ob-
serve thatG ⊆ E for `(E) and E ⊆ G for u(E) and
every G ∈ G. Thus there are possibleGs that may be-
long to bothl(E) and u(E). That is, we need to identify
which G’s are taken for the equality and which are taken
for inclusion with respect to linguistic operators, “AND”
and “OR” and other special cases. This will be sorted out
and clarified in Sections 4.1 and 4.2 below because they
depend on whether a meta-linguistic concept is formed by
“AND” or “OR” or other schemas. Thus we next develop
the formulas for the cases of “AND” and “OR”, and other
schemas, and then we tabulate the results of all the 16 ex-
pressions in Table 6.

4.1. Five Meta-Linguistic Expressions That Have
“AND” Composition

The usual, commonly used target setE is “A∩B” for “ A
AND B” (see Table 5, row 6). With the discussion and
the proposed modification of the D-P formalism stated in
Sections 3 and 4 above, we identify the set of information
granules that are contained inE as `(E) = {A∩B}, and
thus the lower set formula isL(E) = {A ∩B} = `(E).

The set of information granules that containE is
u(E) = {A∪B, c(A)∪B,A∪ c(B)} and thus the upper
set formula isU(E) = ∩u(E) = (A∪B)∩ (c(A)∪B)∩
(A ∪ c(B)).

It is to be observed that̀(E) = {A ∩ B}, which
is the target set itself, and thusL(E) = `(E), i.e.,
L(E) = {G | G ∈ G, G = E}. We generalize this for
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Table 6. Lower and upper set expression.

ID number Usual target Lower set expression

of meta- set expression L(E) = FDCF

linguistic E Fuzzy Disjunctive Canonical Form

expression

1 I (A ∩B) ∪
(
c(A) ∩B

)
∪

(
A ∩ c(B)

)
∪

(
c(A) ∩ c(B)

)
2 ∅ ∅
3 A ∪B (A ∩B) ∪

(
c(A) ∩B

)
∪

(
A ∩ c(B)

)
4 c(A) ∩ c(B) c(A) ∩ c(B)

5 c(A) ∪ c(B)
(
c(A) ∩B

)
∪

(
A ∩ c(B)

)
∪

(
c(A) ∩ c(B)

)
6 A ∩B A ∩B

7 c(A) ∪B (A ∩B) ∪
(
c(A) ∩B

)
∪

(
c(A) ∩ c(B)

)
8 A ∩ c(B) A ∩ c(B)

9 A ∪ c(B) (A ∩B) ∪
(
c(A) ∩B

)
∪

(
c(A) ∩ c(B)

)
10 c(A) ∩B c(A) ∩B

11 (A ∩B) ∪
(
c(A) ∩ c(B)

)
(A ∩B) ∪

(
c(A) ∩ c(B)

)
12 (A ∪B) ∩

(
c(A) ∪ c(B)

) (
c(A) ∩B

)
∪

(
A ∩ c(B)

)
13 A (A ∩B) ∪

(
A ∩ c(B)

)
14 c(A)

(
c(A) ∩B

)
∪

(
c(A) ∩ c(B)

)
15 B (A ∩B) ∪

(
c(A) ∩B

)
16 c(B)

(
A ∩ c(B)

)
∪

(
c(A) ∩ c(B)

)
ID number Usual target Lower set expression

of meta- set expression U(E) = FCCF

linguistic E Fuzzy Conjuctive Canonical Form

expression

1 I I

2 ∅ (A ∪B) ∩
(
c(A) ∪B

)
∩

(
A ∪ c(B)

)
∩

(
c(A) ∪ c(B)

)
3 A ∪B A ∪B

4 c(A) ∩ c(B)
(
c(A) ∪B

)
∩

(
A ∪ c(B)

)
∩

(
c(A) ∪ c(B)

)
5 c(A) ∪ c(B) c(A) ∪ c(B)

6 A ∩B (A ∪B) ∩
(
c(A) ∪B

)
∩

(
A ∪ c(B)

)
7 c(A) ∪B c(A) ∪B

8 A ∩ c(B) (A ∪B) ∩
(
A ∪ c(B)

)
∩

(
c(A) ∪ c(B)

)
9 A ∪ c(B) A ∪ c(B)

10 c(A) ∩B (A ∪B) ∩
(
c(A) ∪B

)
∩ (c(A) ∪ c(B)

)
11 (A ∩B) ∪

(
c(A) ∩ c(B)

) (
c(A) ∪B

)
∩

(
A ∪ c(B)

)
12 (A ∪B) ∩

(
c(A) ∪ c(B)

)
(A ∪B) ∩

(
c(A) ∪ c(B)

)
13 A (A ∪B) ∩

(
A ∪ c(B)

)
14 c(A)

(
c(A) ∪B

)
∩

(
c(A) ∪ c(B)

)
15 B (A ∪B) ∩

(
c(A) ∪B

)
16 c(B)

(
A ∪ c(B)

)
∩

(
c(A) ∪ c(B)

)
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all the five out of 16 combination of concepts that admit
the linguistic “AND” connective in their meta-linguistic
combination, i.e., the meta-linguistic expressions 2, 4, 6,
8 and 10 in Table 5. Therefore, the rule is`(E) = {G |
G = E} for the targets sets∅, c(A) ∩ c(B), A ∩ B,
A ∩ c(B) and c(A) ∩ B, where the usual target set itself
forms the greatest lower bound.

This, in turn, entailes the rule foru(E) to be
U(E) = ∩{G | G ∈ G, E ⊂ G} for these five out
of 16 combinations of concepts that admit the linguistic
“AND” connective in their meta-linguistic concept com-
bination, i.e., meta-linguistic expressions 2, 4, 6, 8 and 10
in Table 5. This clarification resolves the anomaly gen-
erated by eqns. (3) and (4) for the cases of the linguistic
“AND” connective.

It is to be noted thatL(E) = FDCF (A AND B),
and U(E) = FCCF (A AND B), and therefore we
haveFDCF (A AND B) ⊆ FCCF (A AND B). This
fact holds true for both the crisp and fuzzy sets and for
all the t-norms andt-conorms due to the construction of
L(E) ⊆ U(E).

It is to be noted that if we apply the law of contradic-
tion after the axiom of commutativity and distributivity,
we get FDCF (A AND B) = FCCF (A AND B), as
demonstrated in Section 1.

Thus we obtain

DNF (A AND B) = CNF (A AND B) = A ∩B

in the two-valued set and logic theory. In fuzzy set and
logic theory, FDCF and FCCF provide lower and upper
set formulas, respectively, for the “AND” combination of
two fuzzy concepts,A andB, i.e., fuzzy predicates. That
is, we getFDCF (A AND B) ⊆ FCCF (A AND B).

4.2. Five Meta-Linguistic Expressions That Have
“OR” Composition

The usual, commonly used target setE is “A ∪ B” for
“A OR B” (see Table 5, row 3). Again, with the dis-
cussion and the proposed modification of the D-P formal-
ism stated in Section 3, we identify the set of informa-
tion granules that are contained inE as `(E) = {A ∩
B, c(A)∩B,A∩ c(B)}, and thus the lower set formula is
L(E) = ∪`(E) = (A ∩B) ∪ (c(A) ∩B) ∪ (A ∩ c(B)).

The set of information granules that containE is
u(E) = {A ∪ B}, and thus the upper set formula is
U(E) = {A ∪B} = u(E).

In an analogous manner, we observe thatu(E) =
{A ∪ B}, which is the target set itself, and thusU(E) =
{G | G ∈ G, E = G}. We also generalize this for all
the five cases out of the 16 combinations of concepts that
admit the linguistic “OR” connective in their combination.

Therefore the rule isu(E) = {G | G ∈ G, E = G}
for the target setsI, A∪B, c(A)∪ c(B), c(A)∪B and
A ∪ c(B), i.e., the meta-linguistic expressions 1, 3, 5, 7
and 9 in Table 5, where the usual target set forms the least
upper band.

This, in turn, entailes the rule forL(E) to be
L(E) = ∪{G | G ∈ G, G ⊂ E} for these five out of
the 16 cases that admit the “OR” connective in their meta-
linguistic expressions, i.e., expressions 1, 3, 5, 7 and 9
in Table 5. Again, this clarification resolves the anomaly
introduced by eqns. (3) and (4) for the cases of “OR” con-
nective.

Again, it is to be noted that

L(E) = FDDCF (A OR B),

U(E) = FCCF (A OR B),

and therefore we have

FDCF (A OR B) ⊆ FCCF (A OR B).

This fact again holds true for both the crisp and fuzzy sets
and for all t-norms andt-conorms due to the construction
of L(E) ⊆ U(E).

Again, it is to be noted that if we apply the com-
mutativity and distributivity first, and then the Law of the
Excluded Middle, LEM, we getFDCF (A OR B) =
FCCF (A OR B), and thus we obtain

DNF (A OR B) = CNF (A OR B) = A ∪B

in the two-valued set and logic theory. In fuzzy set and
logic theory, FDCF and FCCF provide lower and upper set
formulas, respectively, for the “OR” combination of two
fuzzy concepts,A and B, i.e., fuzzy predicates. That is,
we getFDCF (A OR B) ⊆ FCCF (A OR B).

4.3. Other Six Meta-Linguistic Expressions

The remaining six meta-linguistic expressions, i.e., 11, 12,
13, 14, 15 and 16, are treated in a slightly different man-
ner. Let us investigate, e.g., the meta-linguistic expres-
sion 11, i.e., the biconditional, “A IF AND ONLY IF B”.
Its usual target set is symbolically “A ↔ B”. It is clear
that

`(E) = {A ∩B, c(A) ∩ c(B)}

with the property`(E) = {G | G ∈ G, G ⊂ E}. Thus
we haveL(E) = ∪`(E) = (A ∩B) ∪ (c(A) ∩ c(B)).

Also, it is clear that

u(E) = {c(A) ∪B,A ∪ c(B)},

with the propertyu(E) = {G | G ∈ G, E ⊂ G}. Thus,
we haveU(E) = ∩u(E) = (c(A) ∪B) ∩ (A ∪ c(B)).
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Therefore the rules for this remaining six meta-
linguistic expressions, i.e., 11, 12, 13, 14, 15 and 16 in
Table 5, are that

L(E) = ∪{G | G ∈ G, G ⊂ E}

and
U(E) = ∩{G | G ∈ G, E ⊂ G}.

Thus, in this category we have upper and lower set formu-
las for the special cases ofA ↔ B, A XOR B, A, c(A),
B and c(B).

5. Generalization

The schema developed for the determination of upper and
lower set definitions for any two setsA and B, crisp or
fuzzy, can be generalized ton sets.

Suppose that there aren concepts that are repre-
sented byn predicatesA1, . . . , An, crisp or fuzzy. We
can writeGn with the formation of2n+1 primitives, i.e.,
information granules, derived from conjunction, disjunc-
tion and complementation of thesen concepts as

Gn =
{
A1,∩A2 ∩ · · · ∩An, . . . ,

c(A1) ∪ c(A2) ∪ · · · ∪ c(An)
}
.

Then we can apply the same method developed in
Sections 3 and 4 as shown in its application to two sets
A and B in Section 4 to determine the upper and lower
set formulas of any meta-linguistic expression made up of
thesen concepts.

It is clear that withG we can derive upper and lower
set formulas for any meta linguistic expression,MLE .
But these formulas must be developed carefully in three
categories, i.e., (a) those that are formed with the linguis-
tic “AND” connective, (b) these that are formed with the
linguistic “OR” connective, and (c) others that are more
complex and are singletons. Thus the lower set formula
will be FDCF (MLE) and the upper set formula will be
FCCF (MLE).
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Appendices

A. Normal Form (or Canonical Form) Derivation
Algorithm

(a) First, assign truth valuesT (·), F (·) to the meta-
linguistic values (labels, variables)A and B and
then assign truth valuesT (·), F (·) to the meta-
linguistic expression of concern, say “A AND B”,
in order to define its meaning as shown in Table 4.

(b) Next, construct primary conjunctions of the set sym-
bols A, B, corresponding to linguistic values such
that in a given row we have

(i) If a “T (·)” appears, then take the set affirmation
symbol of that meta-linguistic variable;

(ii) If an “F (·)” appears, then take the set comple-
mentation symbol of that meta-linguistic vari-
able;

(iii) Finally, conjunct the two symbols.

For example, in the second row of Table 4, we
have a T (A) under A and an F (B) under B.
Therefore, we getA ∩ c(B) as the primary con-
junction corresponding to the second row entry of
Table 4.

(c) Construct the disjunctive normal form of the meta-
linguistic expression of concern:

(i) First, take the conjunctions corresponding to
the T (·)s of the truth assignment made under
the column of the meta-linguistic expression,
such as “A AND B” (Table 4);

(ii) Then combine these conjunctions with disjunc-
tions.

Thus one gets (see Table 4) DNF (or FDCF)
(A AND B) = A ∩ B. Note that in this case there
is only one conjunctive term in DNF (or FDCF.)
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(d) Next, construct the conjunctive normal form of the
meta-linguistic expression of concern:

(i) First, take the conjunctions corresponding to
F (·)s of the truth assignment made under the
column of the meta-linguistic expression, such
as “A AND B” (Table 4);

(ii) Then combine these conjunctions with disjunc-
tions;

(iii) Next, take the complement of these disjuncted
conjunctions.

Thus one gets (cf. Table 4)

CNF (or FCCF)(A AND B)

= c
{(

A ∩ c(B)
)
∪

(
c(A) ∩ c(B)

)}
=

(
c(A) ∪B

)
∩

(
A ∪ c(B) ∩ (A ∪B).

B. Inclusion for Continuous Archimedean t-Norms

Theorem 1. If 〈∆,∇, n〉 is a strong De Morgan triple,
then FDCD (·) ⊆ FCCF (·) for the 16 combinations of
concepts, i.e., basic protoforms for CWW.

Theorem 2. If 〈∆,∇, n〉 is a strict De Morgan triple,
then FDCD (·) ⊆ FCCF (·) for all 16 combinations of
concepts, i.e., basic protoforms for CWW.

Generating Functions

For Theorem 1, we apply

∆(a, b) = g−1
(
min

{
g(a) + g(b), g(0)

}}
,

∇(a, b) = g−1
(
max

{
g(a) + g(b)− g(0), 0

}}
,

n(a) = g−1
(
g(0)− g(a)

)
.

For Theorem 2, we apply

∆(a, b) = φ−1
(
φ(a)φ(b)

)
,

∇(a, b) = φ−1
(
φ(a) + φ(b)− φ(a)φ(b)

)
,

n(a) = φ−1
(
1− φ(a)

)
.

Here g(·) is a continuous and strictly decreasing function
such that

g : [0, 1] → R+

with g(1) = 0 and g(0) < +∞, and φ−(·) is the auto-
morphism of the unit interval.

Proof.

∇
[
∆(a, b),∆

(
a, n(b)

)
,∆

(
n(a), b)

)]
≤ ∇(a, b),

∇
[
∆(a, b),∆

(
n(a), n(b)

)]
≤∆

[
∇

(
a, n(b)

)
,∇

(
n(a), b

)]
,

∇
[
∆(a, b),∆

(
a, n(b)

)]
≤ ∆

[
∇(a, b),∇

(
a, n(b)

)]
.

It is sufficient to show that one of the following depen-
dences holds:

∇
[
∆(a, b),∆

(
a, n(b)

)]
≤ a,

∇
[
∆(a, b),∆

(
n(a), b

)]
≤ a,

∇
[
∆

(
a, n(b)

)
,∆

(
n(a), b

)]
≤ a.

Thus, for example, one shows that

S1: ∇
[
∆(a, b),∆

(
a, n(b)

)]
≤ a,

S2: ∇
[
∆(a, b),∆

(
a, n(b)

)]
≤∆

[
∇(a, b),∇

(
a, n(b)

)]
,

S3: ∇
[
∆(a, b),∆

(
n(a), n(b)

)]
≤ ∆

[
∇

(
a, n(b)

)
,∇

(
n(a), b

)]
.


