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In this study, we are concerned with a two-objective development of information granules completed on a basis of numeric
data. The first goal of this design concerns revealing and representing a structure in a data set. As such it is very much
oriented towards coping with the underlyingrelational aspects of the experimental data. The second goal deals with a
formation of a mapping between information granules constructed in two spaces (thus it concentrates on thedirectional
aspect of information granulation). The quality of the mapping is directly affected by the information granules over which it
operates, so in essence we are interested in the granules that not only reflect the data but also contribute to the performance
of such a mapping. The optimization of information granules is realized through a collaboration occurring at the level
of the data and the mapping between the data sets. The operational facet of the problem is cast in the realm of fuzzy
clustering. As the standard techniques of fuzzy clustering (including a well-known approach of FCM) are aimed exclusively
at the first objective identified above, we augment them in order to accomplish sound mapping properties between the
granules. This leads to a generalized version of the FCM (and any other clustering technique for this matter). We propose
a generalized version of the objective function that includes an additional collaboration component to make the formed
information granules in rapport with the mapping requirements (that comes with adirectionalcomponent captured by the
information granules). The additive form of the objective function with a modifiable component of collaborative activities
makes it possible to express a suitable level of collaboration and to avoid a phenomenon of potential competition in the case
of incompatible structures and the associated mapping. The logic-based type of the mapping (that invokes the use of fuzzy
relational equations) comes as a consequence of the logic framework of information granules. A complete optimization
method is provided and illustrated with several numeral studies.

Keywords: granular computing, clustering, models of collaborative computing, fuzzy models, collaboration and competi-
tion, FCM, granular modeling

1. Introduction

Clustering and fuzzy clustering (Anderberg, 1973;
Bezdek, 1981; Dudaet al., 2001; Dunn, 1973; Hoppner
et al., 1999; Pedrycz, 1995; 1998; Setnes, 2000) give rise
to information granules (either sets, fuzzy sets or relations
and fuzzy relations). These are formed through a mini-
mization of a certain criterion (objective function) which
operates within a given data set. As a result, the obtained
clusters reflect the nature (structure) of these specific data.
Consider a situation when we are provided with two sep-
arate data sets. For each of them, the clustering reveals
the corresponding structure. In addition to that, we are
interested in finding a mapping between the information
granules developed in these data. Ideally, we would like

to construct the granules in such a way that the mapping it-
self is also optimized, i.e., it transforms information gran-
ules defined in one space (domain) into some granules in
another space (co-domain) without any significant distor-
tion (mapping error). Evidently, this problem statement
goes far beyond the standard clustering optimization as
encountered in the literature. The essence of the problem
is portrayed in Fig. 1.

Owing to the nature of the optimization task, we will
be referring to it as acollaborativeinformation granula-
tion. The collaboration effect is crucial here in order to
meet the two fundamentalrelational and directional re-
quirements of the information granules. The satisfaction
of these helps reflect the structure in the data as well as
optimize the mapping itself (in the sense outlined above).
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Fig. 1. The essence of collaborative information granulation;
information granules capture the structure of data and
simultaneously optimize the mapping between the gran-
ules in X[1] and X[2].

It is pertinent to cast the problem in the general set-
ting of fuzzy modeling that is primarily aimed at the mod-
eling activities carried out at the linguistic (granular) level.
This paradigm of modeling entails two fundamental pur-
suits, that is, a development of information granules them-
selves (that are regarded as building blocks of the model)
and a construction of a web of links between the informa-
tion granules. It is needless to say that different families
of information granules imply a different web of connec-
tions between them. And conversely, if we start with an
initial structure of the connections, they may lead to fur-
ther modifications of the information granules. The gran-
ularity of information being used implies the character of
the model: a higher granularity (viz. more specific, that
is, smaller granules) gives rise to more detailed models.
By recognizing the two fundamental components of the
fuzzy (granular) model, we become aware that these two
phases are interrelated as far as their optimization is con-
cerned. At the same time, the phases look at a different
character of processing. Building information granules is
inherently direction-free (namely, relational). The links
(representing the mapping) are evidently directional con-
structs and, as such, they capture the function-like form
of the model (obviously we mean the function between
information granules, and not individual numeric values
as traditionally encountered in numeric modeling and sys-
tem identification). Building information granules can be
realized through data clustering and the methods com-
monly available today are direction-free (say, direction-
neutral). As these two phases of building granular models
are strongly linked, it becomes evident that the clustering
techniques need to be revisited to allow for coping with
the directional character of the constructs and help opti-
mize these features. This augmentation of the clustering
techniques is an ultimate goal of this study.

In this paper, we propose a new scheme of building
information granules in the collaborative fashion to cap-
ture the relational and directional aspects of information
granulation. We formulate the problem first and then cast
it in an operational framework of fuzzy clustering, espe-

cially the commonly used FCM environment. It is dis-
cussed how the objective function has to be modified and
what type of constraint optimization problem arises there.
The type of the granular mapping to be optimized is in the
form of the logic-based expression using OR and AND
logic connectives.

The material is arranged into seven sections. In Sec-
tion 2, we start with a problem formulation where its main
components are outlined and put together. The deriva-
tion of the complete optimization algorithm is discussed
in Section 3 that is followed by a discussion of the flow of
the optimization pursuits. Experimental studies are cov-
ered in Section 5 while conclusions are included in Sec-
tion 6.

2. Problem Formulation

The collaborative way of information granulation leads
to the following optimization problem. To formulate it,
let us proceed with all necessary notation. To a high
extent, we will be alluding to the standard terminology
used in fuzzy clustering. Given are two data setsX[1]
and X[2], whereX[1] = {x1[1],x2[1], · · · ,xN [1]} and
X[2] = {x1[2],x2[2], . . . ,xN [2]} for xk[1] ∈ Rn1 and
xk[2] ∈ Rn2 . The clustering ofX[1] involves c[1] clus-
ters. For the second data set, the clustering gives rise to
c[2] clusters. The clusters constructed inX[1] are de-
noted byA1, A2, . . . , Ac[1]. For X[2] the resulting clus-
ters areB1, B2, . . . , Bc[2]. In what follows, the terms
‘cluster’ and ‘information granule’ are used interchange-
ably. Furthermore, as we are dealing with two data sets,
all constructs pertaining to the data are indexed by square
brackets, namely (Anderberg, 1973; Bezdek, 1981).

The mapping between the granules inX[1] and
X[2] exhibits an evident logic flavor meaning that we as-
sume a logic form of the relationship between the informa-
tion granules, namely, we express an information granule
Bi as a logic aggregation(φ) involving the information
granules developed inX[1], i.e.,

Bi = φ(A1, A2, . . . , Ac[1],wi)

for i = 1, 2, . . . , c[2]. The above expression also includes
a weight vector (parameters)wi that is used to calibrate
the links betweenAj and Bi. We discuss the details of
the logic expression in the next section. More descrip-
tively, we are interested in the development of information
granules{Ai} and {Bj} so that they satisfy the require-
ments of relational and directional natures.

2.1. The Objective Function and Its Generalization

The entire optimization starts from the objective func-
tion defined in such a way that it encapsulates the way of
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the collaborative formation of the information granules.
For illustrative purposes, we start with a specific form of
the clustering method. This form can be generalized fur-
ther on.

The FCM algorithm is commonly used. This moti-
vates us to view it as a standard vehicle of forming in-
formation granules. The generic objective function that
is minimized reads as a weighted sum of distances of the
patterns from the prototypes. Using the notation already
introduced in the previous section, the performance index
(objective function) assumes the following form:

• For X[1] the clusters minimize the expression

Q[1] =
c[1]∑
i=1

N∑
k=1

u2
ik[1]d2

ik[1], (1)

where
d2

ik[1] =
∥∥xk[1]− vi[1]

∥∥2

is a distance function between the pattern (i.e.,xk[1])
and the prototype (denoted here byvi[1]) with both
of them being located inX[1]. While the above ob-
jective function is well known in the literature, we
rewrite it slightly to highlight the origin and the role
of the fuzzy sets. Note that each row of the partition
matrix is just an information granule (more specifi-
cally a fuzzy relation) so we can viewU [1] in the
following form:

U [1] =
[
A1 A2 . . . Ac[1]

]T =


A1

A2

...

Ac[1]

 .
Note that eachAi is defined in the finite spaceX[1]
(which implies thatAi has a discrete membership func-
tion).

In other words, the performance index can be sought
as a weighted sum of the distances between the prototypes
and the data points with the weights being the membership
grades of the fuzzy relations,

Q[1] =
c[1]∑
i=1

A2
i •Di, (2)

where

A2
i •Di =

N∑
k=1

u2
ikd

2
ik. (3)

In more detail, we have

A2
i =

[
u2

i1 u
2
i2 . . . u2

ic[1]

]
.

The minimization of (1), or equivalently (2), is com-
pleted with respect to the partition matrix and the proto-
types.

• For X[2] the clusters built there are affected by
the collaboration coming fromX[1] as we are con-
cerned about the mapping (logic transformation be-
tween X[1] and X[2]). This is taken into consider-
ation by expanding the objective function in the fol-
lowing additive form:

Q[2]=
c[2]∑
i=1

N∑
k=1

u2
ik[2]d2

ik[2]

+β
c[2]∑
i=1

N∑
k=1

(
uik[2]− φi(U [1])

)2
d2

ik[2]. (4)

The first term is just a standard component encoun-
tered in the FCM that looks like the structure inX[2].
The second one captures differences betweenU [2] and
the mapping of the structure detected inX[1] (viz. the
fuzzy partition U [1]) to X[2], that is φi(U [1]). It char-
acterizes the performance of the mapping between the in-
formation granules. The weight coefficient (β) is used to
quantify a balance between the structure inX[2] and the
impact from the mapping requirement (the second term in
the above objective function). Considering the two goals
of this process of information granulation, we say that
β strikes a compromise between the relational and direc-
tional aspects of such an optimization.

The optimization of (1) is standard. The optimization
of (4) requires detailed investigation. The minimization of
the objective functionQ[2] is completed with respect to
the partition matrixU [2] (structure), prototypes and the
parameters of the logic transformation (φi).

2.2. The Logic Transformation

The granular mapping fromX[1] to X[2] is realized as a
logic transformation between the information granules. It
is worth stressing that there is a panoply of possible types
of mappings and our choice is implied by the transparency
of the logic mapping that comes hand in hand with the
logic type of the spaces between which the mapping takes
place. Two classes of mappings are discussed. The first
of them isOR-based. As the name stipulates, we consider
the information granuleBi to be an OR aggregation of
the granules in the input space, i.e.,

Bi = A1 or A2 or . . . or Ac[1]. (5)

Neither all fuzzy relations in the input space contribute
to the formation ofBi, nor may each of them exhibit
an equal impact on the membership ofBi. To gain this
flexibility, we allow for a weight vector (connections)wi
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whose role is to articulate (quantify) the contribution com-
ing from Aj ’s. The following modification is made to (5):

Bi = (A1 and wi1) or (A2 and wi2)

or . . . or (Ac[1] and wic[1]), (6)

where wi = [wi1 wi2 . . . wic[1]] are weights with the
values confined to the unit interval. The logic operations
are realized byt- and s- norms (t-conorms) and this leads
to the equivalent expression of (6) (s-t realization of the
logic expression):

Bi = (A1 t wi1) s (A2 t wi2) s . . . s (Ac[1] t wic[1])

and

Bi =
c[1]

S
j=1

(Aj t wij). (7)

This augmented expression requires more attention.
To provide more insight into the functioning of (6), let us
consider several cases: (a) if all weights are equal to1,
then, owing to the boundary condition of anyt-norm, the
expressionAk t wik returnsAi, (b) if the weights are all
equal to zero, thenBi is an empty fuzzy set, (c) if all but
one connection are equal to zero (the remaining nonzero
connectionwk is set to zero), thenBi is equal toAk. We
note that the weight vector is used to select fuzzy setsAi

and calibrate their impact on the formation of the fuzzy
set in the output space. We can regard it as a collection
of the parameters that could be adjusted and used in the
optimization of the logic mapping.

Note that the above logic mapping concerns a single
fuzzy relation inX[2]. In a similar fashion, we can real-
ize the mapping for the remaining information granules.
After a careful examination of the mappings viewed to-
gether, we come up with the following concise notation.
Arrange all weights into the matrix form

R = [rij ] =


w11 . . . w1c[2]

. . .

wlj

wc[1]1 . . . wc[1]c[2]

 . (8)

Then the mapping from information granules inX[1] to
information granules inX[2] is nothing but a fuzzy re-
lational equation with a standards-t composition (Di
Nola et al., 1989; Pedrycz, 1991; Pedrycz and Rocha,
1993; Pedryczet al., 1995) (denoted here by a small dot)

B = A ◦R, (9)

where we setA = [A1 A2 . . . Ac[1]] and B =
[B1 B2 . . . Bc[2]].

Similarly, we can introduce an AND type of aggrega-
tion of the information granules meaning that we consider

Bi to be a combination ofAj ’s aggregated AND-wise,
i.e.,

Bi = A1 and A2 and . . . and Ac[1]. (10)

A direct generalization of the above aggregation includes
a weight vector and, subsequently, the combination of the
t-s type

Bi = (A1 or wi1) and (A2 or wi2) and . . .

and (Ac[1] or wic[1]), (11)

Bi = (A1 s wi1) t (A2 s wi2) t . . . t (Ac[1] s wic[1])

=
c[1]

T
j=1

(Ajswij). (12)

The motivation behind the use of the connections (w)
is the same as in the case of the previous type of the logic
aggregation. The intent is to equip the mapping with some
parametric flexibility. Essentially, the connections help
calibrate an impact that a given input fuzzy set (or rela-
tion) Ai has on the output. Owing to the nature of the
s-norm, we note that higher values ofwi reduce the im-
pact thatAi comes with. In two limit cases we have:
(a)wi = 0 returns an original input fuzzy set in the sense
that Ai s 0 = Ai, (b) wi = 1 eliminates (masks) the
associated fuzzy set, namelyAi s 1 = 1.

These two aggregation mechanisms are dual in the
sense of their functionality. Owing to the character of the
AND and OR operations, we intuitively use them depend-
ing on the number of the information granules existing
in the respective spaces. Ifc[1] > c[2], we consider the
OR type of aggregation (in anticipation that the element
in the output space is constructed as a union of several
information granules in the input space). Similarly, for
c[1] < c[2], the AND-type of aggregation is more appeal-
ing (as we project thatBi is made more specific in rela-
tion to the information granules existing inX[1]).

3. The Algorithm

Now we are ready to proceed with the computational de-
tails that lead us to the complete algorithm. The objective
function implies the following optimization task:

min
U [2],v1[1],v2[2],...,vc[2]]

Q[2]

subject to
U [2] ∈ U and R ∈ R, (13)

where the family of partition matricesU is defined in
a usual manner (namely, we require that the elements in
each column ofU [2] sum up to 1 and the sum of elements
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in each row ofR is nonzero and less thanN ). R is an
element of the family of the fuzzy relationsR (viz. ma-
trices with elements confined to the unit interval). The
above optimization problem concerns the way of form-
ing a structure inX[2] with an inclusion of the mapping
properties. The clustering mechanisms inX[1] follow the
standard FCM and will not be discussed here.

The optimization of the partition matrixU [2] in the
objective function uses a technique of Lagrange multipli-
ers (because of the constraint existing in the development
of the partition matrix). For a given data point (k), we
form an augmented objective function

V =
c[2]∑
i=1

u2
ik[2]d2

ik[2] + β

c[2]∑
i=1

(
uik[2]− ϕi(U [1])

)2
d2

ik[2]

+ λ

( c[2]∑
i=1

uik[2]− 1
)
, (14)

where λ is a Lagrange multiplier. Proceeding with the
necessary conditions for the minimum ofV :

∂V

∂ust[2]
= 0,

∂V

∂λ
= 0,

we calculate

2ust[2]d2
st[2] + 2β

(
ust[2]− yst

)
d2

st[2] + λ = 0. (15)

Here yst stands for a logic-based mapping between the
information granules

yst =
c[1]

S
j=1

(
ust[1] t rsj

)
.

Computingust[2] from (15), we obtain

ust[2] =
βystd

2
st[2]− λ

2d2
st[2](1 + β)

.

As the membership grades sum up to1, this leads us to the
expression

c[2]∑
j=1

βyjtd
2
jt[2]− λ

2d2
jt[2](1 + β)

= 1,

and in the sequel,

λ

1 + β
=

−1 +
β

1 + β

c[2]∑
j=1

yjt

c[2]∑
j=1

1
d2

jt[2]

.

Introduce the notation

ũst[2] =
1

c[2]∑
j=1

d2
st[2]
d2

jt[2]

.

Finally, we get

ust[2] = ũst[2] +
β

1 + β

(
yst − ũst[2]

c[2]∑
j=1

yjt

)
, (16)

for s = 1, 2, . . . , c[2] and t = 1, 2, . . . , N .

The above formula has an interesting interpretation:
if β is equal to zero, then it reduces to the well-known
formula for the partition matrix encountered in the FCM.
When β increases, thenust[2] is affected by the second
term in (16).

The calculations of the prototypes do not come with
any constraints, so we follow the necessary condition for
the minimum ofQ[2], namely ∂Q[2]/∂vst[2] = 0, s =
1, 2, . . . , c[2] and t = 1, 2, . . . , n2.

In light of the weighted Euclidean distance governed
by the expression

d2
ik[2] =

n2∑
j=1

(
xk[j]− vij [2]

)2

σ2
j [2]

(17)

(where σ2
j [2] denotes the variance of thej-th variable),

the above derivative is equal to

∂Q[2]
∂vst[2]

= 2β
N∑

k=1

u2
sk[2]

(xk[t]− vst[2])
σ2

t [2]

− 2β
N∑

k=1

ψsk
(xk[t]− vst[2])

σ2
t [2]

(18)

with the following notation:

ψsk =
(
usk[2]− ysk

)2
.

Bearing in mind the necessary condition for the minimum
of Q[2] with respect to the prototypes, they are equal to

vst[2] =

N∑
k=1

xk[t]
(
u2

sk + βψsk

)
N∑

k=1

(
u2

sk + βψsk

) . (19)

Noticeably, whenβ = 0, we arrive at the standard expres-
sion for the prototypes that is identical to the one encoun-
tered in the FCM method.

Finally, we optimize the fuzzy relationR describing
the logic mapping between the spaces. In general, the so-
lution is not expressed analytically and we have to proceed
with some iterative optimization. The underlying expres-
sion governing this optimization reads as

R(iter + 1) = R(iter)− β∇R(iter)Q, (20)
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where the fuzzy relation is transformed on the basis of the
gradient of the performance indexQ. The learning rate
shown above (β > 0) controls the pace of changes of the
updates of the fuzzy relation. The gradient itself is com-
puted for specific triangular norms. In what follows (and
all experiments shown in Section 5 will exploit these as-
sumptions) we consider two common models of the logic
connectives such as a product (t-norms) and probabilistic
sum (s-norms). On this basis, the gradient reads as fol-
lows:

∂ysk

∂rst
= (1−Ast)utk[1], (21)

whereAst denotes ans-t composition that excludes the
currently optimized element of the fuzzy relation

Ast =
c[1]

S
j=1
j 6=t

(
ujk[1] t rsj

)
. (22)

4. The Overall Development Framework:
A Flow of Optimization Activities

The way in which the information granules are built stip-
ulates a certain flow of optimization activities. These can
be grouped into two main phases, see Fig. 2. The ini-
tial phase concentrates on the clustering completed inde-
pendently for the two data setsX[1] and X[2]. The in-
tent here is to establish some preliminary structure in the
data so that we could have a reasonable starting point to
proceed with the collaboration and further refine the ini-
tial relationships. During the second phase, the cluster-
ing processes start to collaborate through the mapping. At
the same time the fuzzy relation is subject to the gradient-
based optimization (as illustrated in Fig. 2, this as an in-
tegral portion of the collaboration process and negotiation
of the granular structures). Because of the direction of
the mapping, the clustering inX[1] is not affected per se
while the relational and directional facets of the clusters
emerge at the side ofX[2].

 

Initial (relational) 
phase 

Flow of optimization 

�
[1] 

�
[2] 
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& 

Directional 
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Fig. 2. Relational and directional optimization of information
granules—an overall development scheme.

5. Experiments

The proposed algorithmic framework is illustrated by
means of numeric experiments. They include some syn-
thetic as well as real-world data available on the WWW.

Synthetic data. The experiment concerns three-di-
mensional data. The first data set includes input variables
(x1 and x2) while the second involves one-dimensional
data (y), see Table 1.

Table 1. Synthetic data used in the experiment.

x1 1.2 0.8 0.2 0.9 3.5 4.2 4.3 4.8 6.1 6.5 6.9 6.6 6.4 6.1

x2 1.8 1.5 1.6 1.2 3.9 3.4 4.7 4.1 7.0 6.2 6.4 5.7 5.8 5.7

y 1.5 1.1 1.4 0.9 3.5 3.2 2.9 3.4 3.6 2.7 2.5 2.8 3.7 3.9
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Fig. 3. Plots of the synthetic data in the input space (x1, x2)

and the output data (y).

The same data points are shown in a 3D space in
Fig. 4. This helps reveal the structure. The output vari-
able comes with two clearly visible clusters. Moreover,
the three clusters in the input space relate to the two clus-
ters in the output space. In more detail, we note that the
two clusters in the input spaceX[1] map on a single clus-
ter in X[2].

Following these observations (which are easy to ar-
rive at as we are dealing with low-dimensional synthetic
data), we set upc[1] = 3 and c[2] = 2. In the experiment,
the learning rate of the gradient-based learning is equal to
0.1. This relatively low value of the learning rate helps
avoid oscillations (and this is more crucial to us than an
eventual slowdown of the learning process itself). With-
out any collaboration (β = 0.0) the obtained clusters are
described in terms of the partition matrices:
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x1 

x2 

y 

 
Fig. 4. 3D plot of the synthetic data.

Partition—space of input variables:

U [1] =



0.017434 0.005164 0.977402
0.000068 0.000022 0.999910
0.013630 0.004868 0.981502
0.007460 0.002543 0.989997
0.938615 0.030536 0.030849
0.936182 0.032897 0.030921
0.894294 0.082808 0.022897
0.946818 0.039856 0.013326
0.069128 0.914942 0.015930
0.001119 0.998669 0.000212
0.020588 0.974971 0.004441
0.027533 0.967885 0.004582
0.015457 0.982032 0.002511
0.045319 0.948161 0.006520



.

Partition—output variable:

U [2] =



0.982731 0.017269
0.994259 0.005740
0.994833 0.005167
0.976867 0.023133
0.010273 0.989727
0.001394 0.998606
0.049299 0.950701
0.003565 0.996435
0.019316 0.980684
0.137239 0.862761
0.281143 0.718857
0.086491 0.913509
0.029929 0.970070
0.053702 0.946298



.

Subsequently, the prototypes are equal to

– input space:v1[1] = [4.204584 4.015867], v2[1] =
[6.439176 6.117275], v3[1] = [0.777533 1.524844],

– output spacev1[2] = 1.265061, v2[2] = 3.272303.

The clusters emerging in both the spaces are very
well delineated with a very limited overlap. The collab-
orative clustering is carried out for several levels of col-
laboration (β). Following the general scheme (Section 4),
we implement the collaboration after the initial clustering
of the individual data. Here we go for five iterations. The
performance index achieved throughout the clustering and
learning of the relations is shown in Fig. 5. (Note that the
term “cycle” used there concerns the performance index
recorded for a single clustering iteration and 20 learning
epochs of the gradient-based learning.) The optimization
is efficient as the values of the performance index are re-
duced from cycle to cycle.
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Fig. 5. Performance index in successive development cycles

(β = 0.1, α = 0.1).

Once the optimization has been completed, the fuzzy
partition in the output space is as presented below:

U [2] =



0.980664 0.019336
0.994456 0.005544
0.993309 0.006691
0.976525 0.023475
0.010258 0.989742
0.001312 0.998688
0.045444 0.954556
0.003853 0.996147
0.023591 0.976409
0.128656 0.871345
0.259470 0.740530
0.082898 0.917102
0.033662 0.966339
0.055437 0.944563



.

We do not report the results of clustering in the input
space as in this model these fuzzy sets have not been af-
fected. When comparing this partition matrix with the one
obtained for the clustering without any collaboration, we
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conclude that there are no substantial differences. Obvi-
ously, the collaboration effect is quite limited and this may
be a reason behind an evident coincidence in the informa-
tion granules (conveyed in the respective partition matri-
ces). The prototypes do not change when the collaboration
effect comes into play at this level (namely, forβ = 0.1).
At this level of collaboration, there are no changes in the
values of the resulting partition matrix.

What becomes of interest is a fuzzy relation reveal-
ing main relationships between the information granules
(fuzzy sets) in the input and output spaces,

R =

[
0.000000 0.063547 0.738940
0.710587 0.889359 0.005974

]
.

There is a strong dependence (relationship) between the
granules quantified by high membership grades. Denot-
ing the fuzzy sets byA1, A2 andA3 (input space), and
B1 and B2 (output space), we translate the above fuzzy
relation into two logic expressions

B1 = A3(0.73),

B2 = A1(0.71) or A2(0.89).

(Note that we have included only the terms with high lev-
els of association; the associations themselves are simply
the corresponding entries of the fuzzy relation.)

Now we increase the collaboration level to 0.4. This
results in the partition matrix whose entries start to diverge
from those without any collaboration. Figure 6 illustrates
these new membership grades of the partition matrices.
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Fig. 6. Changes in membership grades as a result of
collaboration.

The differences between the prototypes are still neg-
ligible as they are equal tov1[2] = 1.25503 and v2[2] =

3.255817, respectively. The fuzzy relation of the associa-
tions is now equal to

R =

[
0.000000 0.060559 0.947464
1.000000 0.908921 0.005793

]
.

Subsequently, the list of logical expressions is similar to
the one obtained before

B1 = A3(0.95),

B2 = A1(1.00) or A2(0.91).

However, now the strength of the associations between the
information granules has been elevated.

Noticeably, higher values ofβ may lead to an in-
stability as the mechanisms used in the method tend to
“compete.” This is visible in Fig. 7: for higherβ, the per-
formance index exhibits some tendency to oscillate. These
tend to become more visible once the structures begin to
rely on each other more significantly (β increases). The
lack of stability points out that we are now faced with a
sort of competition between the structures as they do not
collaborate any longer but tend to compete.

Theauto-mpg datasetcomes from the UCI repository
of machine learning (http://www.ics.uci.edu/
∼mlearn/MLSummary.html ) and concerns a collec-
tion of vehicles described in terms of their displacement,
weight, country of origin, etc. We consider all features
but the fuel efficiency (expressed in miles per gallon) as
inputs. The fuel efficiency is treated as the output vari-
able.

The clustering is carried out for different numbers of
the clusters in the input and output space. The level of
collaboration (β) is maximized as much as the stability is
retained. The results are summarized in the form of the
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Fig. 7. Performance indexQ[2] in successive cycles of opti-
mization for two selected values ofβ.
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fuzzy relations (with the most essential links being high-
lighted) and the prototypes in the input and output spaces.
Table 2 contains a sample of the findings. Noticeably,
there are no significant changes to the information gran-
ules. The granules in the input space start to become more
specific once their number increases.

Table 2. Results of collaboration between clusters in the input
and output spaces for a selected number of the clusters
in the input space,c[1] = 4, 5, and 7 and c[2] = 2.

β = 0.1

R=0.1

[
0.000000 1.000000 0.623695 0.000000
0.853638 0.000000 0.000000 0.359311

]

prototypes

input space

v1[1]=[4.079673 103.923645 76.339424

2219.613770 16.554533 77.514397 2.661081]

v2[1]=[7.937488 347.367065 160.888031

4164.818848 12.664634 73.340729 1.011035]

v3[1]=[5.876760 218.628098 99.783264

3196.265625 16.621513 75.807190 1.114213]

v4[1]=[4.225328 127.185654 83.869286

2475.715088 16.138067 77.310410 1.423118]

output space

v1[2] = 17.535294, v2[2] = 31.191629

β = 0.15

R=

[
1.000000 0.000000 0.509261 0.000000 0.020741

0.628279 1.000000 0.305735 0.521905 0.353167

]

prototypes

input space

v1[1]=[4.076893 102.475128 73.396721

2188.470947 16.731644 78.909592 2.786299]

v2[1]=[7.960478 350.072906 162.005402

4189.602539 12.605497 73.222733 1.006485]

v3[1]=[4.274063 137.074478 85.290085

2578.334717 16.201082 79.018456 1.178627]

v4[1]=[6.068239 230.507248 102.261139

3290.023682 16.560471 75.631432 1.064134]

v5[1]=[4.156690 113.290359 84.537315

2359.725342 15.943533 74.026688 2.031541]

output space

v1[2] = 31.105927, v2[2] = 17.784975

β = 0.2

R=

[
0.209803 0.261901 0.032446 0.000000
0.2246721.0000001.0000000.623729

0.0101960.7514161.000000
0.181158 0.135858 0.318719

]
prototypes

input space

v1[1] = [4.091851 108.241699 83.893974

2309.296143 15.864615 73.814117 2.213534]

v2[1] = [7.968541 362.461090 168.896362

4264.135742 12.252587 72.357430 1.005682]

v3[1] = [7.791941 309.141937 138.760895

3885.156006 13.943682 76.404419 1.025403]

v4[1] = [5.951785 226.265488 99.462135

3241.927002 16.694593 75.186249 1.057520]

v5[1] = [4.338152 130.680313 84.464478

2507.565674 16.512613 76.256737 1.500398]

v6[1] = [4.217593 135.321823 84.600761

2569.331543 16.173941 79.529884 1.176432]

v7[1] = [4.043318 99.765396 71.445312 2154.744873

16.819048 79.410835 2.868308]

output space

v1[2] = 31.248861, v2[2] = 17.654987
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It is interesting to note that the collaboration can be
made more vigorous without sacrificing stability when the
number of the clusters in the input space increases. This
could have been expected, as the resulting information
granules tend to be smaller (of a higher granularity) and
therefore could be moved around more freely while not
causing too much distortion (and hence instabilities) dur-
ing the collaboration process. The dependencies between
the information granules as expressed by the fuzzy re-
lations discriminate quite well between strong and weak
links. In other words, the fuzzy relations start to contain
values either close to0 or 1. This points out that some
information granules relate to one another very strongly.

Now let us consider the same number of the clusters
in both the spaces, cf. Table 3. This arrangement helps us
reveal how the granules relate in the two spaces. Because
of the same number of the fuzzy sets, the logic formula
may be of the form of a one-to-one mapping, namely a
mapping of a single information granule in the input space
to some other information granule in the output space.
Obviously, this happens at the level of information gran-
ules rather than numeric quantities. By considering the en-
tries of the fuzzy relations, this observation about one-to-
one is fully legitimate. In each row of the fuzzy relation,
we have only one dominant membership grade (indicated
in boldface in Table 3). Noticeably, these are not necessar-
ily high membership values. This is, however, justified as
the partition matrices start having lower entries once the
number of the clusters goes up (recall that these member-
ship grades have to add up to 1).

Table 3. Fuzzy relations of connections forc[1] = c[2] = 2, 3
and6 with β = 0.05.

R =

[
0.000000 0.949054
0.420400 0.000000

]

R =

 0.110320 0.025040 0.247469
0.000000 0.877086 0.000000
0.210435 0.000000 0.000000



R =



0.090541 0.003166 0.000000
0.004518 0.012588 0.076320
0.000000 0.051439 0.156852
0.160533 0.000564 0.000000
0.031722 0.004176 0.000000
0.000000 0.706356 0.000000

0.000788 0.000000 0.003596
0.017965 0.106748 0.006710
0.109466 0.000000 0.000000
0.000000 0.000000 0.037163
0.003358 0.117081 0.075881
0.000000 0.000000 0.000000



The graph of links between the information granules
for c = 2 and 3 is included in Fig. 8 (we show only the
most dominant connections).
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Fig. 8. A graphical illustration of linkages between information
granules inX[1] and X[2] (the most significant con-
nections included).

6. Conclusions

In this study, we raised an issue of designing informa-
tion granules (fuzzy sets or fuzzy relations) that takes into
consideration a structure in a data set and addresses the
mapping aspects occurring at the level of such informa-
tion granules.

The essential novelty of this approach resides with
this multifaceted aspect of information granulation. Fuzzy
clustering itself occurs after the structure of the data and
does not look into the nature of possible mappings. It is
evident that no matter which technique we study, fuzzy
clustering tackles arelational nature of data (so no direc-
tion when searching for a structure is taken into consid-
eration). The augmented objective function includes an
additional collaboration component to make the informa-
tion granules in rapport with the mapping requirements
(that comes with adirectionalcomponent). The additive
form of the objective function with a modifiable compo-
nent of collaborative activities makes it possible to model
the level of collaboration and avoid the phenomenon of
potential competition in the case of incompatible struc-
tures and the associated mapping. It is worth stressing
that the granular mapping developed in this study can be
viewed as a general development phase of fuzzy modeling
and in this sense it applies to a broad class of identification
problems in granular systems.

The logic-based type of the mapping (that invokes
fuzzy relational equations) comes as a consequence of the
logic framework of information granules. One can, how-
ever, apply other types of mappings including those im-
plemented via neural networks. This generalizes the ap-
proach and promotes it as a general model of collaborative
granular computing.

The collaborative scheme of information granulation
is also in line with a broad range of techniques of fuzzy
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modeling, cf. (Delgadoet al., 1997; 1998; Jang, 1993;
Kandel, 1986; Kowalczyk and Bui, ; Maet al., 2000;
Pedrycz, 1995; Pedrycz and Vasilakos, 1999; Sugeno and
Yasukawa, 1993; Zhang and Kandel, 1998). The agenda
of fuzzy modeling is to build transparent models operat-
ing at the level of information granules viewed as fuzzy
sets or fuzzy relations. At the operational end, the con-
struction of the tangible and semantically sound informa-
tion granules becomes crucial to the integrity of any fuzzy
model. Furthermore, the agenda of fuzzy modeling in-
cludes an important aspect of the accuracy of the model.
This calls for the adjustment of the fuzzy sets quite often
to the point where their modifications tend to be difficult
to justify from the standpoint of the interpretability of the
model. The point is in the construction of the information
granules so that they maintain their semantics and con-
tribute to the accuracy of the model. In essence, there are
two requirements to meet. The collaborative form of the
fuzzy clustering is a suitable framework of fuzzy model-
ing in which these two needs are fulfilled in unison.
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