
Int. J. Appl. Math. Comput. Sci., 2002, Vol.12, No.2, 285–298

EXTENDING THE UML FOR MODELLING VARIABILITY FOR SYSTEM FAMILIES

SILVA ROBAK∗, BOGDAN FRANCZYK∗∗

KAMIL POLITOWICZ∗∗∗

∗ Institute of Organisation and Management, University of Zielona Góra
∗∗∗ Institute of Computer Science and Management, University of Zielona Góra

ul. Podgórna 50, 65–246 Zielona Góra, Poland
e-mail:{S.Robak,K.Politowicz}@iiz.uz.zgora.pl

∗∗ Intershop Software Entwicklungs GmbH, Intershop Research
Eichplatz 1, D–07743 Jena, Postfach 101064, Germany

e-mail:B.Franczyk@intershop.de

The process of modelling and developing commonality and variability for system families should be supported by suitable
methods and notations. The object-oriented methods and their notations, which are used at present, focus on the development
of a single system at a time. In this paper we analyse feature models as a representation of the common parts and variants
contained in a system family, and propose using a feature diagram as a basic representation of commonality, variability
and dependencies. We examine various approaches to customizing the standard modelling language UML to model system
families and propose how to extend the UML for the purposes of modelling variants in object-oriented analysis and design
techniques. We recommend the use of UML standard lightweight extensibility mechanisms (stereotypes combined with
tagged values) without changing the UML metamodel. This enables us to join the advantages of feature models with UML
and provides the traceability of a concept throughout system development. An application of lightweight UML extension
mechanisms allows the existing standard UML modelling tools to be used without any adaptations. An example of an
application illustrates our approach.

Keywords: object-oriented software engineering, system families, commonality and variability, feature diagram, UML
extensibility mechanisms

1. Introduction

The object-oriented paradigm has brought new concepts
like classes and objects, inheritance, dynamic polymor-
phism and dynamic binding to software engineering. De-
spite the advantages of the above concepts, the object-
oriented software paradigm has not reached productivity,
which had been expected in the area of reuse, adaptabil-
ity and management of complexity (Webster, 1995). The
object-oriented approach mainly supports the reuse of as-
sets (especially of a code) in the next versions of a sin-
gle software product. A softwareassetis a description
of some partial solution (component, design document,
model or knowledge) that engineers use to create or mod-
ify software products (Withey, 1996). The development of
a group of systems built from common generic software
assets is a goal achieved by building software product-
lines upon the product families. A fundamental reason
for creating program families has already been presented
in the early works by Dijkstra (1972) and Parnas (1976).
Programfamilies are defined by Parnas as “sets of pro-
grams, whose common properties are so extensive that

it is advantageous to study the common properties of the
programs before analyzing individual members” (Parnas,
1976). The family is further (Weiss and Lai, 1999) “a set
of items that have common aspects and predicted variabil-
ities”. According to Weiss and Lai, the termvariability is
defined as “an assumption about how members of a family
may differ from one another” andcommonalityis “an as-
sumption that is true for all members of a family.” Build-
ing the sets of related systems helps us to achieve remark-
able gains in productivity and improves time-to-market
and product quality (Clements and Northrop, 1999).

Developing system families encompasses the devel-
opment of core assets and building products using the core
assets. The two complete development cycles are pre-
sented in Fig. 1.: The development of core assets, i.e.
Domain Engineering (top part of Fig. 1), and the devel-
opment of products, i.e. Application Engineering (bot-
tom part of Fig. 1). Domain Engineering is the devel-
opmentfor reuse and it embraces creating, among other
things, domain models and architectures. It also supple-
ments the object-oriented methods and helps us solving
problems associated with the reuse of software assets, i.e.



S. Robak et al.286

their identification, documentation, classification, coordi-
nation, integration and evolution. Application Engineer-
ing, the developmentwith reuse, is the process of using the
results from Domain Engineering (domain assets) to pro-
duce (possibly to generate) systemfamily members, i.e.
concrete software systems. New products can be devel-
oped upon core assets as core assets may also be extracted
from the existing products. Both the processes (Domain
Engineering and Application Engineering) are different
from a typical object-oriented process such as the Unified
Process (Kruchten, 1998), aimed at developing one sys-
tem at a time (i.e. System 1 or System 2 or System 3, etc.
in Fig. 1).

Fig. 1. Developing system families with Domain Engineering.

The Unified Modelling Language (UML) adopted
by OMG (1997) as its standard modelling language has
emerged as the software industry’s dominant modelling
language in the object-oriented software development pro-
cess. The UML is a general-purpose graphical language
for specifying, constructing, visualizing and document-
ing workproducts that are modified or used by software-
intensive systems (Boochet al., 1999).

The object-oriented approach focuses on developing
one system at a time and supports neither a development
for reuse, nor a development with reuse. There is a lack
of distinction between the variability of different applica-

tions and between the distinct versions of the same evolv-
ing system. There is a lack of object-oriented means (e.g.
in the UML) for modelling variability in a way that could
be independent from the implementation mechanisms rep-
resenting it. Feature diagrams within the feature models
that are used in the Domain Analysis, the first part of Do-
main Engineering, are such means for describing the se-
lection rules for system family members.

We believe that the contribution of this paper
is that it proposes to integrate the feature diagrams’
advantages when modelling variability into the UML
diagrams, in a way conforming to the UML metamodel.
It also presents a survey comparing various significant

approaches to customizing the standard modelling lan-
guage UML for modelling variability.

In the following sections we will summarize com-
monality and variability as well as feature diagrams as an
implementation mechanism independent representation of
the common parts and variants contained in a system fam-
ily. We then examine various approaches to customize
the standard modelling language UML from the point of
view of their suitability for expressing variability for the
development of the system family, and assess them ac-
cording to their support of feature modelling and their
conformity to the UML metamodel, as well as a trace-



Extending UML for modelling variability for system families 287

ability between different UML models. Then we de-
scribe an approach towards modelling variability in sys-
tem families using UML standard lightweight extensibil-
ity mechanisms—stereotypes combined with tagged val-
ues. An example of an application illustrates our ap-
proach. In the last section we conclude our work.

2. Modelling Variability

The common core software assets reused across systems
in a product family(see Fig. 1.) are also referred to as a
platform(DeBaud, 2000):

“A Software Product Family is a set of
related software-rich systems (products) that
share a managed set of features and can there-
fore be built from the common software assets
(the platform)”.

Griss (2000) defines aproduct-lineas a set of products that
have a common set of requirements and significant vari-
ability. Members of a product-line can be treated as a pro-
gram family developed and managed together to achieve
economic, marketing and engineering coherence and effi-
ciency. A product family usually extends across several
domains (DeBaud, 2000). According to the UML defini-
tion by Boochet al. (1999) thedomainis:

“An area of knowledge or activity charac-
terized by a set of concepts and terminology un-
derstood by practitioners in that area”.

We find it useful to extend this domain definition
with the applications belonging to it. Coplien (1999) uses
the term “domain” to denote also the valid combinations
of values for all parameters of variation for a family or for
a specific parameter of the variation. Parameters of vari-
ation serve to control the instantiation of family members
from the generic software assets.

Collecting information about the common system re-
quirements enables us to develop core assets as a base
to develop a generic, extensible architecture. Basset al.
(1998) define thesoftware architectureas follows:

“The software architecture of a program or
a computing system is the structure or struc-
tures of the system, which comprise software
components, the externally visible properties of
those components, and the relationships among
them.”

The UML definition (OMG, 1999; Boochet al., 1999) of
acomponentis the following:

“Component: A physical and replaceable
part of a system that conforms to and provides
the realization of a set of interfaces”.

Another definition of a component, given by Szyper-
ski at the 1996 European Conference on theObject-
Oriented Programming (Szyperski and Pfister, 1997), em-
phasizes that it needs to be a binary unit (Szyperski,
1998):

“Component: A (software) component is a
unit of composition with contractually speci-
fied interfaces and explicit context dependen-
cies only. Context dependencies are specified
by stating the required interfaces and the ac-
ceptable execution platform(s). A component
can be deployed independently and is subject
to composition by third parties. For the pur-
poses of this independent deployment, a com-
ponent needs to be a binary unit. To distinguish
between the deployable unit and the instances it
supports, a component is defined to have no mu-
table persistent state. Technically, a component
is a set of atomic components, each of which is
a module plus resources.”

Buschmannet al. (1996) offer another definition of
thesoftware architecture:

“A software architecture is a description of
the subsystems and components of a software
system and the relationships between them.
Subsystems and components are typically speci-
fied in different views to show the relevant func-
tional and nonfunctional properties of a soft-
ware system. The software architecture of a sys-
tem is an artifact. It is the result of the software
development activity.”

A subsystem is a set of components cooperating to achieve
a specific goal, and it is a separate unit within a software
architecture. According to this definition, the adequate de-
scription of software architecture requires multiple views.
Noticeable examples of such architectures are to be found
in methods as the Unified Process (Kruchten, 1998) and
FeatuRSEB (Grisset al., 1998), both described further in
Section 2.1. The architecture of a system family is bet-
ter illustrated by the above definition given by Basset al.,
since it describes the common overall structure as well as
the commonality and variability.

Frameworks, being a monolith base in the traditional
object-oriented approach (Johnson, 1997), are reused in a
software product-line also as components (Bosch, 2000).
Gammaet al. (1994) define the notion of aframeworkas
follows:

“Framework: A set of cooperating classes
that makes up a reusable design for a specific
class of software. A framework provides ar-
chitectural guidance by partitioning the design



S. Robak et al.288

into abstract classes and defining their respon-
sibilities and collaborations. A developer cus-
tomizes the framework to a particular applica-
tion by subclassing and composing instances of
framework classes.”

In our terminology in the remainder of the paper, a
componentis merely a reusable piece of software, which
is used to build more complex software.

2.1. Modelling Variability with Feature Models

In the entire extent of family members, referred to as a
rangeby Coplien, variability is used to identify the mem-
bers of the software family (Coplien, 1999). According
to Coplienet al. (1998), commonality is crucial to build
abstractions and to enable the implementation of the com-
mon properties (features) for different systems of a do-
main. In comparison with that, in the conventional object-
oriented analysis abstractions are used to find objects,
i.e. classes. Variability as a complement of commonality
should be regularized to avoid the situation when relevant
features are not included or are included but never used.

We remark that the feature notion in our paper (as
in domain modelling) has a somewhat different meaning
than theUML-feature(OMG, 1999) defined by Boochet
al. (1999):

“Feature: A property, such as an operation
or an attribute, that is encapsulated within an-
other entity, such as an interface, a class, or a
datatype.”

According to the definition by Kanget al. (1990), the
featureis the property of a system which directly affects
end users:

“Feature: A prominent or distinctive and
user-visible aspect, quality, or characteristic of
a software system or systems.”

Jarzabek (2000) treats features as the user’s require-
ments. A feature is also a distinguishable characteristic of
a concept (e.g. system, component, etc.) that is relevant to
some stakeholder of the concept. In this paper we intro-
duce a more general definition of afeature:

“A feature is a stakeholder (e.g. users,
customers, developers, managers, etc.) visible
characteristic of concept (e.g. system, compo-
nent, etc.), which is used to describe and distin-
guish system family members.”

Some features relate to end-user visible characteris-
tics, while others relate more to a structure of a system
and system capabilities (Griss, 2000; Czarnecki and Eise-
necker, 2000). The feature models (Kanget al., 1990)

determine a set of the reusable and configurable require-
ments to determine systems and to assign significant fea-
ture combinations in a domain. In the report “Feature-
oriented Domain Analysis (FODA)”, Kanget al. (1990)
mentioned the feature models as features models. The
FODA-Method has been developed at the Software Engi-
neering Institute, Carnegie Mellon University. The feature
models represent a configuration aspect of reusable soft-
ware and consist of the feature diagram, feature definitions
and composition rules, and a logical basis of features.

The feature diagramthat forms a tree is a graphi-
cal AND/OR hierarchy of features and captures the log-
ical structural relationships (composition and generaliza-
tion) among features. A root of the tree represents a con-
cept being described and the remaining nodes denote fea-
tures. There are three feature types distinguished in the
FODA: mandatory, optional and alternative ones. A fea-
ture is mandatory unless an empty circle is attached to its
node, indicating an optional feature. A set of alternative
features is depicted by an arc spanning two or more edges
of feature nodes (Kanget al., 1990). The parent node of
a feature node is either the concept node or another fea-
ture or a subfeature node. We distinguish between direct
features of a concept andsubfeatures(i.e. features hav-
ing other features than their parents). Direct features of a
software system can be mandatory, alternative, or optional
with respect to all the applications within the domain. A
subfeature can be mandatory, alternative, or optional with
respect to applications which also have their parent fea-
ture. Mandatory features must be always included in ev-
ery system instance, an optional feature may be included
or not, and an alternative feature replaces another feature
when included.

Feature definitionsdescribe all features including in-
dication at which time the feature will be bound (com-
pile time, activation time, runtime, etc.). Thecomposi-
tion rulesindicate which combinations of the features will
be valid. These dependencies are usually maintained as
separate constraints. According to the FODA, there are
two kinds of strong constraints:requires rules andmu-
tual inclusion(exclusion) that may not be violated. The
weak constraints as described by Czarnecki and Eise-
necker (2000) are the default values, which can be over-
ridden. Thelogical basisfor the features is the rationale
for choosing a particular feature.

Figure 2 shows an example of a feature diagram with
possible features of a mail subscription system. Such sys-
tems are used to provide a specified kind of messages
with a given frequency to subscribers (users of a system).
These messages could be, e.g., product announcements,
business news or usenet posts. The common features of
subscription systems are, for example, the ability to reg-
ister new subscribers, and cancel a subscription, and—of
course—distributing messages. The optional feature is a



Extending UML for modelling variability for system families 289

Fig. 2. Feature diagram of a mail subscription system.

possibility of editing a subscriber’s data or processing
statistics of the users. The user registration component
could be implemented in various ways: one can send mail
with a proper format accepted by the system or register
using a WWW form (and submitting it with the HTTP
protocol or the more secure HTTPS protocol). The possi-
bility of choosing between the submission with the HTTP
or HTTPS protocols will only be given when the alterna-
tive feature “Registering on WWW” is chosen.

Domain analysis methods (Arrango, 1994) like fea-
ture analysis provide a concise and explicit representa-
tion of commonality and variability contained in a sys-
tem family on a high level of abstractions. This allows
us to achieve reusability above the code level on a level
of specification and the design requirements. Using fea-
ture diagrams, as opposed to UML-diagrams, has a signifi-
cant advantage that decisions regarding the specific mech-
anisms (like aggregation, inheritance, class parameteriza-
tion, etc.) for representing a given variation point need not
to be made in a domain analysis model. In feature dia-
grams variation points are the nodes with attached vari-
able features. The notion of avariation pointwas first in-
troduced in Reuse-driven Software Engineering Business
(RSEB) (Jacobsonet al., 1997) as a point which“iden-
tifies one or more locations at which the variation will
occur.” Variability influences the software assets and they
have to be able to fulfil the variability. Vogetet al. (2000)
define a variation point as a point in a software product-
line workproduct (assets) where variability emerges and
give techniques for its accomplishment.

Variability was classified by Coplien in his book
“Multi-Paradigm Design for C++” (1999) as positive and
negative.Positive variabilityleaves the underlying com-
monality model untouched and merely adds something

that refines its definition.Negative variabilityviolates the
commonality assumptions. The models of positive and
negative variabilities are well developed for the object-
oriented paradigm. An instance of positive variability is
a public inheritance with addition as opposed to an inher-
itance with cancellation for negative variability (Coplien,
1999).

Feature diagrams are an integral part ofGenera-
tive Programming(Czarnecki and Eisenecker, 2000), a
new software-engineering paradigm designated to achieve
reusability, and also in some object-oriented methods like
FeatuRSEB (Grisset al., 1998). Generative programming
is based on modelling software system families. On the
basis of a particular requirement specification, highly cus-
tomized and optimized assets (end products or intermedi-
ate workproducts) can be assembled on demand from el-
ementary, reusable implementation components by means
of configuration knowledge used for mapping between the
problem and configuration spaces. Theproblem spaceis
a set of all valid feature combinations (domain-specific
abstractions), and a set of all generic implementation soft-
ware components (or concrete systems) of a domain is re-
ferred to as thesolution space. Different parts of config-
uration knowledge can be used at differentbinding times
(i.e. times at which the feature will be bound).

The object-oriented methods, e.g., the Unified Pro-
cess, being de facto a standard, UML-based object-
oriented software engineering process (Kruchten, 1998;
Rational, 2002), to describe the architecture of a software-
intensive system use a‘4 + 1’-View approach adapted
from (Kruchten, 1995). The four adapted views pro-
posed by Boochet al. (1999) to denote the different ar-
eas of concerns and categories of description are design,
process, implementation, and deployment views. A de-



S. Robak et al.290

Table 1. Configuration table for three types of subscription systems.

System Variation point Feature Project component

All N/A subscription-cancel cancelSubscription()

S1 Registering subscription register-mail registerMailSubscribtion()

S1 Distributing messages freq-sys postNews(); readConfigFile()

S1 Editing subscription data N/A N/A

S1 Subscribers statistics N/A N/A

S2 Registering subscription http-trans registerWWWSubscription()

S2 Distributing messages freq-user postNews(); readSubscriberData()

S2 Editing subscription data subscription-edit updateSubscription()

S2 Subscribers statistics subscribers-statistics registerPollAnswers(); evalStatistics()

S3 Registering subscription register-mail registerMailSubscribtion()

S3 Registering subscription http-trans registerWWWSubscription()

S3 Registering subscription https-trans registerWWWSubscription()

S3 Distributing messages freq-user postNews(); readSubscriberData()

S3 Editing subscription data N/A N/A

S3 Subscribers statistics N/A N/A

System description:

1. S1 – common mail-based subscription system: one sends an e-mail with the word ’subscribe’ as the subject and
becomes registered; the system does not provide a possibility to edit own data—one can only cancel subscription.

2. S2 – this system is web-oriented: one fills out the form (in this case this form is submitted using the HTTP protocol)
and becomes registered; at the same time the user is prompted to answer some poll questions, and the content of the
messages depends on this feedback; the system allows for editing user data.

3. S3 – it is a composition of mail and WWW oriented systems; there is an additional possibility to send registration
data in encrypted form (SSL/HTTPS); compared with the S2 system, there are no edit and statistics modules.

sign view describes the end-user functionality (in the form
of UML class diagrams, interaction diagrams, state dia-
grams, etc.). A process view deals with concurrency, per-
formance, scalability, throughput, etc. An implementa-
tion view is a view of software configuration management
(packages, components, etc.). A deployment view shows
a system topology and communication from a point of
view of system engineers and the use of UML deploy-
ment diagrams, etc. The central stage in ‘4 + 1’-View ful-
fils the use-case-view capturing system requirements from
the user perspective (scenarios).

FeatuRSEB has integrated an object-oriented adap-
tation of the FODA (Viciet al., 1998) into Reuse-Driven
Software Engineering Business (RSEB) (Jacobsonet al.,
1997). The central role of a ‘+1’-model (tying all other
models together) is played there by a feature model desig-
nated for primary representation of commonality, variabil-
ity and dependencies. Thus, FeatuRSEB is feature model
centric. Grisset al. (1998) noticed that a feature model or-
ganizes system requirements from thereuserperspective.

The original feature diagrams from the FODA have
been further normalized and extended with subsequent
kinds of features for variations such as, e.g., or-features
(Czarnecki and Eisenecker, 2000) and another kind of fea-
tures, e.g. with the binding time associated directly with a
feature (such as runtime bound features in FeatuRSEB).

The feature diagrams are constructed to show com-
mon and variable features of different family members.
Mandatory features whose parent-features are neither op-
tional nor connected to alternatives represent common
features each family member possesses. For example, the
common features of subscribing systems (see Fig. 2) are
registering, cancelling registration and posting messages.
These common features can be realized as reusable com-
ponents (Szyperski, 1998) or frameworks. The rest of the
features are variable features, which represent the permis-
sible differences between family members. A part of the
implementation process of a member is selection of these
variants. A configuration table containing the variable
features of the member describes the choices which have



Extending UML for modelling variability for system families 291

been made (see Table 1 for three types of mail subscrip-
tion systems). A configuration table corresponds to those
of model elements that are influenced by variable features.

A software engineering process of developing sys-
tem families using a feature model may be conducted as
follows: After “scoping and economics” (DeBaud, 2000;
DeBaud and Schmid, 1999) of the family of interest ac-
complished by analyzing project stakeholders, the next
step is to determine the common and variable features as
a base of the system family. The constraints and depen-
dencies between features included in a feature model will
also be considered. A domain model is designed by refin-
ing a feature model, describing common and variable fea-
tures of an abstract architecture. In the next step (develop-
ment phase) generic system architecture and infrastructure
containing means for specifying system family members
are to be built. Then reusable components and ultimately
application generators are implemented. System family
members are assembled (or partially generated) based on
the existing assets. Implementing automatic configura-
tions might require the use of metaprogramming tech-
niques (Breymann, 1998).

Separation of Concerns(SOC) can be achieved by
disconnection of the aspects (i.e. synchronization, persis-
tency, etc.) from functional components using aspect-
oriented implementation technologies (Kiczaleset al.,
1997).

The importance of feature modelling can be sum-
marized as follows: It characterizes system families and
product-lines, and defines their scope and configurability
aspect. It also serves as a basis for the design of the family
architecture and implementation components. The com-
monality indicates reuse opportunities. In the Generative
Programming feature, modelling provides the configura-
tion knowledge required to automate the production of the
family members. Finally, in order to be able to describe
the selection rules for system family members, feature di-
agrams are required. In the next section we shall examine
and discuss the known approaches in order to show how
they customize different means for these purposes.

2.2. Modelling System Families

The standard object-oriented notation UML does not con-
tain any possibility of representing variation points and at-
tached variants. In this section various approaches to mod-
elling variability and different extensions are presented
and evaluated according to their support of feature mod-
elling, their conformity to the UML metamodel and also
a traceabilitybetween the different UML models, i.e. the
ability to follow and document the references of a concept
throughout system development.

The RSEB method introduced the notion of the vari-
ation point and variation into use cases, but has no ex-

plicit feature modelling. In FeatuRSEB, where a feature
model represents the configuration aspect of reusable soft-
ware, Grisset al. (1998) propose an implementation of the
feature diagram notation by using predefined UML mod-
elling elements. The features are implemented as classes
described with a stereotype�feature�. An optional at-
tribute is used to indicate whether or not a feature is op-
tional. The special node type called the “variation point”
is introduced to describe a feature with a single set of al-
ternative subfeatures (or features) and no other direct sub-
features (or features). The relationship “composed-of” is
used for features and the “alternative” relationship is used
for variation points. The variation point notion in Fea-
tuRSEB corresponds to the termdimensionused by Czar-
necki and Eisenecker (2000). FeatuRSEB features have
a binding time flag indicating whether or not a variation
point is bound at runtime (“use time”). The FeatuRSEB
approach does not distinguish between differentavailabil-
ity sites, i.e. when, where and to whom a feature can be
available. It does not distinguish between differentbind-
ing times, i.e. when variability is resolved (e.g. source
time, compile time, link and load time, runtime) norbind-
ing modes(e.g. static, dynamic). A statically bound fea-
ture cannot be rebound (e.g.inlining of methods in C++),
in contrast to dynamically bound features, which are au-
tomatically bound before a use and unbound afterwards.
The use and drawbacks of FeatuRSEB were further de-
scribed by Boellert and Philippow (2000).

Jarzabek (2000) proposed one of the possible meth-
ods to model commonality and variability using the UML
standard notation. The extensions were proposed for all
kinds of diagrams defined by UML. For example, putting
variability into frames with the description ending with
the word “variant” extended activity diagrams. The op-
tional features are modelled with the decision blocks with
a proper stereotype (�alt-features�, �or-features�).
Every such alternative is marked together with the con-
dition in square brackets. The mapping between model
elements and features is additionally described in com-
ments. Nevertheless, this approach suffers from some
drawbacks: putting important information about features
into comments and not into elements themselves causes
model inconsistencies, for example, what if the same ele-
ment is a part of more diagrams?

Moreover, comments are normally not evaluated dur-
ing the code generation. Thus, the reverse engineer-
ing process will result in a loss of information. Using
the standard conditional notation (in the case of activity
diagrams—conditions in the process flow) to model vari-
ability for a system family renders the model illegible—
one never knows if a condition represents a choice of a
user during runtime or of a system designer.

In another approach (Gomma, 2000) commonality
and variability are modelled using stereotypes�Kernel�



S. Robak et al.292

and�Optional� for predefined UML modelling ele-
ments. The features are presented as packages, and re-
lations between them are additionally modelled with the
�include� and�extend� technique. This approach
makes the generation-time information usable through
the whole model (each element knows its package, so it
knows which feature it belongs to). However, the UML al-
lows us to model hierarchies in one dimension only. Thus,
to model features one cannot use standard application hi-
erarchy of packages. This is the common problem for
methods based on a standardized notation to render new
aspects of a model—the notation can be used for only one
purpose.

Heinet al. (2000) presented an approach to an exten-
sion of the FODA and the representation in the UML of
different types of crosslinks that are necessary to describe
domains in an industrial environment. This extended fea-
ture model introduces the roles of the features enabling
secondary structures to include alternative and optional
consists-of crosslinks and to distinguish between unidi-
rectional and bi-directional relationships. A feature may
appear in several roles, each with its own binding time (i.e.
compile, load, run) and decomposition type (string) doc-
umenting partitioning rules for a structure the next level
deeper. The information contained in the “decomposition
type” is destinated to describe the principles applied to
breakdown a system or a product family into features and
the features further into subfeatures. A mapping between
UML model elements and logical elements contained in
the extended feature model (all kinds of features with their
roles) is realized by using UML packages which allows
us to create name-spaces for same-named features partic-
ipating in different structures (i.e. different branches in
a feature model). All elements in the package have the
same decomposition type and each package contains a
dedicated class of “feature specification” (with feature at-
tributes: binding time and decomposition type) and “trace
point” (to enable links to arbitrary modelling elements).
Indicating either a directed or an undirected link for con-
necting features (with “mutex”) shows how the derivation
is done (undirected elements stop the selection process).
A shortcoming of this method is the restriction of vari-
ability in feature specification to the binding time and the
decomposition type. There can be also other attributes
needed to choose a variant, like variability mechanisms,
stakeholder, binding occurrence, description, etc. (Coriat
et al., 2000).

Summarizing, there are three major drawbacks in the
examined existing methods, which make their practical
use in software development difficult if not impossible:

• Usage of untraceable graphical UML elements like
comments to express variability;

• Assigning a new meaning to language elements,
which have already had a common use pattern (i.e.
stereotypes�include� and�extend�);

• Lack of sufficient information needed to choose a vari-
ant and to distinguish between different sites, binding
times, binding modes, stakeholders, etc.

In Table 2 a summary of the modelling notations
is given from the viewpoint of the various presented ap-
proaches. We consider the support of feature modelling
(FODA-based feature modelling or its extensions, see
Section 2.1) and the use of the standard UML model el-
ements according to their standard usage as the main cri-
teria for the comparison. Additional criteria involve the
extensions conformity to the UML metamodel (see Sec-
tion 3) and additional feature information to choose a vari-
ant as described at the beginning of this section (when
considering FeatuRSEB). The means for the mapping be-
tween the features and UML model elements used by the
presented modelling notations are also summarized.

Further in this paper we will show how to join the
advantages of feature models with the standard mod-
elling language UML and how to provide the trace-
ability of a concept throughout system development us-
ing lightweight UML extensions mechanisms (stereotypes
combined with tagged values) to omit the limitations de-
scribed above. We will also present how to use this to
model the desired properties of product family members.

3. Distinguishing UML Model Elements for
Variability

Currently the UML does not provide possibilities to in-
dicate variable model elements because it is targeted at
modelling a single system at a time rather than system
families. Modelling system families (additionally sharing
features coming from multiple domains), as opposed to
modelling a single system, requires using notations, which
contain the diagrams, extended with possibilities of distin-
guishing variants. The UML diagram elements describing
common features of a system family are able to remain
the same as in the conventional models (i.e. without any
extensions). To describe model aspects of system families
such as architecture, static structure, dynamic behaviour
and interfaces, standard UML diagrams can be used with-
out any modifications. It is necessary to adapt the ele-
ments of UML diagrams that are designated to express
variability and distinguish between common and variable
model elements. Diagram elements implementing vari-
able features should be specifically marked to provide an-
alysts‘ and developers‘ information about constraints be-
tween features (e.g. mutually inclusive, mutually exclu-
sive features) and their implementation as well as infor-
mation about configuration aspects of features. Such el-



Extending UML for modelling variability for system families 293

Table 2. Comparison table for variability modelling notations.

RSEB FeatuRSEB Jarzabek Gomma Heinet al.

Feature modelling included: − + + − +
FODA-based +
FODA-based extension + +

Additional featurte information to choose a variant: + − − +
Availability sites − − − −
Binding times ? − − +
Binding modes − − − −
Others − − − +

Modelling features in UML: − + + + +
Classes + +
Comments +
Packages + +

Use of standard UML model elements according
to a standard usage ? ? − − −

Extensions conforming to the UML metamodel − + + + +

Legend: ‘+’ Yes, ‘−’ NO, ‘?’ Questionable and ‘blank’ Not available/not relevant

ements must be associated with their corresponding fea-
ture in order to provide the ability to follow and docu-
ment the references of a concept throughout system de-
velopment. The traceability should be supported by mod-
elling tools and explored by CASE tools in order to allow
generating parts of code automatically and to configure
instantiated family members. Therefore the UML needs
to be extended to model variability. This can be done
either by using UML lightweight extensibility mecha-
nisms (such as stereotypes, constraints and tagged values)
or by heavyweight extension mechanisms—metaclasses
(OMG, 1999).

The extensions presented in the paper conform to
the UML metamodel, and therefore we describe the part
of the metamodel dealing with those UML extensions
(see also Fig. 3). The metamodel level is (beside the
meta-metamodel, model and user object layers) one layer
of the UML’s four-level model architecture based on the
metamodel architectural pattern (OMG, 1999; Kobryn,
1999). Metamodelling offers significant advantages. It
allows formal specification of all modelling concepts
(together with their attributes, constraints and relation-
ships), defines a base for a unified exchange format and
makes the extendibility of UML possible, i.e. permits
instantiation of new metamodel classes as subclasses of
the existing metamodel classes. All modelling concepts
are in the UML referred to as model elements (e.g.
classes, attributes, and operations). The UML metamodel

classModelElementis an abstract class (just like its di-
rect subclassesGeneralizableElementandFeatureand in-
direct subclassesClassifier, BehavioralFeature, etc.) with
some instantiable indirect subclasses likeClass, Attribute
and Operation. The instances ofClassare user-defined
classes.

At the metamodel strata, the UML metamodel con-
sists of tree logical subpackages namedFoundation, Be-
havioral ElementsandModel Management. TheFounda-
tion package is the linguistic infrastructure specifying the
static structure of models and consists ofCore, Extension
MechanismsandData Typesubpackages. Lightweight ex-
tension mechanisms such as stereotypes, constraints and
tagged values are represented in the UML metamodel
as the metamodel’s classes namedStereotype, Constraint
andTaggedValue.

Although a change of the UML metamodel offers the
highest degree of flexibility, we have not taken it into con-
sideration because the metamodel is not available or diffi-
cult to modify in the existing UML modelling tools. This
the reason why we use lightweight extension mechanisms
defined in the UML, i.e. stereotypes, which are combined
with tagged values. Astereotypeis defined by Boochet
al. (1999) as follows:

“An extension of the vocabulary of the
UML, which allows you to create new kinds of
buildings blocks that are derived from existing
ones but are specific to your problem.”



S. Robak et al.294

Fig. 3. Extensibility mechanisms in the UML metamodel (OMG, 1999, pp. 2–67).

Stereotypes are a way of extending the basic meta-
model to create a new model element as a subclassifica-
tion of an existing model element. Stereotypes are used
to mark, classify or introduce new model elements in the
metamodel class hierarchy. Each model element can be
marked at most with one stereotype (UML V1.3), which
is depicted in front of an element’s name enclosed in dou-
ble angle brackets, and/or represented graphically as an
icon (OMG, 1999), see Fig. 3. The UML already prede-
fines some stereotypes, e.g.,�trace�, expressing the de-
pendence between two elements rendering the same con-
cept from different perspectives, or some common stereo-
types for classes (�boundary�,�entity�,�control�,
�exception� and�utility�).

A tagged valueis “an extension of the properties of
a UML element, which allows you to create new informa-
tion in that element’s specification.” (Booch et al., 1999).
The tagged value is mostly a user-defined property extend-
ing the semantics of model elements. Tagged values do
not have any graphic representation and are used to deter-
mine additional characteristics or attributes of model el-
ements. Each tagged value consists of a key-value pair,
which appears after an element’s name in curly braces,
like a version description often added to many building
blocks, which is not a primitive UML concept: {version
= 1.3} (Booch et al., 1999; OMG, 1999). If more than
one tagged value is associated with an element, commas
separate the values. The tagged value can be related as
a composition either with one stereotype or with another
model element. Figure 3 depicts the part of the UML

metamodel containing the described UML’s own extensi-
bility mechanisms (OMG, 1999).

To model an element which corresponds to a variable
feature, we introduce a new stereotype�variable� and a
tagged value with the tag name “feature”:

Stereotype/keyword: variable
Applies to symbol: Component, Action State in Activ-

ity diagram (OMG, 1999)
Meaning: Variable part matching the variable feature.

Tagged Value: feature
Applies to symbol: Component, Action State in Activ-

ity diagram
Meaning: Variable part stereotyped with�variable�,

matching the variable feature; key value:
String.

Each element with the stereotype�variable� has
to have a tagged value with the keyword “feature” de-
fined. A key value is a string corresponding to a feature
name from the feature diagram. Such an approach guaran-
tees the traceability from the feature diagram to a system
model and backward.

Figure 4 shows an example of using extensions de-
scribed in an UML activity diagram for registering a mail
subscription (in a mail subscription system). On this dia-
gram the subsequent steps for registering a new subscriber
use case are shown. The first difference between var-
ious subscription systems can be recognized in the first
branching activity: one can register by mail (with a prop-



Extending UML for modelling variability for system families 295

Fig. 4. UML activity diagram for registering a mail subscription.



S. Robak et al.296

erly formatted message) or just fill in a WWW form (here
there is a choice between the standard HTTP protocol and
the more secure but slower HTTPS protocol). Activities
implementing the corresponding variable elements from
the feature diagram are marked with the�variable�
stereotype. The consistency between the model and the
feature diagram is maintained by using the property “fea-
ture” contained in the tagged value.

The UML component diagram for implementing a
mail subscription system acts in a similar way (see Fig. 5).
The groups of features are modelled as packages and the
features themselves (mandatory and optional features) are
modelled as components. Similarly to the activity dia-
gram, the optional components are distinguished by the
stereotype�variable�. The tagged value “feature” cor-
responds to the name of the feature contained in a feature
diagram (see Fig. 2). For example, “User preferences DB”
component implements the optional feature “freq-user”
(post frequency in the user’s preferences).

Feature models can represent variation points and de-
pendencies between them in an explicit way. With feature
diagrams it is possible to differentiate between variabil-
ity within a member of a software family and also be-
tween different family members. This helps us to avoid
developing unnecessarily complex structures like compo-
nents, frameworks containing features that are not needed,
or contained but never used (Robak and Franczyk, 2001).
Feature modelling also provides implementation mecha-
nisms for representing variability. Within a configuration
the features have to be selected in order to instantiate a

Fig. 5. UML component diagram for implementing a mail subscription system.

family member from abstract system architecture. A cho-
sen condition is implicitly given in the feature configura-
tion. According to the selected features, the activity di-
agram is processed. As a result, the semantics of the if-
condition element in the activity diagram are changed to
process the selected variant set for each member of the
system family.

The presented approach shows the possibility of
mapping the variable features in the UML. To show
the principle we have to make use of one stereotype
�variable�. The approach is not limited to the use of
this one stereotype—stereotypes further rendering the ex-
act kind of variable FODA features (i.e. optional, alter-
native) or FODA extensions (or-features, etc.) are possi-
ble. If needed, the technique of using tagged values can
be extended to support further information necessary to
choose a variant (i.e. the binding time, the binding mode,
etc). One only has to define a tagged value with a proper
key (i.e. “binding_time”) and assign a value to the corre-
sponding model elements. Stereotypes and tagged values
could be added to all model elements, making it possi-
ble to label each model element as being variable. The
experience, however, has shown that these result in quite
complex models, and they are difficult to understand and
maintain without sophisticated tool support.

The approach described above allows uniting the
advantages of feature modelling with UML diagrams
adopted for distinguishing variability. The traceability of
a concept throughout system development is provided.
Using only lightweight UML extension mechanisms (such



Extending UML for modelling variability for system families 297

as stereotypes and tagged values) means that the existing
standard UML modelling tools can be used without any
extensions or adaptations.

4. Conclusions

Software product-lines have common properties and at-
tributes and vary according to their usage by specific mar-
kets. In domain analysis there is a wider scope of ab-
straction than we encounter in traditional object-oriented
analysis, because we have to find commonality not only
within an application, but also within related application
systems which form families. Commonality and variabil-
ity analysis notations containing also the details of binding
times, defaults and relationships between domains should
support the development of reusable software for system
families.

Feature models provide an abstract, independent and
concise representation of commonalities and variability
contained in the system family, but there is no tool support
for modelling features. As a standard, the UML is well
suited to exchange ideas between stakeholders, but it does
not provide necessary means to describe variability. The
presented approach constitutes an extension to overcome
this shortcoming. It proposes a consistent way of mod-
elling the variability of system families using predefined
UML modelling elements. This enables us to join the ad-
vantages of feature models with the UML and provides the
traceability of a concept throughout system development.
Various kinds of information needed to choose a variant
(like different kinds of sites, binding times and binding
modes, stakeholders, etc.) can be captured as additional
properties of modelling elements and notified as pairs of
tagged values. An application of lightweight UML exten-
sion mechanisms allows the existing standard UML mod-
elling tools to be used without any adaptations.

In the future we intend to provide our extensions for
all relevant UML diagram elements. A more formal def-
inition and application of diagrams will permit tool sup-
port. More concise formalization of semantics would al-
low the development of better consistency checking and
automation tools. This is impossible without wide coop-
eration among the object-oriented community in order to
extend the UML metamodel and the OMG standards.

Variability aspects of analysis and design methods
have to be investigated in detail. CASE tool support for
system family development methods has to be developed.
Appropriate CASE tools to achieve this aim should sup-
port the feature diagram notation and be able to manage
all additional information required by feature modelling
(especially the constraint management facility). It is also
important to provide traceability links to other models.

In order to reach more comprehensive support for
system family modelling, the next step is to integrate fea-
ture models into the UML, and specification of appropri-
ate constructs is to be defined as a special product-line
UML profile.

References

Arrango G. (1994):Domain Analysis Methods, In: Software
Reusability (W. Schäfer, R. Prieto-Dıaz and M. Mat-
sumoto, Eds.). — New York: Ellis Horwood, pp. 17–49.

Bass I., Clements P. and Kazman R. (1998):Software Architec-
ture in Practice. — New York: Addison-Wesley.

Boellert K. and Philippow I. (2000): Erfahrungen bei der
objektorientierten Modellierung von Produktlinien mit
FeatuRSEB. 1. — Deutscher Software-Produktlinien
Workshop (DSPL-1), Kaiserslautern, IESE-Report
No. 076.00/E, pp. 29–34.

Booch G., Rumbaugh, J. and Jacobson I. (1999):The Unified
Modeling Language User’s Guide. — New York: Addison-
Wesley.

Bosch J. (2000):Design and Use of Software Architectures.
Adopting and Evolving Product-Line Approach. — New
York: Addison-Wesley.

Breymann U. (1998):Designing Components with The C++
STL—A New Approach To Programming. — New York:
Addison-Wesley.

Buschmann F., Meunier R., Rohnert H., Sommerlad P. and Stal
M. (1996):Pattern-Oriented Software Architecture: A Sys-
tem of Patterns. — New York: John Wiley & Sons.

Clements P. and Northrop L.M. (1999):A Framework
for Software Product Line Practice – Version 2.0
[online]. — Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, Available at
www.sei.cmu.edu/plp/framework.html

Coplien J. (1999):Multi-Paradigm Design for C++. — New
York: Addison-Wesley.

Coriat M., Jourdan J. and Boisbourdin F. (2000):The SPLIT
method building product lines for software-intensive sys-
tems, In: Proc. Software Product Line Conf. (SPLC1),
(P. Donohoe, Ed.). — Massachusetts: The Kluwer Aca-
demic Publishers, pp. 147–166.

Czarnecki K. and Eisenecker U. (2000):Generative Program-
ming Methods, Tools and Applications. — New York:
Addison-Wesley.

DeBaud J.M. and Schmid K. (1999):A systematic approach
to derive the Scope of Software Product Lines. — Proc.
ICSE’99, Los Angeles, CA, pp. 34–43.

DeBaud J.M. (2000): The Truescope Approach to Software
Product Family Engineering. — First Software Product
Line Conference (SPLC1), Denver, USA.



S. Robak et al.298

Dijkstra E.W. (1972): Notes on Structured Programming, In:
Structured Programming (O.J. Dahl, E.W. Dijkstra and
C.A.R. Hoare, Eds.). — London: Academic Press.

Gamma E., Helm R., Johnson R. and Vlissides J. (1994):Design
Patterns – Elements of Reusable Object-Oriented Software.
— New York: Addison-Wesley.

Gomma H. (2000):Object oriented analysis and modeling for
families of systems. — Proc. 6th Int. Conf. ICSR-6, Vi-
enna, Austria, In: Software Reuse: Advances in Software
Reusability (W.B. Frakes, Ed.), Berlin: Springer, pp. 89–
99.

Griss M.L., Favaro J. and D’Alessandro M. (1998):Integrating
Feature Modeling with the RSEB. — Proc. Int. Conf.Soft-
ware Reuse, ICSR98, Victoria, BC, IEEE, pp. 36–44.

Griss M.L. (2000): Implementing product-line features with
component reuse. — Proc. 6th Int. Conf. ICSR-6, Vi-
enna, Austria, In: Software Reuse: Advances in Software
Reusability (W.B. Frakes, Ed.), Berlin: Springer, pp. 137–
152.

Hein A., Schlick M. and Vinga-Martins R. (2000):Applying
feature models in industrial settings, In: Proc. Software
Product Line Conf. (SPLC1), (P. Donohoe, Ed.). — Mas-
sachusetts: The Kluwer Academic Publishers, pp. 47–70.

Jacobson I., Griss M.L. and Jonnson P. (1997):Software Reuse:
Architecture. — Process and Organization for Business
Success, New York: Addison-Wesley Longman.

Jarzabek S. (2000): Product Line Approach. Net. Ob-
jectDays 2000. — Proc. 2-nd Int. Symp. Gener-
ative and Component-Based Software Engineer-
ing, GCSE’2000, Erfurt, Germany, available at:
http://www.netobjectdays.org/node00

Johnson R.E. (1997):Frameworks = (Components + Patterns).
– Comm. ACM, Vol. 40, No. 10, pp. 39–42.

Kang K., Cohen S., Hess J., Nowak W. and Peterson S.
(1990):Feature-oriented domain analysis (FODA). Feasi-
bility study. — Technical Report No.CMU/SEI-90-TR-21,
Software Engineering Institute, Carnegie Mellon Univer-
sity, Pittsburgh, Pennsylvania.

Kiczales G., Lamping J., Mendhekar A., Maeda C., Lopes C.V.,
Loingtier J.M. and Irvin J. (1997):Aspect-Oriented Pro-
gramming. — Proc. 11th European Conf.Object-Oriented
Programming, ECOOP97, Jyväskylä, Finland, (M. Aksit
and S. Matsuoka, Eds.), Berlin: Springer-Verlag.

Kobryn C. (1999):UML 2001: A standarization Odyssey. —
Comm. ACM, Vol. 42, No. 10, pp. 29–37.

Kruchten P. (1995):The4 + 1 view model of architecture. —
IEEE Software, Vol. 12, No. 6, pp. 42–50.

Kruchten P. (1998):The Rational Unified Process. — New York:
Addison-Wesley Longman.

OMG (1997):Object Management Group, available at
http://www.omg.org

OMG (1999): OMG Unified Modeling Language Specification
(draft), V. 1.3, available at:
www.rational.com/uml/resources/
documentation/ (pdf-format).

Parnas D.L. (1976):On the design and development of program
families. — IEEE Trans. Softw. Eng., March.

Rational (2002) — Available at:www.rational.com

Robak S. and Franczyk B. (2001):An object-oriented evo-
lutional approach for developing system families using
frameworks. — Studies in Automatics and Computer Sci-
ence, Vol. 26, Poznán, pp. 179–189 (in Polish).

Szyperski C. (1998):Component Software: Beyond Object-
Oriented Programming. — New York: Addison-Wesley.

Szyperski C. and Pfister C. (1997):Workshop on Component-
Oriented Programming, Summary. — Special Issues
on Object-Oriented Programming, ECOOP96 Workshop
Reader (M. Muellhauser, Ed.), Heidelberg: dpunkt Verlag.

Vici A.D., Argentieri N., Mansour A., d’Alessandro M. and
Favaro J. (1998):FODAcom: An Experience with Domain
Analysis in the Italian Telecom Industry. — Proc. 6th Int.
Conf. ICSR-6, Vienna, Austria, In: Software Reuse: Ad-
vances in Software Reusability (W.B. Frakes, Ed.), Berlin:
Springer, pp. 166–175.

Voget S., Angilletta I., Herbst I. and Lutz P. (2000):
Behandlung von Variabilitaeten in Produktlinien mit
Schwerpunkt Architektur. — 1. Deutscher Software-
Produktlinien Workshop (DSPL-1), Kaiserslautern, IESE-
Report No. 076.00/E, pp. 23–28.

Webster B. (1995):Pitfalls of Object-Oriented Development:
A Guide to the Wary and the Enthusiastic. — New York:
M&T Books.

Weiss D.M. and Lai C.T.R. (1999):Software Product-Line Engi-
neering: A Family Based Software Development Process.
— New York: Addison-Wesley.

Withey J. (1996): Investment analysis of software assets for
product lines. — Tech. Rep. No. CMU/SEI-96-TR-010,
ADA 315653. Pittsburgh, PA: Software Engineering Insti-
tute, Carnegie Mellon University.

Received: 26 January 2001
Revised: 15 September 2001
Re-revised: 18 March 2002


