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MEASURING AND MAINTAINING CONSISTENCY:

A HYBRID FTF ALGORITHM

James R. BUNCH
∗, Richard C. LE BORNE∗∗,

Ian K. PROUDLER***

Due to the versatility as well as its ease of implementation, the Fast Transversal
Filters algorithm is attractive for many adaptive filtering applications. However,
it is not widely used because of its undesirable tendency to diverge when operat-
ing in finite precision arithmetic. To compensate, modifications to the algorithm
have been introduced that are either occasional (performed when a predefined
condition(s) is violated) or structured as part of the normal update iteration.
However, in neither case is any confidence explicitly given that the computed
parameters are in fact close to the desired ones. Here, we introduce a time in-
variant parameter that provides the user with more flexibility in establishing
confidence in the consistency of the updated filter parameters. Additionally, we
provide evidence through the introduction of a hybrid FTF algorithm that when
sufficient time is given prior to catastrophic divergence, the update parameters
of the FTF algorithm can be adjusted so that consistency can be acquired and
maintained.

Keywords: FTF, numerical stability, consistency

1. Introduction

It is well-known that the Fast Transversal Filters (FTF) algorithm suffers from nu-
merical instability when operating under the effects of finite precision arithmetic.
Although the underlying source for this instability has not fully been understood, the
symptoms leading toward it have been well-studied (Cioffi and Kailath, 1984; Lin,
1984; Slock and Kailath, 1991): In finite precision arithmetic an updating expression
for one of the parameters in the FTF algorithm, the likelihood variable, was found to
take on meaningless values just prior to the catastrophic divergence of the algorithm.
Since this parameter implicitly defines relationships between itself and other parame-
ters, its loss of physical meaning immediately causes a chain reaction that uncouples
the FTF algorithm’s parameters, which in turn leads to the divergence.
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As a consequence, any practical use of the FTF algorithm needs to monitor any
negative consequence from finite precision computations. To address this problem, a
so-called rescue variable has been introduced that monitors the quality (consistency)
of the algorithm.When the rescue variable takes on a value outside a permissible range
of values, some pre-defined action is taken. Another approach, leading to what has
been termed the stabilized FTF algorithm (Slock and Kailath, 1991), computes key
parameters through multiple algebraic implementations and then defines its updated
value from their convex combination.

In this work, we present an alternate means for tracking the finite precision
effects. When compared with the rescue variable, the predictor presented here provides
an earlier indication of potential FTF divergence. Additionally, we provide evidence
through the introduction of a hybrid FTF algorithm that when sufficient time is
given prior to catastrophic divergence, the update parameters of the FTF algorithm
can be adjusted so that consistency can be acquired and maintained without the
need for a complete restart of the algorithm. This algorithm is novel in that it uses
the unstable FTF algorithm as often as possible, but when consistency has degraded
beyond a threshold, this algorithm relies on a more stable variant for a pre-defined
number of update cycles before attempting to use the unstable FTF algorithm again.
The possible advantage is in cases in which the unstable FTF algorithm can operate
without divergence, providing not only confidence of its solution, but a potential for
savings in computational cost.

2. Fast Transversal Filters Algorithm

The FTF algorithm is a result of taking advantage of redundancies arising from the
solution of four transversal filtering problems, each related through their use of the
same input data; a filter for each of the one-step forward and backward prediction
problems, a filter defining the gain vector of the Recursive Least Squares (RLS) algo-
rithm, and a filter to provide the weight vector corresponding to the desired problem
being solved. Combined in a special way, these four transversal filters provide the
exact solution to the RLS problem at all times and define the FTF algorithm, which
is illustrated in Table 1. Parameter definitions can be found in Table 2.

Unfortunately, one of the updated parameters, the likelihood parameter γm(n)
at time index n for a filter of order m, may become negative when its update com-
putations are performed in finite precision arithmetic. It is well-known that in exact
arithmetic 0 ≤ γm(n) ≤ 1 and a precursory condition to divergence results from this
condition being violated (Haykin, 1991, p.579). The standard approach to monitor-
ing the effect from finite precision arithmetic is the so-called rescue variable (Haykin,
1991, p.707),

ζm(n) =
γm+1(n)

γm(n)
, (1)
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Table 1. Summary of the FTF algorithm in which H symbolizes the Hermitian trans-
pose, and updating is performed for a filter of order m, at time-index n.

Prediction:

ηm(n) = a
H
m(n− 1)um+1(n),

fm(n) = γm(n− 1)ηm(n),

Fm(n) = λFm(n− 1) + ηm(n)f
∗

m(n),

γm+1(n) = λ
Fm(n− 1)
Fm(n)

γm(n− 1),

km+1(n) =




0

km(n− 1)



+ λ−1
ηm(n)

Fm(n− 1)
am(n− 1),

am(n) = am(n− 1)− f
∗

m(n)





0

km(n− 1)



,

βm(n) = λBm(n− 1) km+1,m+1(n),

γm(n) = [1 − β
∗

m(n)γm+1(n) km+1,m+1(n)]
−1γm+1(n),

rm(n) = [1 − β
∗

m(n)γm+1(n) km+1,m+1(n)],

bm(n) = γm(n)βm(n),

Bm(n) = λBm(n− 1) + βm(n)b
∗

m(n),



km(n)

0



 = km+1(n)− km+1,m+1(n)cm(n− 1),

cm(n) = cm(n − 1) − b
∗

m(n)




km(n)

0



.

Filtering:

ξm(n) = d(n)− ŵ
H
m(n − 1)um(n),

em(n) = γm(n)ξm(n),

ŵHm(n) = ŵ
H
m(n− 1) + km(n)e

∗

m(n).

which is also a positive quantity in exact arithmetic. By utilizing some known rela-
tionships between the likelihood parameter and other filter parameters, the rescue
variable can alternatively be given as

ζm(n) =
λBm(n− 1)

Bm(n)
= 1− ψm(n)γm+1(n)k

∗

m+1,m+1(n), (2)
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Table 2. Summary of the FTF algorithm parameter definitions: updat-
ing is performed for a filter of order m, at time-index n.

Prediction:

ηm(n): a priori forward prediction-error,

fm(n): a posteriori forward prediction-error,

Fm(n): sum of forward predicition-error squares,

km+1(n): normalized gain vector,

am(n): tap-weight: forward prediction filter,

βm(n): backward a priori prediction-error,

γm(n): likelihood variable,

rm(n): rescue variable: action taken if < 0,

bm(n): backward a posteriori prediction-error,

Bm(n): sum of backward predicition-error squares,

cm(n): backward prediction-error filter tap weight,

Filtering:

ξm(n): a priori prediction-error,

em(n): a posteriori prediction-error

ŵHm(n): a posteriori tap-weights.

where λ denotes the forgetting factor while the backward power, the a priori back-
ward residual, and the last element of the normalized Kalman gain parameter are
given by Bm(·), ψm(n) and k

∗

m+1,m+1(n), respectively. Typically, (2) is the rescue
variable implemented in the FTF algorithm. If ζm(n) becomes negative for any n,
then the algorithm is “rescued”, i.e., it is reinitialized under more relaxed assump-
tions than the usual pre-windowed case (Lin, 1984). Typically, (2) becomes negative
immediately before catastrophic divergence occurs, and hence drastic measures (e.g.,
reinitialization) are necessary. Conversely, if divergence can be detected before the
numerical errors have rendered the filter parameters meaningless, then alternative,
less extreme measures other than reinitialization may be possible. It is in this sense
that we introduce the hybrid FTF algorithm in Section 4.

3. Tracking Consistency

To motivate the need for tracking consistency during the normal updating of filter
parameters, we must first define what is meant by the term consistency, as well as its
role in the FTF algorithm. To this end, we will briefly concern ourselves with a gen-
eralized formulation of the problem, perturbations involved with its formulation, and
how consistency, convergence and stability can be formulated in a single expression.
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3.1. Exact Arithmetic

Suppose that a problem P consists in determining some unknown x ∈
�
n which is

given by

φ(x) = y, y ∈
� m , (3)

i.e., φ is the mapping φ : X −→ Y . This problem is considered well-posed in the
Hadamard sense provided that x exists, it is unique, and the inverse mapping φ−1

is continuous. It is with the continuity of φ−1 that the term stability can be applied.
If one chooses to formulate the inverse directly, we may simply write

Φ(y) = x, (4)

where Φ is a representation of φ−1, i.e., only the results are the same; the computa-
tional routes, and hence the conditions for continuity, may differ. As is often the case,
we do not know y, but instead, an approximation yδ = y(1 + δ), 0 ≤ δ < 1 is given.

Likewise, it is either impossible or undesirable to use (3) (or (4)) directly, but
rather an approximation φδ (or equivalently, Φδ) is substituted to give an approxi-
mation xδ to x. In this formulation, assuming that P is well-posed, the parameter
δ defines the family of approximations

φδ(xδ) = yδ (5)

or

Φδ(yδ) = xδ , (6)

for which we are interested in establishing general criteria to ensure the convergence
of the solution, i.e., xδ −→ x as δ −→ 0 (and yδ −→ y). As hinted, continuity
(pointwise and uniform) is an important cornerstone for this notion of convergence.

When ignoring implementational concerns such as finite precision arithmetic and
assuming some means to measure expressions, denoted by M, we can express the
direct error (resp. residual error) Φδ(yδ)− Φ(y) (resp. φδ(xδ)− φ(x)) through

Φδ(yδ)− Φ(y)
︸ ︷︷ ︸

M(direct convergence)

= Φδ(yδ)− Φδ(y)
︸ ︷︷ ︸

M(stability)

+Φδ(y)− Φ(y)
︸ ︷︷ ︸

M(direct consistency)

(7)

or

φδ(xδ)− φ(x)
︸ ︷︷ ︸

M(res. convergence)

= φδ(xδ)− φδ(x)
︸ ︷︷ ︸

M(stability)

+φδ(x)− φ(x).
︸ ︷︷ ︸

M(res. consistency)

(8)

Hence we see in (7) that if Φδ(y) = Φ(y), we have that stability implies convergence.
When this is not the case, eqns. (7) and (8) suggest that stability plus consistency
implies convergence. Although stability is a necessary condition for convergence, it is
not a sufficient one. These notions will now be formalized.

Definition 1. A set of mappings {φδ : X −→ Y } is equicontinuous at x if, for all
0 ≤ δ < 1 and for all ζ > 0, there exists an η > 0, independent of δ, such that
‖φδ(x̂)− φδ(x)‖ ≤ ζ whenever ‖x̂− x‖ ≤ η.
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As an immediate consequence of the continuity of φ and its inverse, it is easy to
see that the convergence independent of δ is ensured if and only if φ is equicontinuous
at x, i.e., xδ −→ x as δ −→ 0 if and only if φ(xδ) −→ y. If, on the other hand, we are
interested in the convergence properties of φδ , then we need a notion of consistency
in addition to equicontinuity.

Definition 2. The mapping φδ is consistent with respect to φ if for some η > 0,
φδ(x̂) −→ φ(x̂) as δ −→ 0 whenever ‖x̂− x‖ < η.

Definition 3. Φδ = φ
−1
δ is an approximation to the inverse mapping φ

−1 if and only
if φδ is consistent with respect to the mapping φ.

Theorem 1. For φδ consistent with respect to φ, a sufficient condition for conver-
gence is the equicontinuity of Φδ for all 0 ≤ δ < 1.

The proof of Theorem 1 can be found in (Chaitin-Chatelin and Frayssé, 1996, p.10).

With respect to the FTF algorithm, let the mapping Φ define the updating pro-
cess of the parameters. We will see that the second term in (7) may deeply influence
the convergence since the derivation of the FTF algorithm assumes, but does not ex-
plicitly enforce, certain relationships between the updated parameters. Direct consis-
tency describes the degree in which parameters (that have been perturbed) maintain
these relationships (mappings), the loss of which can be enough to cause divergence.
If we assume that the FTF algorithm provides usable results for sufficiently small
perturbations in its parameters (i.e., stability is retained for small perturbations in
its input), the central issue becomes the maintenance of consistency.

Consider now the rescue variable defined in (2). We see that if only a large
inconsistency between parameters can be detected, then only a small amount of in-
formation from the filter’s parameters can be retained. On the other hand, lacking
sufficient warning of an impending divergence, one can try to enforce consistency at
every update iteration. Slock and Kailath (1991) suggested that multiple evaluations
of certain parameters be made (through different computational routes) in which the
final update is defined via a convex combination. The idea here is to use these re-
dundantly computed parameters to control the growth of the term Φδ(y)−Φ(y) and
hence to retain consistency. Since there has not been a means to measure this term,
this procedure must be done at each iterative update cycle.

3.2. Iterative Measurement of Consistency

Rather than a static criterion such as that given by (2), we seek a dynamic criterion
which can measure the consistency that is implicitly defined throughout the parame-
ters. To this end, by combining (2) with the equation

γm+1(n) = λ
Fm(n− 1)

Fm(n)
γm(n− 1), (9)

we find that

Bm(n− 1)

γm(n− 1)Fm(n− 1)
=

Bm(n)

γm(n)Fm(n)
. (10)
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That is, there exists a time invariant relationship in exact arithmetic deviations from
which provide a direct measurement of any destabilizing effects. In contrast to (2),
time-deviations detected in (10) can be used in conjunction with adjustable thresholds:
The tighter the threshold for acceptable performance, the earlier the detection of
numerical error propagation that can ultimately lead to catastrophic divergence. This
can be seen as a means to establish if, and to what degree, the state vector is on the
consistency manifold, as defined independently in (Regalia, 1992; Slock and Kailath,
1992), respectively.

4. Hybrid FTF Algorithm

In this section we suggest a possible implementation of (10) into the FTF algorithm
to produce a hybrid FTF algorithm. Instead of restarting the FTF algorithm when a
loss of consistency is detected, we will use the algorithm suggested by Slock (1991).
If a loss of consistency is detected early enough it is believed that this algorithm can
retain and possibly even improve the consistency. However, this cannot be expected
to occur after a single update iteration. This suggests that after the first violation
of a consistency threshold, which may be adaptive or static in value, there should
be a sufficient period of time for the consistency to be regained, i.e., for a certain
predefined number of update cycles, the gate is forced to direct incoming data to
Slock’s algorithm. After this, (10) will use the FTF algorithm until the threshold is
violated again.

If the data are such that the FTF algorithm cannot retain consistency for a
significant number of update cycles, then the hybrid FTF algorithm will essentially
become Slock’s algorithm. Conversely, when the FTF algorithm can be used without a
significant loss of consistency for a high number of update cycles, the hybrid algorithm
will be essentially the standard FTF algorithm. For cases that describe a mixture of
these scenarios, the hybrid algorithm will be a combination of both the algorithms.
Nevertheless, (10) makes it possible to determine which algorithm is to be used.

5. Experiments

5.1. Detecting Losses in Consistency

Using Matlab, the FTF algorithm as defined in (Haykin, 1991, p.591) and given
in Table 1 was evaluated against the standard RLS algorithm. A fifth-order linear
prediction problem was set up using a coloured noise sequence d(n), n = 1, . . . , 5000
to which observation noise was added. The noise sequence d(n) was generated using a
white noise sequence u(n), n = 1, . . . , 5000 and the second-order difference equation

d(n) = u(n) + 1.371787d(n− 1)− .9409d(n− 2), (11)

where the coefficients were choosen by experimentation to make the FTF algorithm
diverge after approximately 5000 iterations. For 100 trials, each differing by the seed
used to generate the random input sequence, the iteration in which the rescue variable
ζm(n) first became negative was compared against the following criteria involving (10)
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Table 3. Mean difference taken between the first violation of (2)
(becoming negative) and (12) for a given tolerence εi.

i εi Mean difference, 100 trials

1 10−3 153

2 10−4 444

3 10−5 758

to indicate probable near-term divergence: the first iteration t violating the criteria
defined by

[
t∑

k=20

∣
∣
∣
∣

Bp(k)

γp(k)Fp(k)
−

Bp(k − 1)

γp(k − 1)Fp(k − 1)

∣
∣
∣
∣

]

/t < εi, (12)

where εi = 10
−3, 10−4 or 10−5, t = 20, . . . , 5000. Here p was randomly selected for

each trial (in which 1 ≤ p ≤ 5). For (12) an allowance of approximately 20 iterations
was provided for initialization. Table 3 provides the mean difference between the first
violation of ζm(n) < 1 and (12).

Table 3 supports our expectations: as ε decreases, i.e., the less tolerant one is for
inconsistencies, the more time (iterations) one has to avoid catastrophic divergence.
This may allow for more flexibility regarding the response while the filter parameters
are still usable.

The complete history of (2) and (10) for the last trial, denoted as the ‘Rescue
Variable’ and ‘BgF’, respectively, is given in Fig. 1. The consistency becomes eroded
well before the rescue variable becomes negative. For each trial and for each consisten-
cy tolerance εi, the iteration in which the first violation of the rescue variable and (12)
was stored is given in Fig. 2. For trials in which divergence did not occur within the
5000 iteration limit, a large positive value was given to represent the iteration for
the rescue parameter (dashed line) while the value zero was given as the iteration
representing (12). The motivation for this was to visually depict cases in which the
FTF did not diverge in the defined number of iterations while the threshold tolerance
may or may not have been exceeded. This scenario occurred twice between the tenth
and twentieth trial (see Fig. 2, note the two spikes going to zero). For ε3 = 10

−5, the
consistency criterion was violated after 4000 iterations for both of these trials, but
only for one with ε2 = 10

−4 and for neither with ε1 = 10
−3.

The difference between the first violation of the criteria defined for the rescue
variable and (12) was also computed for each trial. Figure 3 gives the results of
these computations for each εi (dashed line) as well as the mean value (solid line).
This graphically depicts the relationship between the consistency tolerance εi and the
filter’s proximity to divergence (as measured by the rescue variable first becoming
negative, which usually occurs close to the point of divergence, cf. Fig. 1).



Measuring and maintaining consistency: A hybrid FTF algorithm 1211

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−1.5

−1

−0.5

0

0.5

1

1.5

R
es

cu
e 

V
ar

ia
bl

e

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−2

−1

0

1

2

Time Iteration Index

B
gF

Fig. 1. The complete history for trial 100, in which the rescue
variable is compared with (10) as denoted by ‘BgF’.
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Fig. 2. The iteration in which the first violation occurs for the rescue vari-
able (dashed) and (12), denoted as ‘BgF’ (solid line). If a violation
does not occur for a particular trial, the iteration is set to a large
positive value for the rescue variable and to zero for (12).

5.2. Hybrid FTF Algorithm

We now consider whether Slock’s algorithm, here to be termed the Stable FTF, can
maintain or even improve consistency once it has become degraded. Using the imple-
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Fig. 3. FTF algoritithm update iterations between the first violation occurances for the
rescue variable and (12). A positive value n indicates that (12) was satisfied
(a consistency violation occurred) n iterations before the rescue variable first
became negative. The mean values (solid line) are defined by Table 3.

mentation based on the hybrid FTF algorithm described in Section 4, we used the
same linear prediction problem described in Section 5.1 to test three scenarios, each
differing through a user-defined input parameter, the radius, which determines the
coefficents in eqn. (11): (a) When the FTF algorithm is not in danger of diverging,
will the hybrid algorithm detect this and allow the FTF algorithm to run its normal
course (radius = .30)? (b) When the FTF algorithm does not diverge in less than
5000 iterations but loses consistency, will the hybrid algorithm detect the loss in time
to bound its decay (radius= .50)? (c) When the FTF algorithm loses consistency
rapidly, can the hybrid algorithm maintain enough consistency to avoid catastrophic
divergence (radius= .97)?

For each scenario, one hundred trials were run, each for 5000 iterations and
each with a new seed used to generate the input data sequence. For example, Fig. 4
illustrates each of these scenarios for the last (100-th) trial, in which the computed
value of the right-hand side of (10) is shown for each iteration. The three scenarios
that are defined through the value of the radius are denoted by “rad”. One can see
that for the FTF algorithm the three scenarios are given across the first row. For
the first scenario, i.e., rad = .30, there was no apparent loss of consistency in the
5000 iterations that the trial was run. However, for the second scenario, we see that
as the trial was completing its last iterations, consistency was beginning to be lost
but, nonetheless, the algorithm did not diverge. Finally, for the last scenario, i.e.,
rad= .97, there was a significant consistency loss and the algorithm even diverged
before its last iteration. One also sees that for the other two algorithms, called the
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Hybrid FTF and the Stable FTF, the value of the right-hand side of (10) remained
constant.
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Fig. 4. The value of the right-hand side of (10) for each of 5000 itera-
tions of the 100-th (last) trial. Each column represents one of
the three scenarios defined through the parameter ‘rad’.

To evaluate the consistency as given by eqn. (10), the relative uncertainty as
defined with respect to the RLS algorithm is presented in Fig. 5. Specifically, the right-
hand side of (10) was computed for each algorithm from which the consistency for
the RLS algorithm was interpreted as the best known value. The relative uncertainty
in consistency was then computed as

‖BgFRLS −BgFi‖

‖BgFRLS‖
, (13)

where i denotes each of the other algorithms, i.e., the FTF, the Hybrid FTF, and the
Stable FTF (as given in (Slock and Kailath, 1991)). We see that for each of 100 trials
of 5000 iterations, the FTF algorithm shows much worse relative consistency with
respect to the RLS algorithm whereas the hybrid and stable algorithms are the same.
This demonstrates that the hybrid algorithm, through its use of (12), can sense a
degradation in consistency early enough so that by calling (in blocks of 50 iterations)
the stable FTF algorithm, a further erosion of consistency, and even divergence, is
avoided.

To give a portrait of how consistency is being controlled by the Hybrid FTF algo-
rithm, we have computed the absolute uncertainty with respect to the RLS algorithm
for each of the algorithms for the last trial. The result can be found in Fig. 6 for each
scenario. If we interpret the desired consistency to be that which is given by the RLS
algorithm, then this absolute error (or uncertainty) can be viewed as a measurement
of the distance away from the consistency manifold. We see here that for the FTF
algorithm and the first scenario (rad= .30), the consistency was indeed beginning to
depart from the manifold even if it was not apparent in Fig. 4, where just the value
of the right-hand side of (10) was plotted at each iteration of the last trial. Also, in
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Fig. 5. The relative uncertainty in the consistency as measured with re-
spect to the RLS algorithm. Each of 100 trials is given for the three
sencarios that are defined through the value of the parameter ‘rad’.

the last scenario (rad= .97) we see that the hybrid FTF algorithm briefly departed
from the manifold shortly after the 2000-th iteration but then returned.

Finally, to assess how much work the stable FTF algorithm is to perform, we
present in Fig. 7 a plot that reflects the number of calls to the stable FTF required
for each trial and for each scenario. The solid horizontal line denotes the mean value
over 100 trials for each scenario while the open circles give the numbers of calls for each
individual trial. We see that, as anticipated, the fewest number of calls to the stable
FTF algorithm occured in the first and second scenario in which the FTF algorithm
did not diverge. Between these first two scenarios the mean value was approximately
the same. For the last scenario, however, there was indeed a much heavier demand
for the stable FTF algorithm. In terms of an operation count, we did not perform an
analysis since our implementation was of the most straightforward and possibly naive
kind. Hence this is left for ongoing and future work.

6. Conclusion

We have given a new tool to monitor the finite precision effects before the FTF algo-
rithm becomes disconnected from the RLS problem it solves and subsequently suffers
from catastrophic divergence. Unlike the existing rescue variable, the proposed device
can be given a tolerance for acceptable uncertainty due to finite precision effects. Ad-
ditionally, this device can signal the eventual divergence of the FTF algorithm sooner
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Fig. 6. The absolute uncertainty in consistency as measured with
respect to the RLS algorithm. For each scenario this value
is plotted for 5000 iterations of the 100-th (last) trial.

than the standard rescue variable, thus allowing a maintenance of consistency before
the other parameters become too severely affected.

We have tested this conjecture by introducing a hybrid FTF algorithm that at-
tempts to use the unstable FTF algorithm until consistency has eroded beyond a
tolerable level at which time the algorithm essentially turns into the stable FTF al-
gorithm for a predefined number of iterations. After these iterations the hybrid FTF
algorithm once again uses the FTF algorithm. Experimentation with the hybrid algo-
rithm revealed that it is indeed possible to switch from the unstable FTF algorithm
to the stable one and to regain the lost consistency. We have also seen that the hybrid
FTF algorithm performs very much like the stable FTF algorithm but, unlike it, it
has a potential to be computationally as efficient as the unstable FTF.
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