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ON THE CHOICE OF SUBSPACE FOR ITERATIVE
METHODS FOR LINEAR DISCRETE
ILL-POSED PROBLEMS
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Many iterative methods for the solution of linear discrete ill-posed problems with
a large matrix require the computed approximate solutions to be orthogonal to
the null space of the matrix. We show that when the desired solution is not
smooth, it may be possible to determine meaningful approximate solutions with
less computational work by not imposing this orthogonality condition.

Keywords: minimal residual method, conjugate gradient method, ill-posed
problems

1. Introduction

This paper is concerned with the design of iterative methods for the computation of
approximate solutions of linear systems of equations

Az =b, AeR™", FeR', beR", (1)

with a large matrix A of ill-determined rank. Thus, A has many “tiny” singular
values of different orders of magnitude. In particular, A is severely ill-conditioned.
Some of the singular values of A may be vanishing. We allow m >mn or m < n. The
right-hand side vector b is not required to be in the range of A.

Linear systems of equations of the form (1) with a matrix of ill-determined rank
are obtained when discretizing linear ill-posed problems, such as Fredholm integral
equations of the first kind with a smooth kernel. They also arise in image restoration.
Following Hansen (1998), we refer to linear systems of equations with a matrix of
ill-determined rank as linear discrete ill-posed problems.

In many linear discrete ill-posed problems that arise in the applied sciences and
engineering, the right-hand side vector b is contaminated by measurement and dis-
cretization errors, i.e.,

b=b+e, (2)
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where b € R™ denotes the unknown error-free right-hand side in the range of A and
e € R™ represents the error. We refer to e as the error vector or the noise vector.

We would like to determine a solution of the consistent linear discrete ill-posed
problem with the unknown error-free right-hand side vector b,

Ax =b. (3)

If the solution of (3) is not unique, then one is typically interested in computing the
solution of minimal Euclidean norm. We denote it by x*.

Since the right-hand side of (3) is not known, we seek to determine an approx-
imation of x* by computing an approximate solution of the available linear system
of equations (1). We remark that due to the severe ill-conditioning of the matrix A
and due to the presence of the error e in the right-hand side vector b, the least-
squares solution Z* of minimal Euclidean norm of (1) generally does not constitute
a meaningful approximation of the minimal-norm least-squares solution z* of (3).

In order to be able to compute a meaningful approximation of x*, it is necessary
to replace the problem (1) by a problem that is less sensitive to perturbations in
the right-hand side b. This replacement is commonly referred to as regularization.
One of the most popular regularization methods is Tikhonov regularization, which
replaces (1) by the minimization problem

: 712 2

min (| Az —b|[* + X[ Lal|?). (4)
Here X is a nonnegative real scalar, often referred to as the regularization parameter,
and L is a regularization operator. Throughout this paper ||-|| denotes the Euclidean
vector norm or the associated induced matrix norm. The value of the regularization
parameter determines the sensitivity of the problem (4) to perturbations, and how
much the solution of the minimization problem differs the from the minimum-norm
least-squares solution z* to (3).

Recently, the computation of a meaningful approximation of z* by applying
a few steps of an iterative solution method to the linear discrete ill-posed problem
with a contaminated right-hand side (1) has received considerable attention. This
approach is discussed in (Calvetti et al., 1999b; 2000c; Hanke, 1995; Hanke and Nagy
1998; Hansen, 1998) for linear discrete ill-posed problems (1) with a symmetric matrix
and in (Calvetti et al., 2002a; 2000b; 2002b) for linear discrete ill-posed problems with
a nonsymmetric matrix. The performance of the Conjugate Gradient (CG) method
applied to the normal equations associated with (1),

AT Az = ATD, (5)

is considered in (Hanke, 1995; Hanke and Hansen, 1993; Hansen, 1998). Since the
matrix A in (1) is assumed to be of ill-dermined rank, so is the symmetric matrix
AT A of (5). Thus the consistent linear system of (5) is a linear discrete ill-posed
problem. In the iterative methods, the iteration number can be thought of as the
regularization parameter (see below).

Iterative methods proposed in the literature for the solution of linear discrete
ill-posed problems with a symmetric matrix A determine iterates in the range of the
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matrix to ensure that the iterates are orthogonal to the null space of the matrix; see
(Calvetti et al., 1999a; 1999b; Hanke, 1995) for discussions. For instance, the Minimal
Residual (MR) method by Paige and Saunders (1975) is a popular iterative method for
the solution of linear systems of equations with a symmetric indefinite nonsingular

matrix. When applied to the solution of the linear discrete ill-posed problem (1)
(M R)

with initial approximate solution = 0, it generates a sequence of iterates
ngR), féMR), ngR), ... such that QEEMR) is in the Krylov subspace

K¢ (A4, b) = span{i), Ab, ... 7Ae_ll;}.

We remark that as the dimension ¢ of the Krylov subspace increases, the problem
solved by the iterative method resembles more and more the original problem (1).
Therefore the dimension of the Krylov subspace, or equivalently the iteration number,
can be thought of as a regularization parameter.

Hanke (1995) proposed that a variant of the MR method, which we refer to as
the Range Restricted Minimal Residual (RRMR) method, be used for computing ap-

proximate solutions of linear discrete ill-posed problems. The ¢-th iterate computed

by the RRMR method, denoted by :TcéRRMR), lies in the Krylov subspace K, (A, Al;),

which is in the range of A. Since A is symmetric, :%éRRMR) is in the range of AT

as well and, therefore, is orthogonal to the null space of A. Details of the MR and

RRMR methods are discussed in Section 2. We remark that iterates iéCG) generated

by the CG method, when applied to the normal equations (5) with initial approxi-

mate solution i’éCG) = 0, are in the Krylov subspace K (ATA,ATB) for £ > 1. In
. . ~(CG)

particular, the iterates ,

to the null space of A.

are in the range of AT and therefore are orthogonal

Let (1) be a linear discrete ill-posed problem with a noisy right-hand side b
such that the minimal-norm least-squares solution x* of the associated discrete ill-
posed problem (3) with the noise-free right-hand side b represents the discretization
of a function that is not smooth. It is the purpose of the present paper to show
that it can be advantageous to compute approximate solutions of (1) by iterative
methods that do not force the computed iterates to be in the ranges of A or AT.
The advantages include faster convergence towards an acceptable approximation of
z* and, not seldom, a computed approximation of superior quality. The reason for
this is that iterates in the ranges of A or AT represent discretizations of smooth
functions, which may not be well suited to approximate the discretization of the
nonsmooth function x*. On the other hand, when a linear discrete ill-posed problem
has a minimal-norm least-squares solution z* that is the discretization of a smooth
function, iterative methods that require the iterates to lie in the ranges of A or AT
often perform well.

Section 2 discusses linear discrete ill-posed problems (1) with a symmetric ma-
trix and presents numerical examples that illustrate the performance of the MR and
RRMR methods. Both linear discrete ill-posed problems, whose minimal-norm least-
squares solutions z* represent smooth and non-smooth functions, are considered.
Comparisons with the CG method applied to the normal equations (5) are also pre-
sented. Moreover, the section describes an implementation of the RRMR method that
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requires fewer inner product evaluations than implementations described in (Calvetti
et al., 1994b; Hanke, 1995).

Section 3 considers linear discrete ill-posed problems (1) with a nonsymmetric
matrix. We compare the GMRES method, which determines iterates in the Krylov
subspaces K, (A, l;), ¢ =1,2,..., with a variant of this method, referred to as the
Range Restricted GMRES (RRGMRES) method, which determines iterates in the
Krylov subspaces K¢ (A, Ab), £ =1,2,.... Thus, similarly to the RRMR method, the
RRGMRES method determines iterates in the range of A. Moreover, we compare
the GMRES and RRGMRES methods with the CG method applied to the normal
equations (5) and find that, typically, the GMRES method determines meaningful
approximate solutions of (3) with least computational effort when the minimal-norm
least-squares solution z* of (3) represents the discretization of a nonsmooth function.
Section 3 also illustrates how the GMRES method can be applied to linear systems
of equations with a nonsquare matrix. Section 4 contains concluding remarks.

2. Linear Discrete 11lI-Posed Problems with a Symmetric Matrix

Assume for the moment that the symmetric matrix A € R™*™ is of a well-determined
rank k and that the largest singular value is about one. Then the singular values o;(A)
of A can be ordered so that

0'1(14) > 0’2(14) > 2> O’k(A) > O'k+1(A) == O'm(A) =0.

The least-squares solution of minimal Euclidean norm z* of (1) is often a mean-
ingful approximation of the least-squares solution x* of (3) of minimal Euclidean
norm, because the smallest nonvanishing singular value oy (A) is much larger than
zero. Typically, iterative methods for the solution of linear systems of equations with
a symmetric matrix of well-determined rank are designed so that the iterates con-
verge to Z* and the iterations are terminated when a good approximation of £* has
been computed; see (Calvetti et al., 1994a; 1994b; Hanke and Hochbruck, 1993) and
references therein.

We remark that linear discrete ill-posed problems with a symmetric matrix often
arise as normal equations (5). Then multiplication of the right-hand side b by the
matrix A7 filters out the noise orthogonal to the range of A. However, in this section
we assume that the matrix A is square and that the noise in the right-hand side

contains components both in and orthogonal to the range of A.

The least-squares solution z* of minimal Euclidean norm of (1) is orthogonal to
the (m — k)-dimensional null space of A. We would like that the iterates determined
by the iterative method also be orthogonal to the null space of A in order to secure
that they converge to Z*. Since the range and the null space of a symmetric matrix
are orthogonal, we achieve this by requiring that the iterates lie in Krylov subspaces of
the form Ky (A4, Al~)) The RRMR method gives iterates in these Krylov subspaces and
so do the methods described in (Calvetti et al., 1994a; 1994b; Hanke and Hochbruck,
1993).

Hanke (1995) proposed the use of the RRMR method for the solution of linear
discrete ill-posed problems (1) with a symmetric matrix. The RRMR method solves
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the following minimization problems. Let the initial approximate solution of (1) be

:T:éRRMR) = 0. Then the RRMR method determines iterates i’éRRMR) for ¢ > 1 such
that
AT _p = min A7 B, &M e Ko (4,4B).  (6)
#€K, (A,AD)

We include an algorithm for the RRMR method below. This algorithm can be com-
~(MR)

bined with an algorithm for the MR method. The iterates , , £ > 1, determined
by the MR method with initial approximate solution iéMR) = 0 satisty
JAZMB) _fl = min Az —b|, M e Ki(A, D). (7)
z€K, (A,b)

The algorithm below computes iterates for the MR or RRMR methods. Its derivation
is analogous to that of the MINRES algorithm of Paige and Saunders (1975). It
uses the LQ-factorization of the symmetric tridiagonal matrices determined by the
Lanczos process. An analogous implementation of the MR method that is based on
the QR-factorization instead of the LQ-factorization has recently been described by
Fischer (1996). The algorithm requires the matrix A to be symmetric. The matrix
may be definite, indefinite or singular. We remark that if the matrix A is known to be
positive definite, then the recursions can be simplified, see, e.g., (Saad, 1996, p.183)
for an example of a simpler algorithm for the MR method.

Algorithm 1. MR and RRMR methods
Input: A, b, {, METHOD € {MR, RRMR}.

Output: Approximate solution jEMR) or :EéRRMR) of (1) determined by the
MR or the RRMR method, respectively.

FME) .=, i’éRRMR) =0, z_1:=0, 20:=0, vp:=0,
c:=1,58:=0, po:=0, pu_1:=0, ¢ :=0, 41 := 0,
if METHOD=MR then
vy := b,
elseif METHOD=RRMR then
vy = Ab,
endif
Bo = [lv1]l, v1 :=v1/Bo,
for j=1,2,...,¢ do
w = Avj,

wi=w— fj1vj-1,
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o =< w,v; >,

w=w — ajvj,

Bj = [lwll,

vjy1 = w/f;,

if =1 then
§ = fi,
v =,

o= (3 + 8%)Y2,
w1 = Bo/v1, 1= Boy/m, 0 =1,

else
c=5/vj-1,
5= ﬁjrl/'Yj—l;
0 = cd + sqy,
6] = S_ﬂj,
7 =80 — cay,
5 C/())j,

Wy = *(5jﬂj71 + €j71,u'j*2)/7]';
o= s0, T; := BooY /),

endif

Zj = (vj — 5jzj—1 - 6j—12j72)/%”

if METHOD=MR then

M M
elseif METHOD=RRMR then
~(RRMR ~(RRMR

305 )= 30;-71 "+ 1z,
endif

end O
For some problems, it can be desirable to compute the residual vectors r§-MR) =

b— Ai‘g-MR) or T§RRMR) =b— AQEE-RRMR) associated with the iterates jg-MR) deter-

mined by the MR method or the iterates f;RRMR) computed by the RRMR method.
The following recursion formulas may be attractive to use when the residual vectors
are desired for all values of 7,

T;MR) _

(MR) (RRMR)
i1 — 1;Az;, T

RRMR
j 1 - i Az;. (8)

= 7";

The residual vectors can be evaluated efficiently by using these formulas for increasing
values of j, without requiring the evaluation of additional matrix vector products, by
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noting that Az; = Av; and exploiting the updating formula for z; in Algorithm 1
for 5 > 1.

We remark that other implementations of the MR and RRMR methods are avail-
able. Implementations of the RRMR method based on explicit use of the three-term
recurrence formula of the Lanczos process are presented in (Calvetti et al., 1994b) and
(Hanke, 1995, p.95). These implementations require three inner product evaluations
with m-vectors in each iteration; Algorithm 1 only requires two. Here we count the
computation of the Euclidean norm of an m-vector as an inner product evaluation.
Inner product evaluations can be bottle-necks on parallel computers.

The following example compares the MR and RRMR methods applied to the
linear system (1) with the CG method applied to the associated normal equations (5).
We use the implementation CGLS, discussed by Bjorck (1996), of the CG method
applied to the normal equations. We refer to this method as the CGLS method. It
does not require the matrix AT A to be explicitly formed. All computations of the
present paper were carried out in Octave on a workstation with machine epsilon
2-10716,

Example 1. This example is concerned with the restoration of a noisy and blurred
image of a star cluster. The image is represented by a 256 x 256 array of grayscale
values (pixels). The image formation process is defined by equs. (1) and (2) with
m = n = 2562 as follows. Let the entries of vector = be row-ordered pixels of a noise-
and blur-free model image and let the matrix A represent the blurring operator.
Then the vector b = Ax represents the blurred but noise-free image associated with
the model image z. Let the noise vector e consist of normally distributed random
entries with zero mean and with variance chosen so that we achieve the noise level
llell/I|Az|| = 5-10~2. In the present example, the blurring matrix A models separable,
spatially invariant Gaussian blur. We represent A by the Kronecker product A =
T®T, where T = [tjk]??,f:l is a symmetric banded Toeplitz matrix with entries

1 (jk)2> o
exp | —~2—— ) if|j — k| < p,
=4 oV p( 572 j—k[<p

0 otherwise.

9)

The blurring radius in (9) is p = 12, and o = 1. The parameter o determines the
“spread” of the blur. The model image z is displayed in Fig. 1. It was obtained via ftp
from the Space Telescope Science Institute.! The blurred and noisy image b = Az +e
is shown in Fig. 2. In the present example, we assume that the contaminated image
b and the blurring operator A are available, but that the blur- and noise-free model
image x is not. We would like to determine an accurate approximation of .

Following Nagy and O’Leary (1998), each pixel value v of the model image is
replaced by min(max(v,50),500) in order to avoid oversaturation in the displayed
images. The pixel value zero corresponds to black and the value 500 to white.

1 Address ftp.stsci.edu, directory /pub/software/stsdas/testdata/restore/sims/star_cluster.
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Fig. 1. Example 1: Model image.

Fig. 2. Example 1: Blurred and noisy image.
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ates generated by the MR, RRMR and CGLS methods.
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Fig. 5. Example 1: Image restored by 9 iterations with the MR method.

Fig. 6. Example 1: Image restored by 18 iterations with the RRMR method.
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Fig. 7. Example 1: Image restored by 73 iterations with the CGLS method.

We compute the relative error norms ||z — Z¢||/||z||, ¢ =1,2,... for iterates Z,
determined by the MR and RRMR methods, applied to the solution of the linear sys-
tem of equations (1), and for iterates determined by the CGLS method, applied to the
solution of the normal equations (5). For all methods, we use the initial approximate
solution 2y = 0. These error norms are displayed in Fig. 3.

The smallest relative error achieved by the MR and CGLS methods is 5.7-1071.
The MR method requires 9 iterations to achieve this error and the CGLS method
73 iterations. The smallest relative error achieved by the RRMR method is 5.6 -
10~%, which is obtained at iteration 18. Note that each iteration with the MR and
RRMR methods requires the evaluation of one matrix-vector product with the matrix
A, while each iteration with the CGLS method requires two matrix-vector product
evaluations, one with the matrix A and one with AT . Figure 4 displays the norm of
the residual errors 7y = b — Az, associated with the iterates determined by the the
MR, RRMR and CGLS methods.

Although the minimal relative error norms achieved by the MR, RRMR and
CGLS methods are about the same, the restored images obtained by the different
methods are qualitatively quite different, see Figs. 5—7. The restored image produced
by the MR method exhibits less ringing or halo artifact around the brightest stars
than the images computed by the other methods. Thus, using the Krylov subspaces
K, (A, l;), ¢ > 1, makes it possible to determine a good approximation of the blur-
and noise-free model image x with less computational work than when the Krylov
subspaces Ky (A, Ab) or Ky (AT A, ATb) are used. ¢

We remark that in realistic applications of iterative methods to image restoration,
the model image x is not known. Therefore the iterative methods have to be equipped
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with a stopping criterion. Several stopping criteria are discussed in (Calvetti et al.,
2002a; 2000b; 2000c; 2002b; Hanke, 1995; Hansen, 1998). However, in order to clearly
show the importance of the choice of a Krylov subspace, we have not used these
criteria in the computed examples of the present paper.

Example 2. The linear discrete ill-posed problems of the present example has
minimal-norm least-squares solution z*, which is the discretization of a smooth func-
tion. The example is constructed from a Fredholm integral equation of the first kind
discussed by Phillips (1962). Introduce the function

1+ cos(tm/3) if || < 3,
x(t) =
0 otherwise,

and define the kernel x: R> — R by x(s,t) = x(s —t). Then

6
/ k(s )a(t) dt = b(s), —6< s <6, (10)
-6

for b(s) = (6 — |s|)(1 + 3 cos(sm/3)) + o= sin(|s|r/3). Given the kernel (s, t) and a
perturbation of the right-hand side function b(s), we seek to compute an approxima-
tion of the solution z(t) of (10).

We discretize the integral equation (10) by the Galerkin method with the or-
thonormal basis functions

=72 if s € [(j — 1)h, jh],
vi(s) =
0 otherwise,
where h = 12/500, using software written in Matlab by Hansen (1994). This yields a
linear system of equations with the matrix A = [a;;] € R599%500 and the right-hand
side vector b= [3;] € R with entries

6 6
Qi :/ K(s,t)vj(s)vg(t)dsdt, B; :/ b(s)v;(s)ds, 1<k <500. (11)
-6 -6
The matrix A so obtained has condition number oy (A)/500(A) = 1.7 - 10°; thus, it
is quite ill-conditioned.
The discretization of the solution z(t) of (10) gives the vector x = [¢;] € R°®
with entries

6

¢ = / sty (t)dt, 1< j < 500.
-6

Note that due to discretization errors, the vector x does not satisfy the linear systems

of equations determined by the matrix A and the right-hand side vector b; we have

|Az —b|| =2.4-107%.
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Let the vector é € R?® have normally distributed random entries with zero
mean and with a variance chosen so that ||é|| = 1-1072. Introduce the right-hand
side vector

b:=b+e. (12)

In the present example, we assume that the discretization x of the solution x(t) of
the integral equation (10) is the desired approximate solution of the linear system of
equations (1), with the matrix A defined by (11) and the right-hand side vector b
given by (12). The norm of the error e in the vector b is ||Az—b|| = 1-1072, cf. (2).

Similarly to Example 1, we compute the relative error norms ||z — Z¢||/||z]|,
{=1,2,..., for iterates T, determined by the MR and RRMR methods, applied to
the solution of the linear system of equations (1), and for iterates determined by the
CGLS method, applied to the solution of the normal equations (5). For all methods,
we use the initial approximate solution Zy = 0. These error norms are displayed
in Fig. 8. In this example, the CGLS and RRMR methods achieved slightly lower
minimum relative error norms than the MR method. Figure 9 displays the norm of
the residual errors 7y = b — A%, associated with the iterates determined by the the
MR, RRMR and CGLS methods. ¢

3. Discrete Ill-Posed Problems with a Nonsymmetric Matrix

The Generalized Minimal Residual (GMRES) method by Saad and Schultz (1986) is
a popular iterative method for the solution of linear systems of equations (1) with a
(square) nonsymmetric nonsingular matrix A € R™*™. Let the initial approximate

solution be QEBGMRES) = 0. Then the iterates i‘éGMRES), £ > 1, determined by the
GMRES method, satisfy
|AZMFES) _jl= min |4z - b), #MFPVeR(A,0).  (13)
z€K, (A,b)

The minimization problem (13) is the same as (7). However, while the minimiza-
tion problem (7) with a symmetric matrix can be solved by an algorithm with short
recurrence relations for increasing values of ¢ (Algorithm 1), the minimization prob-

lem (13) with a nonsymmetric matrix in general cannot; the computation of the

iterate iéGMRES) typically requires that a basis of the Krylov subspace K1 (4, l~))

be available. Algorithm 2 below describes an implementation of the GMRES method.
The computation of the iterate :T:éGMRES) by Algorithm 2 requires ¢ evaluations of
matrix-vector products with the matrix A. Results on the performance of the GMRES
method when applied to discrete ill-posed problems (1) with a nonsymmetric (square)
matrix are presented in (Calvetti et al., 2002a; 2000b; 2002b).

The Range Restricted GMRES (RRGMRES) method, proposed in (Calvetti et
al., 2000a), is a variant of the GMRES method. Let the initial iterate be given by
:i(()RRGMRES) = 0. Then the iterates :EéRRGMRES), ¢ > 1, determined by the RRGM-
RES method satisfy

|AZFROMEES) _pl = min Az 0|, &FMEEI R, (A, 4b).  (14)
F€Ky (A, Ab)
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The minimization problem (14) is the same as the minimization problem (6) solved
by the RRMR method. The RRGMRES method was developed for the solution of
inconsistent linear systems of equations with a nonsymmetric matrix. The RRGMRES
method requires one more matrix-vector product evaluation with the matrix A than
the GMRES method and the same amount of computer storage to evaluate the ¢-th
iterate.

The following algorithm presents implementations based on the Arnoldi process

of both the GMRES and RRGMRES methods. The GMRES implementation is due
to Saad and Schultz, and we refer to (Saad and Schultz, 1986) for a further discussion
on the GMRES algorithm.

Algorithm 2. GMRES and RRGMRES methods
Input: A, b, £, METHOD € { RRGMRES, GMRES}.
Output: Approximate solution Z, of (1).
if METHOD=GMRES then
or = b/l
elseif METHOD=RRGMRES then
vi = Ab/|| b,
endif
Define Hy:= [hyj], hij =0, 1<i</l+1, 1<j<{,
for j=1,2,...,¢do

w = Avj,
for i=1,2,...,7 do

T o
hij =V W, Wi W — hijvi,

end
hjy1j = [lwll, vjt1 = w/hji15,
end
‘/Z = [1)1,1}2, . ,Uf], W+1 = [01,1}2, e ,Ug+1],

Ye = Hgvlqull;’
Zo = Vil O

Algorithm 2 assumes that the matrix A has the same number of rows as columns. We
describe in Example 5 below how this restriction can be removed.
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Example 3. This example is concerned with the restoration of an image that is
contaminated by noise and spatially-varying blur. The matrix A that models the
blur is nonsymmetric. Specifically, partition the discretized image into four square
non-overlapping subregions of equal size enumerated clockwise starting from the upper
left corner. Assume that the blur in each subregion is spatially invariant. This gives
rise to a blurring matrix A of the form

A=D1 A1 + DyAy 4+ D3Asz + AyDy, (15)

where D; is a diagonal matrix, whose j-th diagonal entry is 1 if the j-th pixel is in
subregion i and 0 otherwise. The blurring matrix A; models spatially invariant Gaus-
sian blur in the i-th subregion. Each blurring matrix A; is the Kronecker product of
a banded symmetric Toeplitz matrix T; = [tg.lk)]??kil with itself, i.e., 4; = T; ® T;.
The entries of T; are given by

1 (j—k:)Q) .
. —€X —— if |7 — k| < pi,
| smer () wimn <

i (16)
0 otherwise.

The blurring radii are p; = [120;], 1 < ¢ < 4, and the parameters o; determine
the “spread” of the blur in each subregion. We chose o; = 8-107%, 05 = 91071,
o3 =9-10""! and o4 = 1-10° The blur- and noise-free model image z is shown in
Fig. 1. The error vector e in (2) has normally distributed random entries with zero
mean and a variance such that ||e||/||Az| = 5-1072. The degraded image looks like
the image shown in Fig. 2, even though the blurring operator differs from the one
used for the construction of the image in the figure.

Figure 10 displays the relative error norms ||z — Zg||, £ = 1,2,... for the iterates
Zy determined by the GMRES, RRGMRES and CGLS methods, and Fig. 11 shows
the norm of the residual errors 7y = b— AZ, associated with the computed iterates.
The initial approximate solution Ty = 0 is used for all three iterative methods.

Figures 12-14 show the images associated with the iterates of smallest relative
error norms determined by the GMRES, RRGMRES and CGLS methods, respective-
ly. Thus, Figs. 12 and 13 display the restored images determined by 8 iterations with
the GMRES method and by 16 iterations with the RRGMRES method. Figure 14
shows the restored image computed by 59 iterations with the CGLS method. We see
that while the relative error norms for the displayed images are about the same, the
restored images determined by the three methods look quite different. The restored
image produced by the GMRES method exhibits less ringing or halo artifact around
the brightest stars than the images computed by the other methods, and its compu-
tation requires the fewest matrix-vector product evaluations with the matrices A or
AT Thus, the Krylov subspaces K, (A4, 5), ¢ > 1, give a good restoration with less
computational work than the Krylov subspaces Ky (A, Al;) and K, (AT A, ATl;). ¢
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Fig. 12. Example 3: Image restored by 8 iterations with the GMRES method.

Fig. 13. Example 3: Image restored by 16 iterations with the RRGMRES method.
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Fig. 14. Example 3: Image restored by 59 iterations by the CGLS method.

Example 4. We consider the Fredholm integral equation of the first kind,

/2
/ k(s,t)z(s)ds =b(t), 0<t<m, (17)
0
where k(s,t) = exp(scos(t)) and b(t) = 2sinh(t)/t, discussed by Baart (1982). The
solution is given by x(t) = sin(t). We use the Matlab code from (Hansen, 1994) to
discretize (17) by the Galerkin method with 100 orthonormal box functions as test and
trial functions. This gives a linear system of equations with a matrix A € R100x100
and a right-hand side b € R0, The singular values of A “cluster” at the origin;
the matrix is therefore of ill-determined rank. We determine a noise vector e € R'%0
consisting of normally distributed random entries of zero mean and variance such
that |le|| = 5-102. We obtain the noisy right-hand side by b = b+ e, similarly to
Example 2. The desired solution « is the discretization of the solution x(t) of the
integral equation (17).

Figure 15 displays the relative error norms ||z — Z¢||/||z||, £ = 1,2,..., for it-
erates Ty determined by the GMRES, RRGMRES and CGLS methods. The initial
approximate solution £y = 0 is used for all the three iterative methods. The norms
of the residual errors associated with the computed iterates are shown in Fig. 16. In
this example the RRGMRES achieves the smallest minimum relative error norm and
the GMRES method the largest minimum relative error norm. ¢
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Fig. 15. Example 4: Norm of relative errors in iterates generated by
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Fig. 16. Example 4: Norm of residual errors associated with iterates
generated by the GMRES, RRGMRES and CGLS methods.
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Example 5. This example illustrates how the GMRES and RRGMRES methods
can be applied to linear systems of equations with a nonsquare matrix. We wish
to determine a least-squares solution of an underdetermined linear system (1) with
m =50 and n = 150, obtained by discretizing the inverse Laplace transform

oo
/ exp(—st) f(t)dt = g(s), s >0, (18)
0
where the right-hand side function ¢ is given by
1

9= T
The solution f(t) to (18) is

f(t) = exp(=t/2). (19)

We discretize the integral equation (18) by the software written in Matlab by Hansen
(1994). The integral is replaced by a 150-point Gauss-Laguerre quadrature rule and
the equation so obtained is required to be satisfied at the collocation points s; = j/10,
1 < j < 150. This determines the matrix A € R%%150 and the right-hand side vector
b= [I;J]]liol with entries b; := g(s;). We obtain an underdetermined linear system
of equations by discarding the last 100 rows of the matrix A and vector b. Denote
the matrix so obtained by A. This is the matrix in the linear system of equations (1)
for which we would like to compute an approximate solution. The condition number
of A, measured by the ratio of the largest and smallest positive singular values of
the matrix, is 2.0 - 10'®. Thus A is numerically singular. We refer to the vector
x = [x;]329, where z; = f(s;), as the discretized exact solution of the error-free
equation (18), or briefly as the exact solution.

We determine the right-hand side b of (1) as follows. Denote the vector obtained
by discarding the last 100 entries of b by b. Let e € R be a noise vector with
normally distributed random entries with zero mean and with a variance chosen so
that |le]|/||Az| = 1-1075. The right-hand side vector in (1) is given by b = b + e.
Note that the vector Ax may differ from the vector b due to discretization errors.

The GMRES and RRGMRES methods can be applied to the underdetermined
linear system of equations (1) constructed as described above by padding the matrix
A and the right-hand side vector b with 100 rows with zero entries. Of course, these
zero entries do not have to be stored. We remark that linear systems of equations (1)
with more rows than columns can be handled in a similar fashion.

Figure 17 displays the relative error norms || —2Z||/||z]|, ¢ = 1,2, ..., for iterates
Zp determined by the GMRES, RRGMRES and CGLS methods. The norms of resid-
ual errors associated with the computed iterates are shown in Fig. 18. In this example
the GMRES and RRGMRES methods require about the same number of iterations to
give the minimal relative error norm. The CGLS method requires considerably more
iterations. )
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4. Conclusion

The computed examples presented in Sections 2 and 3, as well as experience from
numerous other examples, suggest that for many discrete ill-posed problems with a
solution that is not the discretization of a smooth function, the MR and GMRES
methods often give meaningful approximate solutions of quality as good as or higher
than the RRMR, RRGMRES and CGLS methods with less computational work,
where work is measured by the number of matrix-vector product evaluations with the
matrices A or AT required. When the desired solution is smooth, the MR, RRMR,
GMRES and RRGMRES methods generally all perform well, and for some problems
the range restricted methods RRMR and RRGMRES may yield better approximations
of the minimal-norm least-squares solution z* to (3). For many discrete ill-posed
problems, the CGLS method requires considerably more computational work than
the other methods considered.
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