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The Diophantine equation f(x) = g(y)

by

Yuri F. Bilu (Basel) and Robert F. Tichy (Graz)

1. Introduction. Let f(x) and g(x) be polynomials with rational
coefficients. We study the following question: does the equation

(1) f(x) = g(y)

have finitely or infinitely many solutions in rational integers x and y?
Due to the classical theorem of Siegel (see Theorem 10.1 below), the

finiteness problem for (1), and even for a more general equation F (x, y) = 0
with F (x, y) ∈ Z[x, y], is decidable (1). One has to:

• decompose the polynomial F (x, y) into Q-irreducible factors;
• for those factors which are not Q-reducible, determine the genus g and

the number d of points at infinity of the corresponding plane curve;
• for the factors with g = 0 and d ≤ 2 determine whether the corre-

sponding equation has finitely or infinitely many integral solutions (see [4,
Section 1]).

Though this procedure completely solves the problem when the polyno-
mials f(x) and g(x) are given numerically, it is not very helpful when they
depend on unknown parameters, which often happens in applications.

In this paper we obtain a very explicit finiteness criterion for the equa-
tion (1). It turns out to be more convenient to study a slightly more gen-
eral question: when does (1) have infinitely many rational solutions with a
bounded denominator? We say that the equation F (x, y) = 0 has infinitely
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(1) We mention in passing that the decidability of the existence problem (that is,

whether or not F (x, y) = 0 has at least one solution) is still an open question. The
answer, which is believed to be positive, is known only in particular cases.
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many rational solutions with a bounded denominator if there exists a positive
integer ∆ such that F (x, y) = 0 has infinitely many solutions (x, y) ∈ Q×Q
with ∆x,∆y ∈ Z.

To formulate our criterion, we have to define five types of standard
pairs (f(x), g(x)).

1.1. Standard pairs. In what follows a and b are non-zero elements of
some field, m and n are positive integers, and p(x) is a non-zero polynomial
(which may be constant).

A standard pair of the first kind is

(xm, axrp(x)m)

or switched, (axrp(x)m, xm), where 0 ≤ r < m, (r, m) = 1 and r + deg p(x)
> 0.

A standard pair of the second kind is

(x2, (ax2 + b)p(x)2)

(or switched).
Denote by Dm(x, a) the mth Dickson polynomial, defined by

Dm(z + a/z, a) = zm + (a/z)m

(see Section 3). A standard pair of the third kind is

(Dm(x, an), Dn(x, am)),

where gcd(m,n) = 1.
A standard pair of the fourth kind is

(a−m/2Dm(x, a),−b−n/2Dn(x, b)),

where gcd(m,n) = 2.
A standard pair of the fifth kind is

((ax2 − 1)3, 3x4 − 4x3)

(or switched).
When we want to specify that the parameters a and b and the coefficients

of the polynomial p(x) belong to a field K we say standard pair over K.
If (f(x), g(x)) is a standard pair over Q of the first or third kind then (1)

has infinitely many rational solutions with a bounded denominator. For
the third kind, an infinite family of solutions is given by x = Dn(t, a) and
y = Dm(t, a), where t ∈ Z. For the first kind, find positive integers q
and s with qm − sr = 1. Then an infinite family of solutions is given by
x = aqtrp(astm) and y = astm, where t ∈ Z.

If (f(x), g(x)) is a standard pair over Q of the second, fourth or fifth kind
then (1) has infinitely many rational solutions with a bounded denominator
for infinitely many choices of the parameters a and b.
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For instance, for the second kind let (u, v) satisfy u2 = av2 + b. Then
x = up(v) and y = v is a solution of (1). Hence (1) has infinitely many
rational solutions with a bounded denominator whenever u2 = av2 + b does,
which happens for infinitely many choices of a and b.

For the fourth kind (where we assume, without loss of generality, that
n/2 is odd), let (u, v) be a solution of am/2u2 + bv2 = 4ab. Then x =
a(2−n)/4Dn/2(v, a) and y = uEm/2(v, a) (where En(t, a) is defined in (8)) is
a solution of (1), as follows from Proposition 3.1.

For the fifth kind, let (u, v) be a solution of 3au2 = v2 + 2. Then
x = u(v + 2) and y = ((v + 1)3 + 4)/3 is a solution of (1).

1.2. The criterion

Theorem 1.1. Let f(x), g(x) ∈ Q[x] be non-constant polynomials. Then
the following two assertions are equivalent.

(1.1.a) The equation (1) has infinitely many rational solutions with a
bounded denominator.

(1.1.b) We have f = ϕ ◦ f1 ◦ λ and g = ϕ ◦ g1 ◦ µ, where λ(x), µ(x) ∈
Q[x] are linear polynomials, ϕ(x) ∈ Q[x], and (f1(x), g1(x)) is a
standard pair over Q such that the equation f1(x) = g1(y) has
infinitely many rational solutions with a bounded denominator.

We make several comments on this result.

Remark 1.2. (i) The implication (1.1.b)⇒(1.1.a) is trivial. The non-
trivial part is (1.1.a)⇒(1.1.b).

(ii) If gcd(deg f,deg g) = 1 then in (1.1.b) we have deg ϕ = 1, and
(f1(x), g1(x)) is a standard pair of the first or third kind (over Q). This
reproduces a result of Schinzel [27, Theorem 8].

(iii) Write f = apx
p + . . . + a0 and g = bqx

q + . . . + b0, and assume
that ap/bq is not a perfect power in Q. Then in (1.1.b) we have deg ϕ = 1.
(Indeed, ap/bq = (a′/b′)deg ϕ, where a′ and b′ are the leading coefficients
of f1 and g1, respectively.) Using this, one can easily prove, for instance,
that the equation

(
x
m

)
= y(y− 1) . . . (y− n + 1) has finitely many solutions

in integers x and y, when m and n are integers greater than 2. This was
originally done by Brindza and Pintér [9].

(iv) One can express the assertion “f1(x) = g1(y) has infinitely many
rational solutions with a bounded denominator” as an explicit arithmetical
condition on the parameters a and b. For instance, for the second kind
this means that a is positive, not a square, and b = NQ(

√
a)/Qβ for some

β ∈ Q(
√

a). For the other kinds one can proceed similarly. We do not
go into this because we find Theorem 1.1 in its present form completely
sufficient for applications.
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(v) Actually, we obtain a more general result, on solutions of (1) in
S-integers of an arbitrary number field (see Theorem 10.5). In this case one
more kind of pairs can occur; to distinguish it from the standard pairs just
defined, we call this new kind specific pairs (see Section 9).

(vi) Various applications of Theorem 1.1 will be given in the forthcoming
papers [6, 8]. In particular, we solve the Diophantine problem involving
Meixner polynomials, studied in [22]. (Beukers, Shorey and Tijdeman [3]
considered another type of equations of the form (1), using methods very
similar to ours.)

1.3. Un peu d’histoire. Finiteness conditions for the equation (1) were
studied by many authors. For the equation f(x) = yn a finiteness theorem
was established by Siegel [29] and LeVeque [24]. Evertse and Silverman [13]
obtained a sharp estimate for the number of solutions. (See also a more
recent paper of Voutier [34].)

Starting from Baker [2], methods for the effective analysis of the equation
f(x) = yn were developed by Sprindžuk, Trelina, Brindza, Poulakis, Voutier
and Bugeaud; see [31, 10] for the references. An efficient algorithm for the
numerical solution of this equation was suggested in [7].

Davenport, Lewis and Schinzel [12] obtained a finiteness condition for the
general equation (1). However, it was too restrictive for many applications.

Fried investigated the problem from various points of view in a remark-
able series of paper [16, 17, 18]. In particular, he gave in [18, Corollary after
Theorem 3] a new finiteness condition, much more general than that of [12],
but still far from explicit.

Schinzel [27, Theorem 8] obtained a completely explicit finiteness crite-
rion for the equation (1) under the assumption (deg f,deg g) = 1. His result
is, basically, Remark 1.2(ii) of our paper.

Quite recently, Beukers, Shorey and Tijdeman [3] applied a similar ap-
proach to certain particular types of the equation (1).

1.4. An overview of the paper. The proof of Theorem 1.1 follows the
main lines of the arguments of Fried [18] and Schinzel [27]. However, sev-
eral substantially new ideas were required to drop Schinzel’s assumption
(deg f,deg g) = 1, retaining the explicit character of his result.

Call an absolutely irreducible polynomial F (x, y) ∈ Q[x, y] exceptional
if the corresponding plane curve is of genus 0 and has at most 2 points at
infinity. To deduce Theorem 1.1 from Siegel’s theorem, one has to determine
when the polynomial f(x)− g(y) has an exceptional factor.

Our argument consists of two parts. In the first part (Sections 4–7) we
show that if the polynomial f(x)− g(y) itself is exceptional then (f, g) is a
standard pair up to a linear transformation and linear change of variables.
This generalizes the classical “Second theorem of Ritt”.
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In the second part (Sections 8–10) we classify pairs (f, g) such that f(x)−
g(y) has an exceptional factor. Due to a clever observation of Fried (see
Theorem 8.1) this reduces to solving two independent problems.

(a) Determine when f(x)− g(y) has a factor of degree at most 2.
(b) Given a polynomial q(x, y) of degree at most two, determine for

which f(x) and g(x) the polynomial q(f(x), g(y)) is exceptional.

Problem (a) is completely solved in [5]. The solution of (b) depends
on whether ∂2q/∂x∂y vanishes or not. If it does, then q(f(x), g(y)) can
be written as f1(x)− g1(y), reducing the problem to the generalized Ritt’s
second theorem, just proved. If ∂2q/∂x∂y 6= 0 then the solution of (b) is
remarkably simple (see Proposition 9.2).

After all this work is done, our finiteness criterion becomes an (almost)
immediate consequence of Siegel’s theorem (see Section 10).

Acknowledgments. We are pleased to thank Roberto Maria Avanzi,
Frits Beukers, Michael Fried, Peter Müller, Attila Pethő, Andrzej Schinzel,
Robert Tijdeman, Gerhard Turnwald and Umberto Zannier for stimulating
discussions and helpful suggestions. We are especially grateful to Andrzej
Schinzel for detecting a number of inaccuracies in the text.

2. Terminology, notation, conventions

2.1. General. We use (a, b) for the greatest common divisor of a and b,
when a and b are either integers or polynomials (in the latter case (a, b) is
well defined up to a multiplicative constant). When it can be confused with
(a, b) as an ordered pair, we write gcd(a, b).

We denote by bxc the maximal integer not exceeding x ∈ R.

2.2. Fields. All fields in this paper are of characteristic 0 (although
some of the results are valid in arbitrary characteristic). The capital letter
K (with or without indices) always stands for a field. We assume that all
fields that occur in the paper are contained in one big algebraically closed
(unnamed) field. In particular, any field K has a well defined algebraic
closure K, any two fields K and K ′ have well defined intersection K ∩K ′

and composite KK ′, etc.

2.3. Polynomials. All polynomials are assumed non-constant, unless the
contrary is stated explicitly. Given a polynomial f(x) having s distinct roots
(in an algebraically closed field), its root type is the array (µ1, . . . , µs) formed
of the multiplicities of its roots. Obviously, µ1+. . .+µs = deg f . The f-type
of a scalar γ is the root type of the polynomial f(x) − γ. When it is clear
which polynomial is referred to, we say simply “type” instead of “f -type”.
If f(x)− γ has at least one multiple root (in other terms, if the f -type of γ
is distinct from (1, . . . , 1)) then γ is called an extremum of f(x).



266 Yu. F. Bilu and R. F. Tichy

Given a polynomial f(x) ∈ K[x] and γ ∈ K of type (µ1, . . . , µs), put

δf (γ) = (µ1 − 1) + . . . + (µs − 1) = deg f − s

(so that δf (γ) > 0 if and only if γ is an extremum of f). Then

(2)
∑
γ∈K

δf (γ) = deg f − 1.

To see this, notice that δf (γ) = deg gcd(f − γ, f ′). Hence the sum in (2) is
equal to deg f ′ = deg f − 1, as wanted. Equality (2) will often be used in
the paper, sometimes without special reference.

2.4. Curves and function fields. Let F (x, y) ∈ K[x, y] be an absolutely
irreducible polynomial. By points of the plane curve F (x, y) = 0 we always
mean algebraic points, i.e. places of its function field K(x, y). (With a
standard abuse of notation, we use x, y for both independent variables and
coordinate functions on the plane curve.) The place is infinite if it is a pole
of x or y. The corresponding point of the plane curve is called a point at
infinity.

Similarly, by the genus of a plane curve we always mean the genus of its
function field.

3. Dickson polynomials. In this section, we collect miscellaneous
facts about Dickson polynomials.

For a ∈ K, the nth Dickson polynomial Dn(x, a) is defined from the
relation

(3) Dn(z + a/z, a) = zn + (a/z)n.

The following identities will often be used in the paper, sometimes without
special reference:

D1(x, a) = x; D2(x, a) = x2 − 2a;(4)
Dmn(x, a) = Dm(Dn(x, a), an);(5)

bnDn(x, a) = Dn(bx, b2a);(6)
D2n(x, a)− 2an = (x2 − 4a)En(x, a)2,(7)

where the polynomial En(x, a) is defined from the relation

(8) En(z + a/z, a) = (zn − (a/z)n)/(z − a/z).

The proofs of (4)–(7) are immediate, upon substituting x = z + a/z into
both sides.

An important consequence of (6) is

(9) (a, cos 2α ∈ K) ⇒ (Dn(x cos α, a) ∈ K[x]).

Here is a slightly less obvious consequence of (4)–(7).
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Proposition 3.1. Let m, n be positive even numbers with n/2 odd. Then

(10)
am/2u2 + bv2 = 4ab

⇓
a−m/2Dm(a(2−n)/4Dn/2(v, a), a) = −b−n/2Dn(uEm/2(v, a), b).

P r o o f. This is just a calculation:

−b−n/2Dn(uEm/2(v, a), b) = Dn/2(−D2(uEm/2(v, a)/
√

b, 1), 1)

= Dn/2(2− b−1u2Em/2(v, a)2, 1)

= Dn/2(2 + a−m/2(v2 − 4a)Em/2(v, a)2, 1)

= Dn/2(a−m/2Dm(v, a), 1)

= Dmn/2(v/
√

a, 1)

= a−m/2Dm(a(2−n)/4Dn/2(v, a), a),

as wanted.

For further facts about Dickson polynomials, including equivalent defi-
nitions, differential equations, etc., see [25, Chapter 2] and [32].

3.1. Factorization. It is well known that Dn(x, a) + Dn(y, a) splits into
factors of degree at most two. More precisely, put

(11) Φn(x, y, a) =
∏

1≤k<n
k≡1 mod 2

(x2 − 2xy cos(πk/n) + y2 − 4a sin2(πk/n)).

Then

(12) Dn(x, a) + Dn(y, a) =
{

Φn(x, y, a) if n is even,
(x + y)Φn(x, y, a) if n is odd

(see, for instance, [5, Proposition 3.1]). If a 6= 0 then the factors on the
right-hand side of (11) are absolutely irreducible.

3.2. Semi-definite polynomials. Call a polynomial F (x, y) ∈ R[x, y] semi-
definite if there exist positive constants X, C and A such that |F (x, y)| ≥
C max(|x|, |y|)A as soon as max(|x|, |y|) ≥ X. The following properties of
semi-definite polynomials are immediate.

Proposition 3.2. (i) A product of semi-definite polynomials is semi-
definite.

(ii) If F (x, y) is semi-definite and f(x), g(x) are non-constant real poly-
nomials then F (f(x), g(y)) is semi-definite.

(iii) If F (x, y) is semi-definite then the level set {(x, y) ∈ R2 : F (x, y) =
C} is bounded for any C ∈ R.
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Proposition 3.3. Let a be a real number. If d = gcd(m,n) is even then
the polynomial

(13) Dm(x, an/d) + Dn(y, am/d)

is semi-definite. If d = gcd(m,n) is odd and greater than 1 then the poly-
nomial

(14)
Dm(x, an/d) + Dn(y, am/d)

Dm/d(x, an/d) + Dn/d(y, am/d)

is semi-definite.

P r o o f. One immediately verifies that all the quadratic factors in (11)
are semi-definite, which implies that the polynomial Φn(x, y, a) is semi-
definite for n > 1. Since each of the polynomials (13) and (14) is equal
to Φd(Dm/d(x, an/d), Dn/d(x, am/d), amn/d), the result follows.

4. The genus formula. Let f(x), g(x) be polynomials over a field K
of degrees m, n respectively. Given γ ∈ K of f -type (µ1, . . . , µs) and g-type
(ν1, . . . , νt), define the quantities

Ω(γ) =
∑

1≤i≤s

∑
1≤j≤t

(µi, νj),

σ(γ) =
∑

1≤i≤s

∑
1≤j≤t

(µi − (µi, νj)) = mt−Ω(γ),

τ(γ) =
∑

1≤i≤s

∑
1≤j≤t

(νj − (µi, νj)) = ns−Ω(γ).

Obviously, mn−Ω(γ) = σ(γ) = τ(γ) = 0 for all but finitely many γ ∈ K.

Proposition 4.1. Assume that f(x) = g(y) is an absolutely irreducible
plane curve of genus g. Then

2g − 2 =
∑
γ∈K

σ(γ)−m− d =
∑
γ∈K

τ(γ)− n− d(15)

=
∑
γ∈K

(mn−Ω(γ))−mn− d,

where d = (m,n).

P r o o f. This is due to Fried [17, Proposition 2 on page 240]. Since our
notation is very different from Fried’s, we include a proof for the convenience
of the reader.

We use the Riemann–Hurwitz formula

(16) 2g − 2 =
∑
P

(eP − 1)− 2n,
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where the sum extends to the places P of the function field K(x, y) and eP

is the ramification index of the place P over the field K(x).
Fix α, β, γ ∈ K satisfying

(17) f(α) = g(β) = γ.

Let µ be the order of the root α of the polynomial f − γ, and ν the order
of the root β of the polynomial g − γ. Then there are exactly (µ, ν) places
P of K(x, y) with the property

(18) x(P ) = α and y(P ) = β,

and eP = ν/(µ, ν) for every such P . It follows that∑
P satisfies (18)

(eP − 1) = ν − (µ, ν).

Defining z ∈ K(x, y) by z = f(x) = g(y), we obtain∑
z(P )=γ

(eP−1) =
∑

(α,β) satis-
fies (17)

∑
P satisfies (18)

(eP−1) =
s∑

i=1

t∑
j=1

(νj−(µi, νj)) = τ(γ).

Also, there exist d = (m,n) places P with x(P ) = y(P ) = ∞, and eP = n/d
for every such P . Hence ∑

z(P )=∞

(eP − 1) = n− d.

Now

2g − 2 =
∑
γ∈K

∑
z(P )=γ

(eP − 1) +
∑

z(P )=∞

(eP − 1)− 2n =
∑
γ∈K

τ(γ)− n− d,

which proves the second formula in (15). The first formula follows by sym-
metry. Finally, using (2), we obtain∑

γ∈K

τ(γ)− n− d =
∑
γ∈K

((m− δf (γ))n−Ω(γ))− n− d

=
∑
γ∈K

(mn−Ω(γ))− n
∑
γ∈K

δf (γ)− n− d

=
∑
γ∈K

(mn−Ω(γ))−mn− d,

which proves the last formula in (15).

5. Polynomials with a few extrema. It is well known that Dickson
polynomials Dn(x, a) with a 6= 0 have exactly two extrema. More precisely,
one has the following.
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Proposition 5.1. If a 6= 0 and n ≥ 3 then Dn(x, a) has exactly two
extrema ±2an/2. If n is odd then both are of type (1, 2, . . . , 2). If n is even
then 2an/2 is of type (1, 1, 2, . . . , 2), and −2an/2 is of type (2, . . . , 2).

For a proof see, for instance [5, Proposition 3.3].

It is of fundamental importance that, basically, the Dickson polynomials
are characterized by this property. We shall use this classical fact in the
following form.

Theorem 5.2. Let f(x) ∈ K[x] be a polynomial of degree m having ex-
actly two extrema in K. Moreover , let its extrema be of one of the following
types:

(19) (2, . . . , 2), (1, 2, . . . , 2), (1, 1, 2, . . . , 2).

Then f(x) = αDm(x + β, a) + γ, where a, α ∈ K∗ and β, γ ∈ K.

P r o o f. We use induction on m. If m is odd then both the extrema are
of the type (1, 2, . . . , 2). In this case the assertion is a particular case of [32,
Lemma 1.11] (reproduced in [25] as Lemma 6.16).

Now assume that m is even, and write m = 2n. Since f(x) has two
extrema, we have m ≥ 4. By (2), one of the extrema is of type (2, . . . , 2)
and the other is of type (1, 1, 2, . . . , 2). Since the extrema have distinct types,
they both belong to K. Without loss of generality we may assume that the
polynomial f(x) is monic and that the extremum of type (2, . . . , 2) is 0.
This means that f(x) = g(x)2, where g(x) ∈ K[x] is a monic polynomial of
degree n.

If n = 2 then g(x) = D2(x + β, a), where a, β ∈ K. Moreover, a 6= 0,
because g(x) has simple roots.

Now assume that n = deg g > 2. Let κ 6= 0 be the other extremum of
f(x). Then (g(x)−

√
κ)(g(x) +

√
κ) has 2 simple roots, all the other roots

being of order 2. It follows that ±
√

κ are extrema of g(x), of one of the
types from (19). Identity (2) applied to the polynomial g(x) certifies that
it has no other extrema. By induction, g(x) = αDn(x + β, a) + γ, where
a, α ∈ K∗ and β, γ ∈ K. Since g(x) is monic, α = 1. Since its extrema ±

√
κ

are symmetric with respect to 0, we have γ = 0.
Thus, in either the case n = 2 or n > 2 we have g(x) = Dn(x + β, a),

where a ∈ K∗ and β ∈ K. It follows that f(x) = g(x)2 = Dm(x+β, a)+2an,
as wanted.

Corollary 5.3. Let f(x) ∈ K[x] and γ1, γ2 ∈ K be such that f(x)− γi

has at most si simple roots, where s1 + s2 ≤ 2. (We assume that γ1 6= γ2.)
Then f(x) = αDm(x + β, a) + γ, where a, α ∈ K∗ and β, γ ∈ K.

P r o o f. We may assume that m = deg f ≥ 3, since otherwise there is
nothing to prove. In particular, both γ1 and γ2 are extrema of f .
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We have

(20) δf (γi) ≥ (m− si)/2 (i = 1, 2),

the equality being attained when f(x) − γi has si simple and (m − si)/2
double roots. On the other hand, (2) implies that

(m− s1)/2 + (m− s2)/2 = m− 1 ≥ δf (γ1) + δf (γ2).

Hence we have equalities in (20), and f has no extrema other than γi. We
have shown that f satisfies the assumptions of Theorem 5.2.

Corollary 5.4. Let f(x) ∈ K[x] be a polynomial of degree m such that
for some b ∈ K∗, the polynomial f(x)2−4b has at most 2 roots of odd order.
Then for some linear polynomial λ(x) ∈ K[x] one of the following options
takes place.

(5.4.a) The degree m is even, b is a perfect square in K, and f(x) =√
bDm(λ(x)

√
a, 1), for some a ∈ K and a suitable choice of the

sign of
√

b.
(5.4.b) The degree m is odd , and f(x) =

√
bDm(λ(x)

√
b, 1).

P r o o f. As b 6= 0, the polynomial f(x) satisfies the assumption of Corol-
lary 5.3. Hence f(x) = αDm(x + β, a) + γ, where a, α ∈ K∗ and β, γ ∈ K.
The extrema of f(x) are ±2

√
b, which implies γ = 0 and b = α2am. If m

is even then f(x) = αam/2Dm(λ(x)
√

a, 1), where λ(x) = (x + β)/a. If m is
odd then f(x) =

√
bDm(λ(x)

√
b, 1), where λ(x) = (x + β)α−1a−(m+1)/2.

Proposition 5.5. If f(x) ∈ K[x] has only one extremum then f(x) =
a(x− α)m + γ, where a, α, γ ∈ K and a 6= 0.

P r o o f. If γ is the extremum then (2) implies that its f -type is (n), and
the result follows.

6. Ritt’s second theorem. Let f1(x), g1(x), f2(x), g2(x) be polyno-
mials over K. We say that pairs (f1, g1) and (f2, g2) are equivalent over K

(notation: (f1, g1)
K∼ (f2, g2)) if there exist (non-constant) linear polynomi-

als `(x), λ(x), µ(x) ∈ K[x] such that f1 = ` ◦ f2 ◦ λ and g1 = ` ◦ g2 ◦ µ.

Theorem 6.1. Let f(x), g(x) ∈ K[x] be polynomials of degree m and n
respectively. Assume that d = gcd(m,n) ≤ 2, and that

(21) f(x) = g(y)

is an absolutely irreducible plane curve of genus 0. Then (f, g) K∼ (f1, g1),
where (f1, g1) is a standard pair over K.

The case d = 1 of this theorem follows from the classical “second theorem
of Ritt” [26], as presented, for instance, in [27, Section 5]. The case d = 2
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was examined by Fried [18, Theorem 3]. We give, however, a much more
explicit classification of the possible pairs (f, g).

Recently, Avanzi and Zannier [1] classified the pairs (f, g) over an al-
gebraically closed field and over Q such that gcd(deg f,deg g) = 1 and the
genus of f(x) = g(y) is 1. Extending their result to number fields leads to
interesting problems in the arithmetic of elliptic curves.

Theorem 6.1 will be proved in the next section. We conclude this section
with several auxiliary statements required for the proof.

As the genus formula suggests, we have to deal with sums of the form∑
(µi, νj). Some simple properties of such sums are listed in the following

lemma.

Lemma 6.2. Let µ1, . . . , µs and ν1, . . . , νt be positive integers, and put

(22) m = µ1 + . . . + µs, n = ν1 + . . . + νt, Ω =
∑

1≤i≤s

∑
1≤j≤t

(µi, νj).

Then

(i) We have Ω ≤ sn, the equality being attained when every νj divides
every µi.

(ii) If min(µ1, . . . , µs) = 1, then Ω ≤ n(s− 1) + t.
(iii) (Schinzel) If gcd(µ1, . . . , µs, ν1, . . . , νt) = 1, then

Ω ≤ max(m(t− 1) + s, n(s− 1) + n/2).

P r o o f. (i) For every i we have (µi, ν1)+ . . .+(µi, νt) ≤ ν1+ . . .+νt = n,
the equality being attained when every νj divides this µi. Summing up over
i, we complete the proof.

(ii) Say, let µ1 = 1. Then

(µi, ν1) + . . . + (µi, νt)
{

= t if i = 1,
≤ n if i ≥ 2.

We again complete the proof, summing up over i.
(iii) We consider two cases.

Case 1: For every i either

there exists a j with (µi, νj) = 1, or(23)
there exist distinct j1 and j2 such that µi does not divide νj1 and νj2 .(24)

If for a given i we have (23) then

(µi, ν1) + . . . + (µi, νt) ≤ (t− 1)µi + 1.

If we have (24) then (µi, νj1) and (µi, νj2) do not exceed µi/2, and

(µi, ν1) + . . . + (µi, νt) ≤ (t− 1)µi < (t− 1)µi + 1.

Summing up over i, we obtain Ω ≤ (t− 1)(µ1 + . . .+µs)+ s = (t− 1)m+ s.
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Case 2: There exist i0 and j0 such that

(25) j 6= j0 ⇒ µi0 | νj and d := (µi0 , νj0) > 1.

It follows from (25) that d divides ν1, . . . , νt. But

gcd(µ1, . . . , µs, ν1, . . . , νt) = 1,

whence d does not divide at least one of the numbers µi, say, µ1. It follows
that none of the νj divides µ1, which implies that (µ1, νj) ≤ νj/2 for all j.
Therefore

(µi, ν1) + . . . + (µi, νt) ≤
{

n/2 if i = 1,
n if i ≥ 2.

Summing up over i, we obtain Ω ≤ (s−1)n+n/2. The proof is complete.

The following trivial observation will often be used.

Proposition 6.3. If f(x) − γ has at least r simple roots then τ(γ) ≥
rδg(γ) (we use the notation of Section 4).

P r o o f. At least r of the numbers µ1, . . . , µs are equal to 1, say, µ1 =
. . . = µr = 1. Hence

τ(γ) ≥
r∑

i=1

t∑
j=1

(νj − (µi, νj)) =
r∑

i=1

t∑
j=1

(νj − 1) = rδg(γ),

as wanted.

Finally, we consider three simple particular cases of Theorem 6.1.

Proposition 6.4. In the set-up of Theorem 6.1 assume that m ≥ 3,
n ≥ 2 and f(x) = a(x−α)m+γ. Then d = 1 and g(x) = b(x−β)rg1(x)m+γ,
where 0 < r < m, b ∈ K∗, β ∈ K and the polynomial g1(x) ∈ K[x] may be
constant.

P r o o f. Plainly, γ ∈ K. Hence we may write g(x) = g2(x)g1(x)m + γ,
where g1, g2 ∈ K[x] and the root type of g1 is (ν1, . . . , νt) with νi < m. We
have

(26) gcd(m, ν1, . . . , νt) = 1,

since otherwise the curve (21) would have been reducible.
The second formula in (15) implies that −2 = 2g − 2 = σ(γ) −m − d

(because σ(γ′) = 0 for γ′ 6= γ). Further,

σ(γ) =
t∑

j=1

(m− (m, νj)) > tm/2,

because (m, νj) ≤ m/2 for all j, and (m, νj) < m/2 for at least one j
(otherwise we violate (26)).
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If t ≥ 2 then −2 > (t− 2)m/2− d, a contradiction. Thus, t = 1, which
completes the proof.

Proposition 6.5. In the set-up of Theorem 6.1 assume that m = 2 and
f(x) = a(x− α)2 + γ. Then g(x) = g1(x)2g2(x) + γ, where g2(x) ∈ K[x] is
a separable polynomial of degree at most 2, and the polynomial g1(x) ∈ K[x]
may be constant.

P r o o f (similar to the proof of Proposition 6.4 and simpler). Now we
have ν1 = . . . = νt = 1 and σ(γ) = t. The genus formula reads −2 = t−2−d,
which yields t = deg g2 = d ≤ 2, as desired.

Proposition 6.6. In the set-up of Theorem 6.1 assume that n is odd ,
m,n ≥ 3 and g(x) = Dn(x, b), where b ∈ K∗. Then for some linear polyno-
mial λ(x) ∈ K[x] we have the following.

(i) If m is odd then f(x) = b(n−m)/2Dm(λ(x), b).
(ii) If m is even then b is a perfect square in K, and we have f(x) =

a−m/2bn/2Dn(λ(x), a) for some a ∈ K∗ and for a suitable choice of the sign
of bn/2.

P r o o f. By Proposition 5.1, g(x) has two extrema ±bn/2, both of type
(1, 2, . . . , 2). Let s+ (respectively, s−) be the number of odd entries in the
f -type of bn/2 (respectively, −bn/2). Then τ(±bn/2) = s±(n− 1)/2, and the
second formula in (15) implies that−2 ≥ (s++ s−)(n−1)/2−n−1. It follows
that s+ + s− = 2, and Corollary 5.3 implies that f(x) = αDm(x+β, a)+ γ,
where α, a ∈ K∗ and β, γ ∈ K.

The extrema of f are ±αam/2 + γ. On the other hand, they are ±bn/2.
It follows that γ = 0 and

(27) α = εa−m/2bn/2,

where ε ∈ {1,−1} depends on the signs of a−m/2 and bn/2.
Now recall that α ∈ K. If m is even, then (27) implies that b is a

perfect square in K, say, b = b2
1. The sign of b1 can be defined to have

f(x) = a−m/2bn
1Dn(λ(x), a), which completes the proof in this case.

If m is odd then (27) implies that a/b is a perfect square in K, say, b =
ac2. We define that sign of c so that (27) turns to f(x)= b(n−m)/2Dn(λ(x), b)
with λ(x) = c(x + β). This completes the proof also in this case.

7. Proof of Theorem 6.1. Everywhere in this section “equivalent”
means “equivalent over K”, and “standard pair” means “standard pair over
K”.

If min(m,n) = 1 then (f, g) is equivalent to a standard pair of the first
kind. If min(m,n) = 2 then (f, g) is equivalent to a standard pair of the
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first or second kind by Proposition 6.5. Hence we may assume that

min(m,n) ≥ 3.

We use the quantities σ(γ), etc., defined at the beginning of Section 4. We
start with the following observation.

Assertion 1. Let γ ∈ K have f-type (µ1, . . . , µs) and g-type (ν1, . . . , νt).
Then

(28) gcd(µ1, . . . , µs, ν1, . . . , νt) = 1.

Indeed, assume that for some γ we have q = gcd(µ1, . . . , µs, ν1, . . . , νt)
> 1. Then both f(x) − γ and g(x) − γ are qth powers in the ring K[x],
which contradicts the irreducibility of the curve (21).

The following assertion is just a reformulation of Lemma 6.2(iii).

Assertion 2. For any γ ∈ K either σ(γ) ≥ δf (γ), or τ(γ) ≥ n/2.

We say that γ ∈ K is a σ-point (respectively, τ -point) (2) if δf (γ) > σ(γ)
(respectively, δg(γ) > τ(γ)). Reformulating item (ii) of Lemma 6.2, we
obtain the following.

Assertion 3. If γ is a τ -point then f(x) − γ has no simple roots. In
particular , δf (γ) ≥ m/2.

It follows that there can be at most one σ-point and at most one τ -point.

Case 1: There exist a σ-point γ1 and a τ -point γ2.

Subcase 1.1: γ1 = γ2. We follow [27, pp. 37–38] with some changes.
Assertion 2 implies that

δf (γ1) > σ(γ1) ≥ m/2, δg(γ1) > τ(γ1) ≥ n/2.

Write δf (γ1) = m/2 + κ and δg(γ1) = n/2 + λ. Without loss of generality
κ ≥ λ. Assume that g(x) has an extremum γ3 6= γ1. Since

δf (γ3) ≤ m− 1− δf (γ1) = m/2− κ− 1,

the polynomial f(x)−γ3 has at least 2κ+2 simple roots. By Proposition 6.3

τ(γ3) ≥ (2κ + 2)δg(γ3) ≥ δg(γ3) + 2κ + 1.

We also have
τ(γ1) ≥ δg(γ1)− λ ≥ δg(γ1)− κ,

and τ(γ) ≥ δg(γ) for γ 6= γ1, γ3. By the genus formula (15),

−2 =
∑
γ∈K

τ(γ)− n− d ≥
∑
γ∈K

δg(γ) + κ + 1− n− d = κ− d > −d,

a contradiction.

(2) In Ritt’s [26] terminology, extra point of f (respectively, g).
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Thus, g(x) cannot have an extremum distinct from γ1. Proposition 5.5
implies that g(x) = a(x− α)n + γ1, and Proposition 6.4 implies that (f, g)
is equivalent to a standard pair of the first kind.

Subcase 1.2: γ1 6= γ2. By Assertion 3,

(29) δf (γ1) ≥ m/2, δg(γ2) ≥ n/2,

and by Lemma 6.2,

(30) Ω(γ1) ≤ n(m− δf (γ1)), Ω(γ2) ≤ m(n− δg(γ2)).

Using (29), (30) and Proposition 4.1, we obtain

−2 =
∑
γ∈K

(mn−Ω(γ))−mn− d

≥ (mn−Ω(γ1)) + (mn−Ω(γ2))−mn− d(31)
≥ δf (γ1)n + δg(γ2)m−mn− d

≥ −d.(32)

Thus, d = 2, and inequalities (31) and (32) are equalities. This has the
following consequences:

• Ω(γ) = mn for any γ 6= γ1, γ2. This implies that f and g have no
extrema distinct from γ1 and γ2.

• Inequalities (29) are equalities, which implies that the f -type of γ1 and
the g-type of γ2 are (2, . . . , 2).

• Inequalities (30) are equalities. Hence Lemma 6.2(i) together with (2)
implies that the f -type of γ2 and the g-type of γ1 are (1, 1, 2, . . . , 2).

Now Theorem 5.2 implies

f(x) = αDn(x + β, a) + γ, g(x) = α′Dn(x + β′, b) + γ′.

Since

γ1 = −αam/2 + γ = α′bn/2 + γ′, γ2 = αam/2 + γ = −α′bn/2 + γ′,

we have γ = γ′ and αam/2 = −α′bn/2, which shows that (f, g) is equivalent
to a standard pair of the fourth kind. This completes the proof in Case 1.

Case 2: There exist no σ-point. If f has a single extremum, then
f(x) = a(x − α)m + γ by Proposition 5.5, which reduces the theorem to
Proposition 6.4.

From now on assume that

(33) f has at least two distinct extrema.

Subcase 2.1: For every extremum γ of f , the polynomial g − γ has at
most one simple root. Let γ1 and γ2 be two distinct extrema of f (which
exist by (33)). Since g − γ1 and g − γ2 have at most one simple root, we
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have δg(γ1), δg(γ2) ≥ (n − 1)/2. Since δg(γ1) + δg(γ2) ≤ n − 1, we have
δg(γ1) = δ(γ2) = (n−1)/2 and the polynomial g has no extrema other than
γ1 and γ2. Also, both γ1 and γ2 have g-type (1, 2, . . . , 2). In particular, n
is odd and d = 1.

It follows from Theorem 5.2 that g(x) = αDn(x + β, b) + γ, where α, b ∈
K∗ and β, γ ∈ K. If m is even then Proposition 6.6 implies that b = b2

1,
where b1 ∈ K∗, and f(x) = αa−m/2bn

1Dm(λ(x), a) + γ. Writing

f(x) = αa−mn/2bn
1Dm(a(n−1)/2λ(x), an) + γ,

g(x) = αa−mn/2bn
1Dn(a(m−1)/2b−1

1 (x + β), am) + γ,

we conclude that (f, g) is equivalent to a standard pair of the third kind.
If m is odd then Proposition 6.6 implies that

f(x) = αb(n−m)/2Dn(λ(x), b) + γ.

Writing

f(x) = αb−n(m+1)/2Dn(b(n−1)/2λ(x), bn) + γ,

g(x) = αb−n(m+1)/2Dn(b(m−1)/2(x + β), bm) + γ,

we again see that (f, g) is equivalent to a standard pair of the third kind.

Subcase 2.2: For some extremum γ1 of f , the polynomial g− γ1 has at
least two simple roots. Since the argument in this subcase is rather lengthy,
we divide it into short logically complete steps.

Step 1: The f-type and further properties of γ1. By Proposition 6.3 we
have σ(γ1) ≥ 2δf (γ1). Since there is no σ-point, σ(γ) ≥ δf (γ) for all γ ∈ K.
By the genus formula,

−2 = σ(γ1)+
∑
γ 6=γ1

σ(γ)−n−d ≥ 2δf (γ1)+
∑
γ 6=γ1

δf (γ)−n−d = δf (γ1)−1−d.

Since γ1 is an extremum of f , we have δf (γ1) ≥ 1. Hence

d = 2, δf (γ1) = 1, σ(γ1) = 2,(34)
σ(γ) = δf (γ) (γ 6= γ1).(35)

It follows from (34) that the f -type of γ1 is (2, 1, . . . , 1).

Step 2: The definition of γ2. Equality (35) together with Proposition 6.3
implies that for any extremum γ of f(x), distinct from γ1, the polynomial
g(x)− γ has at most one simple root. Since n is even, δg(γ) ≥ n/2 for any
such γ. Also, (34) and Proposition 6.3 imply that g(x)− γ1 has exactly two
simple roots, whence δg(γ1) ≥ (n − 2)/2. It follows that f has exactly two
extrema, one of which is γ1; denote the other by γ2. Since δg(γ1)+ δg(γ2) ≥
(n− 2)/2 + n/2 = n− 1, these γ1 and γ2 are the only extrema of g as well,
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and

(36) δg(γ1) = (n− 2)/2, δg(γ2) = n/2.

Step 3: Possible g-types of γ1 and γ2. As we have seen in the previous
step, g(x)− γ2 has at most one simple root, and g(x)− γ1 has exactly two
simple roots. Comparing this with (36), we conclude that the g-type of γ1

is (1, 1, 2, . . . , 2), and the g-type of γ2 is either (1, 3, 2, . . . , 2) or (2, . . . , 2).

Step 4: Possible m and n. The third genus formula (15) implies that
−2 = mn−Ω(γ1)−Ω(γ2)− 2. The f - and g-types of γ1 being known, one
finds Ω(γ1) = mn/2 + m− 2. Hence

(37) Ω(γ2) = mn/2−m + 2.

On the other hand, by Lemma 6.2(i),

(38) Ω(γ2) ≤ n(m− δf (γ2)) = n(δf (γ1) + 1) = 2n.

Comparing (37) and (38), we obtain

(39) m ≤ (2n− 2)/(n/2− 1),

which implies one of the following options:

m = 6, n = 4,(40)
m = 4, n ≡ 2 (mod 4).(41)

Step 5: Impossibility of (41). In case (41) we have δf (γ2) = 3−δf (γ1) =
2, and the f -type of γ2 can be either (2, 2) or (1, 3).

Notice that the f -type (2, 2) and the g-type (2, . . . , 2) together vio-
late (28). There remain three possibilities for the f - and g-types of γ2,
respectively:

(1, 3) and (1, 3, 2, . . . , 2); (2, 2) and (1, 3, 2, . . . , 2); (1, 3) and (2, . . . , 2).

In the first case Ω(γ2) = n + 2, in the second case Ω(γ2) = 2n − 4, and in
the third case Ω(γ2) = n. In any case, this contradicts (37), which shows
that (41) is impossible.

Step 6: The f- and g-types of γ2. Thus, we have (40). Moreover, we
have equality in (38), which means, by Lemma 6.2(i), that

(42) every entry of the g-type of γ2 divides every entry of its f -type.

This shows that the g-type (2, 2) is impossible (it violates (28)), and the
single possibility for the g-type of γ2 is (1, 3). By (42), the only possible
f -type for γ2 is (3, 3).

Step 7: Normalizing γ1 and γ2. Since f has no extrema of type (3, 3)
other than γ2, we have γ2 ∈ K. Similarly, γ1 ∈ K. Replacing f and g by
(f − γ2)/(γ2− γ1) and (g− γ2)/(γ2− γ1), we may assume that γ1 = −1 and
γ2 = 0.
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Step 8: The polynomial f . Since γ2 = 0 is an extremum of f of type
(3, 3), we have f(x) = αf1(x)3, where α ∈ K∗ and f1(x) ∈ K[x] is a
separable quadratic polynomial. After a linear change of the variable we
may write f1(x) = a1x

2 − a2, where a1, a2 ∈ K∗. The second extremum
of f is −αa3

2 = γ1 = −1. Thus, α = a−3
2 and f(x) = (ax2 − 1)3, where

a = a1/a2.
Step 9: The polynomial g. Since γ2 = 0 has g-type (1, 3), we may write,

after a linear change of variable, that g(x) = (px − q)x3, where p, q ∈ K∗.
The second extremum of g is−27q4/(256p3) = −1. Hence (q/4)4 = (p/3)3 =
θ12
1 , where θ1 ∈ K∗. Thus, q/4 = θ3

1ξ4 and p/3 = θ4
1ξ3, where ξ3 and ξ4

are third and fourth root of unity, respectively (not necessarily primitive).
Notice that ξ3, ξ4 ∈ K. Putting θ = θ1ξ

−1
3 ξ4, we obtain q = 4θ3 and p = 3θ4.

Thus, g(x) = 3(θx)4 − 4(θx)3.
We have shown that (f, g) is equivalent to a standard pair of the fifth

kind. The theorem is proved.

8. Irreducible factors of f(x) − g(y). Everywhere in this section
“irreducible” means “irreducible over K”, and “factor” means “K-factor”,
unless the contrary is stated explicitly.

Given f(x) ∈ K[x], denote by ff the splitting field of f(x)− t over K(t)
(where t is a new indeterminate). Two polynomials f(x) and g(x) are called
similar if ff = fg.

A place of ff is called infinite if it lies over the infinite place of K(t).
The ramification index (over K(t)) of any infinite place of ff is equal to
deg f . It follows that

(43) similar polynomials have equal degrees.

Fried [16, Proposition 2] observed that the problem of factoring polyno-
mials of the form f(x)− g(y) reduces to the case of similar f and g.

Theorem 8.1 (Fried). Given f(x), g(x) ∈ K[x], there exist similar poly-
nomials f1(x), g1(x) ∈ K[x], and polynomials f2(x), g2(x) ∈ K[x] such that

f = f1 ◦ f2, g = g1 ◦ g2,

and
• for every irreducible factor F1(x, y) of f1(x) − g1(y), the polynomial

F (x, y) := F1(f2(x), g2(y)) is irreducible;
• every irreducible factor of f(x)− g(y) is of the form F1(f2(x), g2(y)),

where F1(x, y) is an irreducible factor of f1(x)− g1(y).
Thereby ,

(44) F1(x, y) ↔ F (x, y) := F1(f2(x), g2(y))

gives a one-to-one correspondence between the irreducible factors of f1(x)−
g1(y) and of f(x)− g(y).
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P r o o f. We give a proof for the convenience of the reader. We use
induction on deg f + deg g. If f(x)− t has a root in fg and g(x)− t has a
root in ff then ff = fg and there is nothing to prove. Therefore we may
assume that, say, g(x)− t has no root in ff .

Let y1 be a root of g(x)− t. By assumption, y1 6∈ ff . We have a tower
of rational fields:

K(t) ⊆ ff ∩K(y1)  K(y1).

The infinite place of the field K(t) totally ramifies in K(y1). Hence it totally
ramifies in the intermediate field ff∩K(y1). Therefore ff∩K(y1) = K(y2),
where y2 is integral over the ring K[t]. We have t = g̃(y2) ∈ K[y2] and
y2 = ĝ(y1) ∈ K[y1]. It is important to notice that deg g̃ < deg g, because
K(y2) is a proper subfield of K(y1).

Now let F (x, y) = aq(y)xq + . . . + a0(y) be a factor of f(x)− g(y). Then
a0(y1), . . . , aq(y1) are polynomials in the roots of f(x) − g(y1) = f(x) − t.
Hence a0(y1), . . . , aq(y1) ∈ ff . It follows that

a0(y1), . . . , aq(y1) ∈ ff ∩K(y1) = K(y2).

Therefore ai(y) = ãi(ĝ(y)), where ã0(y), . . . , ãq(y) ∈ K[y].
Obviously, F̃ (x, y) := ãq(y)xq + . . .+ ã0(y) is a factor of f(x)− g̃(y). We

have proved that every factor of f(x)−g(y) is of the form F̃ (x, ĝ(y)), where
F̃ (x, y) is a factor of f(x)− g̃(y).

Conversely, for any factor F̃ (x, y) of f(x)−g̃(y), the polynomial F (x, y)=
F̃ (x, ĝ(y)) is a factor of f(x) − g(y), distinct F̃ giving rise to distinct F .
Hence

F̃ (x, y) ↔ F (x, y) := F̃ (x, ĝ(y))

is a one-to-one correspondence between the factors of f(x) − g̃(y) and of
f(x) − g(y). Moreover, since this correspondence preserves the divisibility
relation, it restricts to a one-to-one correspondence between the irreducible
factors of f(x)− g̃(y) and of f(x)− g(y).

Since deg g̃ < deg g, there exist, by induction, similar polynomials f1(x),
g1(x) ∈ K[x], and polynomials f2(x), g̃2(x) ∈ K[x] such that f = f1 ◦ f2,
g̃ = g1 ◦ g̃2 and F1(x, y) ↔ F̃ (x, y) := F1(f2(x), g̃2(y)) is a one-to-one
correspondence between the irreducible factors of f1(x)−g1(y) and of f(x)−
g̃(y). Putting g2 = g̃2 ◦ ĝ, we complete the proof.

As Fried indicated in [18], the study of the Diophantine equation
f(x) = g(y) requires classification of polynomials of the form f(x) − g(y)
having quadratic factors. This problem is solved in [5].

Theorem 8.2. Let f(x) and g(x) be polynomials over K, and let q(x, y) ∈
K[x, y] be an irreducible (over K) factor of f(x)− g(y) of degree at most 2.
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Then there exist polynomials ϕ(x), f1(x), g1(x) ∈ K[x] such that f = ϕ ◦ f1,
g = ϕ ◦ g1 and one of the following two options takes place.

(8.2.a) We have max(deg f1,deg g1) = 2 and q(x, y) = f1(x)− g1(y).
(8.2.b) There exists an integer n > 2 with cos(2π/n) ∈ K such that for

some α ∈ K∗ and a, β, γ ∈ K we have

f1(x) = Dn(x + β, a), g1(x) = −Dn((αx + γ) cos(π/n), a),

and q(x, y) is a quadratic factor of f1(x) − g1(y). If q(x, y) is
absolutely irreducible then a 6= 0.

P r o o f. See [5, Theorem 1.3].

Note in conclusion that the problem of factorization of f(x)− g(y) has a
long history, which cannot be presented here. We just mention that among
the contributors were Cassels, Davenport, Feit, Fried, Lewis, Schinzel, Tver-
berg, and many others. In particular, Tverberg [33, Chapter 2] obtained
some results complementary to Theorem 8.2. Fried [16, Theorem 1 on
pp. 141–142] proved that if f is an indecomposable (3) polynomial of degree
n and K contains no complex subfield of Q(e2πi/n) (in particular, if K = Q),
then f(x)− g(y) is reducible (over Q) only in trivial cases. He also showed
that the problem with indecomposable f and general K reduces to a certain
problem in group theory, studied by Feit [14]. For further advances see [15,
19, 20]. Quite recently, Cassou-Noguès and Couveignes [11], essentially us-
ing the previous work of Fried and Feit, and assuming the classification of
finite simple groups, completely classified the pairs of polynomials f, g with
indecomposable f such that f(x)− g(y) is reducible (4).

9. Exceptional factors of f(x) − g(y) and specific pairs. An ab-
solutely irreducible polynomial F (x, y) ∈ K[x, y] is called exceptional if the
plane curve F (x, y) = 0 is of genus 0 and has at most two points at infinity.

In this section we use Theorems 8.1 and 8.2 to classify polynomials of
the form f(x)− g(y) having exceptional factors.

Proposition 9.1. Let Φ(x, y), f(x, y), g(x, y) ∈ K[x, y] be non-constant
polynomials such that Φ(f(x, y), g(x, y)) is an exceptional polynomial. As-
sume that f and g are algebraically independent over K. Then Φ(x, y) itself
is an exceptional polynomial.

P r o o f. First, since Ψ(x, y)= Φ(f(x, y), g(x, y)) is absolutely irreducible,
so is Φ(x, y).

(3) A polynomial is indecomposable if it is not a composition of two polynomials of
smaller degree.
(4) Cassou-Noguès and Couveignes assume that both f and g are indecomposable.

But [16, assertion (2.38) on p. 142] implies that the assumption about g can be dropped.
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Second, the field K(u, v) of rational functions on the curve Φ(u, v) = 0 is
contained in the field K(x, y) of rational functions on the curve Ψ(x, y) = 0,
the embedding being defined by u 7→ f(x, y) and v 7→ g(x, y). By the Lüroth
theorem, the curve Ψ(x, y) = 0 is of genus 0.

Third, since f(x, y) and g(x, y) are polynomials, the infinite places of
the field K(x, y) restrict to the infinite places of the field K(u, v). Since the
former field has at most 2 infinite places, so does the latter.

Proposition 9.2. Let q(x, y) = αx2 + 2βxy + γy2 + δ ∈ K[x, y] be a
quadratic polynomial with αβγδ(β2−αγ) 6= 0. Let f(x), g(x) ∈ K[x] be non-
constant polynomials of degrees m and n, respectively , such that q(f(x), g(y))
is an exceptional polynomial. Then (m,n) = 1. Furthermore, define b =
δγ/(4(β2 − αγ)). Then for some linear polynomial λ(x) ∈ K[x] one of the
following options takes place.
(9.2.a) The degree m is even, b is a perfect square in K, and f(x) =√

bDm(λ(x)
√

a, 1) for some a ∈ K and a suitable choice of the
sign of

√
b.

(9.2.b) The degree m is odd and f(x) =
√

bDm(λ(x)
√

b, 1).
We have similar options for g(x) with c = δα/(4(β2 −αγ)) instead of b,

and with another linear polynomial µ(x) instead of λ(x).

P r o o f. The plane curve q(f(x), g(y)) = 0 has 2 gcd(m,n) points at
infinity, which implies that gcd(m,n) = 1.

Further, since q(f(x), g(y)) is exceptional, so is

γq(f(x), y) = (γy − βγyf(x))2 − (β2 − αγ)(f(x)2 − 4b),

as well as y2 − (β2 − αγ)(f(x)2 − 4b). By Proposition 6.5, the polynomial
f(x)2−4b has at most two roots of odd order. We complete the proof using
Corollary 5.4.

To formulate the main result of this section, we need to define one more
kind of pairs, which we call specific (5). A specific pair over K is

(Dm(x, am/d),−Dn(x cos(π/d), an/d))

(or switched), where d = gcd(m,n) ≥ 3 and a, cos(2π/d) ∈ K. Notice that
−Dn(x cos(π/d), an/d) ∈ K[x] by (9).

Theorem 9.3. Let f(x), g(x) ∈ K[x] be such that f(x)− g(y) has an ex-
ceptional factor E(x, y). Then there exist a standard or specific pair (f1, g1)
over K, linear polynomials λ(x), µ(x) ∈ K[x], and a polynomial ϕ(x) ∈ K[x]
such that f = ϕ ◦ f1 ◦ λ and g = ϕ ◦ g1 ◦ µ. Also, E(x, y) is equal to
f1 ◦ λ(x) − g1 ◦ µ(y) times a constant if (f1, g1) is standard , and E(x, y)
divides f1 ◦ λ(x)− g1 ◦ µ(y) if (f1, g1) is specific.

(5) This term has no intuitive meaning: specific pairs are neither “less standard” nor
“more specific” than standard pairs.
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P r o o f. All polynomials that occur in the proof have coefficients in K
unless the contrary is stated explicitly.

Let f = f3 ◦ f2 and g = g3 ◦ g2 be the decompositions from Theorem 8.1
(we write f3 and g3 instead of f1 and g1). In particular,

(45) deg f3 = deg g3.

Then E(x, y) = q(f2(x), g2(y)), where q(x, y) is an absolutely irreducible
factor of f3(x)− g3(y).

It follows from (45) that the curve q(x, y) = 0 has exactly deg q points
at infinity. Since q is exceptional (by Proposition 9.1), we have deg q ≤ 2.
Theorem 8.2 implies that f3 = ϕ1 ◦ f4 and g3 = ϕ1 ◦ g4, where either

(46) q(x, y) = f4(x)− g4(y),

or for some integer ν > 2 we have

(47)
f4(x) = Dν(x + β, a), g4(x) = −Dν((αx + γ) cos(π/ν), a),
ν > 2, cos(2π/ν) ∈ K, q(x, y) | (f4(x)− g4(y)),

where a, α ∈ K∗ and β, γ ∈ K. Put f5 = f4 ◦ f2 and g5 = g4 ◦ g2.
In the case (46) we have E(x, y) = f5(x)− g5(y). Since E(x, y) has d =

gcd(deg f5,deg g5) points at infinity, we have d ≤ 2. Applying Theorem 6.1,
we conclude that f5 = ` ◦ f1 ◦ λ and g5 = ` ◦ g1 ◦ µ, where `(x), λ(x), µ(x)
are linear polynomials and (f1, g1) is a standard pair over K.

Obviously, E(x, y) is equal to f1(λ(x)) − g1(µ(y)) times a constant.
Putting ϕ = ϕ1 ◦ `, we complete the proof in the case (46).

Now assume (47). By (11), for some positive integer k we have q(x, y) =
qk(x + β, αy + γ), where

qk(x, y) = x2 − 2xy cos(πk/ν) cos(π/ν) + y2 cos2(π/ν)− 4a sin2(πk/ν).

Put f6 = f2 + β and g6 = αg2 + γ. Then E(x, y) = qk(f6(x), g6(y)) is an
exceptional polynomial, which, by Proposition 9.2, implies that

(48) gcd(m′, n′) = 1,

where m′ = deg f6 and n′ = deg g6. Without loss of generality, n′ is odd.
Furthermore, Proposition 9.2 implies that

g6(x) = (cos(π/ν))−1
√

aDn′(µ1(x) cos(π/ν)
√

a, 1),

and that either m′ is odd and

f6(x) =
√

aDm′(λ1(x)
√

a, 1),

or m′ is even, a is a perfect square in K, and for some a′ ∈ K∗ and a suitable
choice of the sign of

√
a we have

f6(x) =
√

aDm′(λ1(x)
√

a′, 1).

Here λ1(x) and µ1(x) are linear polynomials.
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Putting m = m′ν and n = n′ν, we obtain

g5(x) = −Dν(g6(x) cos(π/ν), a)
= −(

√
a)−νDν((

√
a)−1g6(x) cos(π/ν), 1)

= −(
√

a)−νDν(Dn′(µ1(x)
√

a cos(π/ν), 1), 1)
= −(

√
a)−νDn(µ1(x)

√
a cos(π/ν), 1)

=
{
−a−(ν+mn/ν)/2Dn(µ(x) cos(π/ν), am/ν) if m′ is odd,
−(
√

a)−ν(a′)−mn/(2ν)Dn(µ(x) cos(π/ν), (a′)m/ν) if m′ is even.

(Recall that
√

a ∈ K when m′ is even.) Here

µ(x) =
{

µ1(x)a(1+m/ν)/2 if m′ is odd,
µ1(x)(a′)m/(2ν)

√
a if m′ is even.

A similar calculation shows that

f5(x) =
{

a−(ν+mn/ν)/2Dm(λ(x), an/ν) if m′ is odd,
(
√

a)−ν(a′)−mn/(2ν)Dn(λ(x), (a′)n/ν) if m′ is even,
where

λ(x) =
{

λ1(x)a(1+n/ν)/2 if m′ is odd,
λ1(x)(a′)(1+n/ν)/2 if m′ is even.

Further, ν = d = gcd(m,n) by (48), which implies that d > 2 and cos(2π/d)
∈ K by (47). Thus, f5 = Af1 ◦ λ and g5 = Ag1 ◦ µ, where

A =
{

a(ν+mn/ν)/2 if m′ is odd,
(
√

a)ν(a′)mn/(2ν) if m′ is even,

and (f1, g1) is a specific pair over K.
Finally, since q(x, y) | (f4(x) − g4(y)), the polynomial E(x, y) =

q(f2(x), g2(y)) divides f5(x) − g5(y) = A(f1(λ(x)) − g1(µ(y))). Putting
ϕ(x) = ϕ1(x/A), we complete the proof in the case (47) as well.

10. The Diophantine equation. Let R be a commutative integral do-
main with quotient field K, and F (x, y) ∈ K[x, y]. We say that the equation
F (x, y) = 0 has infinitely many solutions with a bounded R-denominator if
there exists a non-zero ∆ ∈ R such that F (x, y) = 0 has infinitely many
solutions (x, y) ∈ K ×K with ∆x,∆y ∈ R.

In this section K is a number field, and S a finite set of places of K
containing all Archimedean places. We denote by OS the ring of S-integers
of the field K.

Recall the classical theorem of Siegel [30] (see also [23, 28]).

Theorem 10.1 (Siegel). Let F (x, y) ∈ K[x, y] be an absolutely irreducible
polynomial. If the equation F (x, y) = 0 has infinitely many solutions with
a bounded OS-denominator , then the polynomial F (x, y) is exceptional , as
defined at the beginning of Section 9.
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We need several simple auxiliary results.

Proposition 10.2. Let F (x, y) ∈ K[x, y] be irreducible over K but re-
ducible over K. Then the equation F (x, y) = 0 has at most finitely many
solutions (x, y) ∈ K ×K.

P r o o f. This is well known (and very simple); see, for instance, [31,
beginning of Section 9.6].

Proposition 10.3. Let K be a totally real number field , O its ring of
integers, and let F (x, y) ∈ K(x, y) have the following property : for any
embedding σ : K → R, the polynomial σF is semi-definite (see Subsec-
tion 3.2). Then the equation F (x, y) = 0 has only finitely many solutions
with a bounded O-denominator.

P r o o f. By Proposition 3.2(iii), there is a constant c = c(F ) such that
max(|σ(x)|, |σ(y)|) ≤ c(F ) for any (x, y) ∈ K2 satisfying F (x, y) = 0 and
for any embedding σ : K → R.

Fix ∆ ∈ O. Let (x, y) ∈ K2 be a solution of F (x, y) = 0 with ∆x,∆y ∈
O. Then ∆x,∆y are algebraic integers with all conjugates bounded. Hence
there are only finitely many possibilities for x and y. This completes the
proof.

Corollary 10.4. Let K be a totally real number field , O its ring of
integers and a ∈ K∗. Then we have the following.

(i) If d = gcd(m,n) is even then the equation

Dm(x, an/d) + Dn(y cos(π/d), am/d) = 0

has only finitely many solutions with a bounded O-denominator.
(ii) If d = gcd(m,n) is odd and the equation

Dm(x, an/d) + Dn(y, am/d) = 0

has infinitely many solutions with a bounded O-denominator , then all of
them with finitely many exceptions satisfy

Dm/d(x, an/d) + Dn/d(y, am/d) = 0.

P r o o f. This follows from Propositions 3.3 and 10.3.

Now we are ready to prove the main result of this paper.

Theorem 10.5. Let K be number field , S a finite set of places of K con-
taining all Archimedean places, and f(x), g(x) ∈ K[x]. Then the following
two assertions are equivalent.

(10.5.a) The equation f(x) = g(y) has infinitely many solutions with a
bounded OS-denominator.
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(10.5.b) We have f = ϕ◦f1◦λ and g = ϕ◦g1◦µ, where λ(x), µ(x) ∈ K[x]
are linear polynomials, ϕ(x) ∈ K[x], and (f1(x), g1(x)) is a stan-
dard or specific pair over K such that the equation f1(x) = g1(y)
has infinitely many solutions with a bounded OS-denominator.

If K is totally real and S is the set of Archimedean places (in particular , if
K = Q and OS = Z) then the word “specific” in (10.5.b) may be skipped.

P r o o f. Only (10.5.a)⇒(10.5.b) is to be proved (the converse is obvious).
Thus, assume (10.5.a). Then there exists a K-irreducible factor E(x, y)

of f(x)− g(y) such that the equation E(x, y) = 0 has infinitely many solu-
tions with a bounded OS-denominator. By Proposition 10.2, the polynomial
E(x, y) is absolutely irreducible. By Siegel’s theorem, E(x, y) is exceptional.
Now Theorem 9.3 implies that f = ϕ ◦ f1 ◦ λ and g = ϕ ◦ g1 ◦ µ, where ϕ,
f1, g1, λ and µ are as required.

Further, since E(x, y) divides f1◦λ(x)−g1◦µ(y), the equation f1◦λ(x) =
g1 ◦ µ(y) has infinitely many solutions with a bounded OS-denominator.
Hence so does the equation f1(x) = g1(y).

Now assume that K is totally real, S the set of its Archimedean places,
and (f1, g1) a specific pair. That is,

f1(x) = Dm(x, an/d) and g1(x) = −Dn(x cos(π/d), am/d),

where d = gcd(m,n) ≥ 3 and a, cos(2π/d) ∈ K.
Since f1(x) = g1(y) has infinitely many solutions with a bounded OS-

denominator, Corollary 10.4(i) implies that d is odd. Therefore cos(π/d) ∈
K. Now, f = ϕ̃ ◦ f̃1 ◦ λ̃ and g = ϕ̃ ◦ g̃1 ◦ µ̃ with

ϕ̃(x) = ϕ(Dd(εx, amn/d2
)),

f̃1(x) = Dm/d(x, an/d), g̃1(x) = Dn/d(x, am/d),

λ̃(x) = ελ(x), µ̃(x) = −εµ(x) cos(π/d),

where ε = (−1)m. Notice that (f̃1, g̃1) is a standard pair (of the third kind).
It remains to show that f̃1(x) = g̃1(y) has infinitely many solutions with

a bounded OS-denominator. Since cos(π/d) ∈ K, the equation

f1(x)− g1(y/ cos(π/d)) = Dm(x, an/d) + Dn(x, am/d) = 0

has infinitely many solutions with a bounded OS-denominator. By Corol-
lary 10.4(ii), so does the equation Dm/d(x, an/d) = −Dn/d(x, am/d). Since
either m/d or n/d is odd, the equation f̃1(x) = g̃1(y) has the same property.
The theorem is proved.

Theorem 1.1 is a particular case of Theorem 10.5.
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