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I. Introduction. Given a sequence ω = ω0ω1ω2 . . . on a finite alpha-
bet, denote by Ln(ω) the set of all subwords of ω of length n, that is,
Ln(ω) = {ωjωj+1 . . . ωj+n−1 | j ≥ 0}. The complexity function p(n) = pω(n)
is defined as the cardinality of Ln(ω). A celebrated result of Morse and Hed-
lund states that a sequence is ultimately periodic if and only if p(n) ≤ n for
some n (see [27]). A binary sequence ω is called Sturmian if p(n) = n + 1
for all n ≥ 1. Thus among all non-ultimately periodic sequences, Sturmian
sequences are those having the smallest complexity. Perhaps the most well
known example is the Fibonacci sequence

12112121121121211212112112121121121211212112112121121 . . .

defined as the fixed point of the morphism 1 7→ 12 and 2 7→ 1.
The study of Sturmian sequences was originated by M. Morse and

G. A. Hedlund in the 1930’s. They showed that Sturmian sequences pro-
vide a symbolic coding of the orbit of a point on a circle with respect to a
rotation by an irrational number α (cf. [26], [27]). Sturmian sequences have
since been extensively studied from many different points of view (cf. [3]–[6],
[10], [11], [17], [23], [24], [29]).

We consider two natural generalizations of Sturmian sequences to alpha-
bets of more than two letters. The condition p(n+1)−p(n) = 1 implies that
each word in Ln(ω) is a prefix (suffix) of exactly one word in Ln+1(ω) except
for one which is a prefix (suffix) of two words of length n + 1. Thus a se-
quence ω on the alphabet Ak = {a1, . . . , ak} is called Sturmian (on k letters)
if p(n) = n+ k− 1. As in the binary case we have p(n+ 1)− p(n) = 1. This
notion of Sturmian was considered by S. Ferenczi and C. Mauduit in [17].
A second generalization of Sturmian, which is the focus of this paper, was
originally introduced by P. Arnoux and G. Rauzy in [3] (see also [30]):
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Definition I.1. Let Ak = {a1, . . . , ak} with k ≥ 2. A sequence ω in the
alphabet Ak is called an Arnoux–Rauzy sequence if it satisfies the following
four conditions:

• ω is uniformly recurrent, i.e., each (finite) subword u of ω occurs in ω
with bounded gaps,
• the complexity function satisfies p(n) = (k − 1)n+ 1,
• each word in Ln(ω) is a prefix of exactly one word in Ln+1(ω) except

for one which is a prefix of k words in Ln+1(ω),
• each word in Ln(ω) is a suffix of exactly one word in Ln+1(ω) except

for one which is a suffix of k words in Ln+1(ω).

In [3] the authors focused on the special case k = 3. We note that if
k = 2 then ω is a (binary) Sturmian sequence. Arnoux–Rauzy sequences
have been the topic of a number of recent papers including [2], [7]–[9], [17],
[33], [34].

Given an Arnoux–Rauzy sequence ω on the alphabet Ak = {a1, . . . , ak},
denote by X = Xω the orbit closure of ω in ANk with respect to the (left)
shift map. We call X an Arnoux–Rauzy subshift on Ak. For each n we can
write Ln(X) = Ln(ω) because uniform recurrence implies that Ln(x) =
Ln(ω) for each x ∈ X. The language of X, denoted L(X), is defined by
L(X) =

⋃
n Ln(X). Thus p(n) is just the cardinality of Ln(X). It follows

from Definition I.1 that for each n, there is exactly one word in Ln(X)
which is a prefix of more than one word in Ln+1(X). We call such a word
right special and denote it by r(n). Similarly, there is exactly one word in
Ln(X) which is a suffix of more than one word in Ln+1(X) which we call left
special and denote it by l(n). Thus if w ∈ Ln(X) is right special, then the
concatenation wa ∈ Ln+1(X) for every a ∈ Ak, and similarly if w ∈ Ln(X)
is left special, then aw ∈ Ln+1(X) for every a ∈ Ak. A word which is both
left and right special is called bispecial .

We consider the passage from Ln(X) to Ln+1(X). From the set Ln(X)
both l(n − 1) and r(n − 1) are identified. In case l(n − 1) 6= r(n − 1), the
passage from Ln(X) to Ln+1(X) is completely determined by Ln(X). In this
case there is exactly one word in Ln(X) containing r(n− 1) as a suffix, and
this word must be r(n). Every other word of length n has a unique extension
by one letter to the right which is determined by its suffix of length n− 1.
The second case is when l(n− 1) = r(n− 1), that is, l(n− 1) is bispecial. In
this case there are k words of length n containing r(n−1) as a suffix, and it
is impossible to tell just from within Ln(X) which of these k words is r(n).
Thus in case l(n − 1) is bispecial, the passage from Ln(X) to Ln+1(X) is
achieved by

(1) specifying which of the k words {a1r(n− 1), . . . , akr(n− 1)} is r(n),
or equivalently the initial letter of r(n)
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and

(2) specifying which letter must follow the remaining k − 1 words, or
equivalently the terminal letter of l(n).

We prove that for each n ≥ 1, the word r(n) is just the mirror image
(or reverse) of the word l(n) (see Proposition II.5). In particular, the initial
letter of r(n) is equal to the terminal letter of l(n). Thus, if l(n − 1) is
bispecial, the passage from Ln(X) to Ln+1(X) depends only on (1), i.e., the
initial letter of r(n). We code this information in a sequence IX = (in)∞n=1
as follows: Let {w1, w2, . . .} be the set of bispecial subwords ordered so that
1 = |w1| < |w2| < . . . Set i1 = w1 ∈ Ak, and for n ≥ 2 let in ∈ Ak so that
inwn−1 is right special. Then the sequence (in) completely determines L(X).
We observe that for each a ∈ Ak and each n ≥ 1 there exists an m ≥ n
so that al(m) is right special. Otherwise by minimality X would contain a
periodic sequence. This implies that each a ∈ Ak occurs in (in) an infinite
number of times.

The sequence (in) defined above coincides with the sequence (in) defined
by P. Arnoux and G. Rauzy in [3] for k = 2, 3 (see Proposition on page 206
for k = 2 and Proposition on page 208 for k = 3). Let lX ∈ X denote the
unique accumulation point of the set of all left special words, i.e., each initial
subword of lX is left special. In this paper we give two combinatorial algo-
rithms for constructing the (characteristic) sequence lX from the sequence
(in). (See [3], [16], [23], [24], [32] and [31] for examples of algorithms for
constructing sequences of specified complexity.)

The first method (see Theorem III.5), which is the central idea of the pa-
per, involves a simple combinatorial algorithm for constructing all bispecial
words. Applied in the binary case, this algorithm provides a new method of
generating characteristic Sturmian sequences.

The second method is an S-adic description of the characteristic se-
quence dual to that given by Arnoux and Rauzy for k ∈ {2, 3} in [3]. We
use it to show that Arnoux–Rauzy subshifts arising from fixed points of
primitive morphisms are characterized by the following underlying periodic
structure (1):

Theorem I.2. An Arnoux–Rauzy subshift X is primitive substitutive
(i.e., X contains the image, under a letter-to-letter morphism, of a fixed
point of a primitive substitution) if and only if the associated sequence (in)
is eventually periodic (2).

(1) In the Sturmian case, F. Durand and B. Host [14] have an independent proof of
Theorem I.2 using dimension groups.

(2) In the binary case, the connection between Sturmian sequences and continued
fractions implies that the periodicity condition given in Theorem I.2 is equivalent to the
frequencies of the letters being quadratic irrationals.
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The algorithm described in Theorem III.5 imposes a “rigid” combinato-
rial structure on the characteristic sequence lX ∈ X, partially shared by all
sequences in X. We show that the language L(X) contains arbitrarily large
blocks of the type V 2+ε.

Proposition I.3. For each k = 2, 3, . . . there is a positive number
ε = ε(k) such that if ω is an Arnoux–Rauzy sequence in Ak, then ω be-
gins in an infinite number of blocks of the form UV V V ′ with V ′ a prefix of
V , and min{|V ′|/|V |, |V |/|U |} > ε.

In case k ∈ {2, 3}, the result of Proposition I.3 was already established
by Ferenczi and Mauduit in [17]. In the binary Sturmian case we can say
more:

Proposition I.4. Let ω be a binary Sturmian sequence. Then ω contains
arbitrarily large subwords of the form V (5+

√
5)/2.

Proposition I.4 extends a result of F. Mignosi and G. Pirillo [25] on the
Fibonacci sequence to all Sturmian sequences.

Although Mignosi [24] proved that the Fibonacci sequence does not con-
tain any 4th powers, in the proof of Proposition I.4 we show that unless the
associated sequence (in) of ω admits the periodic sequence 12121212 . . . as
a tail (in which case ω is the morphic image of the Fibonacci word), the
sequence ω contains arbitrarily large 4th powers.

Combining Proposition I.3 with a recent combinatorial interpretation of
Ridout’s Theorem due to S. Ferenczi and C. Mauduit in [17], we obtain the
following extension to k ≥ 4 of Proposition 2 and Proposition 4 in [17]:

Theorem I.5. If for some base b ≥ 2 the digit expansion of an irrational
number θ is an Arnoux–Rauzy sequence on k letters, then θ is a transcen-
dental number.

We wish to thank the referee of the paper for his many useful comments
and suggestions which helped improve both the content and presentation of
the paper.

II. Combinatorial structure of bispecial words. Let ω be an
Arnoux–Rauzy sequence on the alphabet Ak = {a1, . . . , ak} and X = Xω

the associated Arnoux–Rauzy subshift. We denote the length of a word w
by |w|. We regard the empty word, denoted by ε, as the unique word in
L(X) of length zero.

Given a non-empty word w = w1 . . . wn with wi ∈ Ak we define the
reverse word wrev by wrev = wnwn−1 . . . w2w1. If u and v are non-empty
words in L(X) we write u ` uv to mean that for each word w ∈ L(X) with
|w| = |u|+ |v| if w begins in u then w = uv. If it is not the case that u ` uv
then we write ¬(u ` uv). Similarly we write vu a u to mean that for each



Generalization of Sturmian sequences 171

word w ∈ L(X) with |w| = |u|+ |v| if w ends in u then w = vu. Otherwise
we write ¬(vu a u).

Lemma II.1. Suppose w ∈ L(X) is either the empty word or bispecial
and a ∈ Ak. Then aw is right special if and only if wa is left special.

P r o o f. Because for each n ≥ 1 there is exactly one left special word and
one right special word in Ln(X) it suffices to show that if aw is right special
then wa is left special. We proceed by induction on |w|. If w is the empty
word, then a is right special. There is a unique letter x ∈ Ak such that for
all y ∈ Ak \ {a} we have y ` yx. We claim x = a. Otherwise, if x 6= a, then
x ` xx, a contradiction. Thus a is also left special.

Next suppose that |w| ≥ 1. Again there is a unique letter x ∈ Ak such
that for all y ∈ Ak \{a} we have yw ` ywx. We claim x = a. Suppose to the
contrary that x 6= a. Then xw ` xwx. If no prefix of xw is right special then
x ` xw ` xwx, which would imply that X contains the periodic sequence
xwxwxwxwxw . . . , a contradiction. Let v (possibly the empty word) be the
longest prefix of w such that xv is right special. Since we are assuming that
x 6= a, it follows that |v| < |w|. Equivalently, we can write xw = xvu where
u is not the empty word. By induction hypothesis, the first letter of u must
be x. Set u = xu′. It follows by maximality of v that xvx ` xvxu′. Since
xv and aw are both right special and |v| < |w|, we see that xv is a proper
suffix of aw and hence a suffix of w. Thus xw ` xwx ` xwxu′ = xwu. But
xw is a suffix of xwu since xw = xvu and xv is a suffix of w. This implies
that xwun is a suffix of xwun+1 for each natural number n. Thus we obtain

xw ` xwu ` xwuu ` xwuuu ` xwuuuu ` . . . ,
a contradiction. Hence x = a and wa is left special.

Lemma II.2. Let w ∈ L(X) be bispecial and a ∈ Ak.

(1) Suppose aw is right special and a ` aw. Then wa ` waw and waw
is bispecial.

(2) Suppose wa is left special and wa a a. Then waw a aw and waw is
bispecial.

P r o o f. The proof of this lemma relies on the previous lemma. In view
of the completely symmetric nature of Lemma II.1 and of the statements
(1) and (2), we will prove only (1). Assume that aw is right special and
a ` aw. Clearly wa ` waw. We show that waw is bispecial. Lemma II.1
implies that wa is left special; since wa ` waw, waw is also left special. It
remains to show that waw is also right special. For this it will suffice to
show that wa a a since we already know that aw is right special. Suppose to
the contrary that there is a proper suffix v (possibly empty) of w such that



172 R. N. Risley and L. Q. Zamboni

va is left special. Then by Lemma II.1, av is a right special proper prefix of
aw, contradicting our assumption that a ` aw.

Lemma II.3. Let w ∈ L(X) be either empty or bispecial and a ∈ Ak.

(1) Suppose aw is right special and ¬(a ` aw). Let v (possibly empty)
be the longest proper prefix of w with the property that av is right special.
By Lemma II.1 we have w = vau for some u ∈ L(X). Then wa ` wau and
wau is bispecial.

(2) Suppose wa is left special and ¬(wa a a). Let v (possibly empty) be
the longest proper suffix of w with the property that va is left special. By
Lemma II.1 we have w = uav for some u ∈ L(X). Then uaw a aw and
uaw is bispecial.

P r o o f. Again by symmetry it suffices to establish (1). We suppose aw is
right special, and v (possibly empty) is the longest proper prefix of w with
the property that av is right special. Since v is either empty or bispecial
it follows by Lemma II.1 that va is left special and hence a prefix of w.
That is, we can write w = vau for some u ∈ L(X). The maximality of
the length of v implies that ava ` avau. But since av is right special and
|av| ≤ |w| it follows that av is a suffix of w and hence ava a suffix of wa.
Thus wa ` wau. We now show wau is bispecial. By Lemma II.1 we have
wa is left special and since wa ` wau we have wau is also left special. Since
av is a suffix of w it follows that avau is a suffix of wau. But avau = aw,
which is right special. Thus to see that wau is right special it suffices to show
that wa a ava. Suppose that some suffix of wa of the form zava (z ∈ L(X)
possibly empty) were left special. Then zav would be a bispecial suffix of
w of length strictly greater than |v|, and zava is left special, and hence by
Lemma II.1, azav is right special. It follows from the maximality of the
length of v that wa = zava.

Remark II.4. It follows from the previous lemmas that if w ∈ L(X) is
bispecial then there is a shortest bispecial word W properly containing w as
a prefix. Moreover W is of the form waw′ where a ∈ Ak is the unique letter
for which aw is right special and w′ (possibly the empty word) is a suffix of
w. We also remark that W is also the shortest bispecial word containing w
as a suffix and hence W is also of the form v′aw where a is as above and v′

(possibly the empty word) is a prefix of w.

Proposition II.5. A non-empty word v ∈ L(X) is right special if and
only if vrev is left special. In particular if v is bispecial then v = vrev.

P r o o f. We proceed by induction on |v|. It suffices to show that if v is
right special then vrev is left special. We saw at the beginning of the proof
of Lemma II.1 that if |v| = 1 and v is right special, then v = vrev is also
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left special. Next suppose that |v| > 1 and v is right special. Let w be the
unique left special word of length |v|. We show that w = vrev. Let v′ denote
the longest proper suffix of v which is bispecial, and w′ the longest proper
prefix of w which is bispecial. Since v′ is left special, v′ is a prefix of w.
Since w′ is chosen to be the longest bispecial prefix of w we have |w′| ≥ |v′|.
A similar argument shows that |v′| ≥ |w′| and hence v′ = w′. Also by
induction hypothesis we have v′rev = w′ = w′rev. We write w = w′aw′′ and
v = v′′bv′ where a, b ∈ Ak and |v′′| = |w′′|. Since v′ = w′ and bv′ is right
special it follows from Lemma II.1 that a = b. So we have w = w′aw′′ and
v = v′′aw′. If |w′′| = 0 then vrev = w′reva = w′a = w. So we can assume that
|w′′| > 0. Let W be the shortest bispecial word containing w′ as a prefix
and hence containing w′ as a suffix. In view of Remark II.4 we can write
W = w′aw′′′ = v′′′aw′ with w′′′ a suffix of w′ and v′′′ a prefix of w′. The
maximality of w′ implies that w′′ is a prefix of w′′′ and v′′ is a suffix of v′′′.
It suffices to show that v′′′rev = w′′′. But v′′′ is a prefix of w′ and so v′′′rev is a
suffix of w′rev = w′. Since |v′′′rev| = |w′′′| and both are a suffix of w′ it follows
that v′′′rev = w′′′ as required.

Corollary II.6. For each non-empty word v we have v ∈ L(X) if and
only if vrev ∈ L(X).

P r o o f. This follows immediately from the above lemma since for each
word v ∈ L(X) there is a bispecial word which contains v as a subword.

III. Constructing the characteristic sequence. Let X be an Arnoux
–Rauzy subshift on Ak = {a1, . . . , ak}.

Definition III.1. Let {ε = w1, w2, . . .} be the set of all bispecial words
in X ordered so that 0 = |w1| < |w2| < . . . Let IX = (in)∞n=1 ∈ ANk be the
sequence defined by in ∈ Ak so that inwn is right special.

We saw in Section I that the sequence IX completely determines the
language L(X). Hence two Arnoux–Rauzy subshifts X and Y are equal if
and only if IX = IY .

Definition III.2. The characteristic sequence of X, denoted by
lX = l1l2 . . . with li ∈ Ak, is the unique accumulation point in X of the
set of all left special words in L(X).

Since inwn is right special is equivalent to wnin is left special (Lem-
ma II.1), the sequence (in) is a subsequence of the sequence lX . In fact,
for each n we have in = l|wn|+1. Similarly there is a unique sequence
rX = . . . r−3r−2r−1 indexed by the negative integers with the property
that r−nr−n+1 . . . r−2r−1 is right special for each n ≥ 1. In view of Propo-
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sition II.5 the sequences l and r are mirror images of one another, that is,
r−n = ln for each n ≥ 1.

We now give two combinatorial algorithms for building the sequence lX
from the sequence (in) (see Theorem III.5 and Proposition III.7). We begin
with a combinatorial construction used in Theorem III.5.

Define a function F : ANk → ANk as follows: Set

A′k = {a1, . . . , ak, â1, . . . , âk}
and let φ denote the morphism φ : A′k → Ak defined by φ(ai) = φ(âi) = ai
for each 1 ≤ i ≤ k. The morphism φ extends to a morphism (also denoted by
φ) from words in A′k to words in Ak and from sequences in A′k to sequences
in Ak. With each sequence x = {xn}∞n=1 in ANk we associate a sequence
of words {Bn}∞n=1 in the alphabet A′k as follows: B1 = x̂1 and for n > 1,
Bn is obtained from Bn−1 according to the following rule: If x̂n does not
occur in Bn−1 then Bn = Bn−1x̂nφ(Bn−1). Otherwise if x̂n occurs in Bn−1,
then we can write Bn−1 = v′x̂nu′ where v′ and u′ are words in A′k (possibly
empty) and x̂n does not occur in u′. In this case we set Bn = Bn−1x̂nφ(u′).
The sequence {Bn}∞n=1 of words converges to a unique sequence B in the
alphabet A′k. We set F (x) = φ(B).

Example III.3. Let x = 1212121212 . . . Then

B1 = 1̂,

B2 = 1̂2̂1,

B3 = 1̂2̂11̂21,

B4 = 1̂2̂11̂212̂1121,

B5 = 1̂2̂11̂212̂11211̂2121121,

B6 = 1̂2̂11̂212̂11211̂21211212̂112112121121, . . .

Then

B = 1̂2̂11̂212̂11211̂21211212̂1121121211211̂21211212112112121121 . . .

and

F (x) = 12112121121121211212112112121121121211212112112121121 . . .

is the Fibonacci sequence. In general the periodic sequence

x = 1n2n1n2n1n2n . . .

gives rise to the fixed point of the morphism

1 7→ 1n2, 2 7→ 1.
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Example III.4. Let x = 123123123123 . . . Then

B1 = 1̂,

B2 = 1̂2̂1,

B3 = 1̂2̂13̂121,

B4 = 1̂2̂13̂1211̂213121,

B5 = 1̂2̂13̂1211̂2131212̂131211213121, . . .

Then

B = 1̂2̂13̂1211̂2131212̂1312112131213̂12112131212131211213121 . . .

and

F (x) = 121312112131212131211213121312112131212131211213121 . . .

is the fixed point of the morphism

1 7→ 12, 2 7→ 13, 3 7→ 1.

In general if x is the periodic sequence

x = an1a
n
2 . . . a

n
ka

n
1a

n
2 . . . a

n
ka

n
1a

n
2 . . . a

n
k . . .

then F (x) is the fixed point of the morphism (3)

a1 7→ an1a2,

a2 7→ an1a3,

a3 7→ an1a4,

...

ak−1 7→ an1ak,

ak 7→ a1.

Theorem III.5. Let X be an Arnoux–Rauzy subshift on Ak. Let lX ∈ X
denote the characteristic sequence of X and IX = (in) the sequence in
Definition III.1. Then each a ∈ Ak occurs in (in) an infinite number of
times and lX = F (IX). Conversely , if x = {xn}∞n=1 is a sequence in Ak
such that each letter a ∈ Ak occurs infinitely often in x, then F (x) is the
characteristic sequence of an Arnoux–Rauzy subshift.

P r o o f. Let X be an Arnoux–Rauzy subshift and IX = (in) be as in
Definition III.1. We saw in Section I that each a ∈ Ak occurs in (in) an
infinite number of times. Let {Bn}∞n=1 be the sequence of words defined
above. Then Lemmas II.1–II.3 imply that {φ(Bn)}∞n=1 is precisely the set of
all bispecial words. We prove this by induction on n.

(3) Substitutions of this type were investigated by J.-I. Tamura in [32].
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We show that for each n, φ(Bn) is the shortest bispecial word containing
φ(Bn−1) as a proper prefix. We take B0 = ε the empty word. For n = 1 we
see that φ(B1) = i1 defined as the unique bispecial word of length one. Next
suppose that {φ(B1), . . . , φ(Bn−1)} are the n − 1 shortest bispecial words.
Recall that in was defined as the unique letter in Ak such that inφ(Bn−1)
is right special. By Lemma II.1, φ(Bn−1)in is left special.

We consider the two cases in the recursive definition of Bn separately.
In case there is no occurrence of în in Bn−1, then φ(Bn−1) satisfies the
hypothesis of Lemma II.2 with w = φ(Bn−1) and a = in. It follows from
Lemma II.2 that φ(Bn−1)in ` φ(Bn−1)inφ(Bn−1) and φ(Bn−1)inφ(Bn−1) =
φ(Bn). Thus φ(Bn) is the shortest bispecial word containing φ(Bn−1) as a
proper prefix.

In case în occurs in Bn−1 we write Bn−1 = v′ înu′ where în does not
occur in u′. In this case φ(Bn−1) satisfies the hypothesis of Lemma II.3 with
w = φ(Bn−1), a = in, v = φ(v′) and u = φ(u′). By Lemma II.3 we have
φ(Bn−1)in ` φ(Bn−1)inφ(u′) and φ(Bn−1)inφ(u′) = φ(Bn). Thus φ(Bn) is
the shortest bispecial word containing φ(Bn−1) as a proper prefix.

Having established that φ(Bn) is bispecial for each n it follows that
F (IX) defined to be the limit of {φ(Bn)}∞n=1 is equal to the characteristic
sequence lX .

The converse follows from our discussion in Section I concerning the
obstruction in building the language L(X) of an Arnoux–Rauzy subshift.
We saw that the obstruction is coded in a sequence (in) with the property
that each a ∈ Ak occurs in (in) an infinite number of times.

As an immediate consequence of the above construction we have the
following generalization of a theorem of F. Mignosi [23] which states that
if the sequence of partial quotients in the continued fraction expansion of
the slope of a (binary) Sturmian sequence ω is unbounded then ω contains
arbitrarily large powers of words:

Corollary III.6. If the sequence IX = (in) contains arbitrarily large
blocks of the form am for some a ∈ Ak, then for each N ≥ 1 and M ≥ 1
the language L(X) contains a block of the form VM where V is a word of
length ≥ N .

We now establish the following alternative description of the sequence lX :

Proposition III.7. Let X be an Arnoux–Rauzy subshift on Ak and IX =
(in) the sequence in Definition III.1. For each a ∈ Ak define the morphism
τa by τa(a) = a and τa(b) = ab for each b ∈ Ak \{a}. Then for each x ∈ Ak
the characteristic sequence lX is given by

lim
n→∞

τi1 ◦ . . . ◦ τin(x).
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Proposition III.7 is a “dual” reformulation of the following result due to
Arnoux and Rauzy in [3]:

Theorem III.8 (P. Arnoux and G. Rauzy, [3]). For each n ≥ 1 and for
each x ∈ Ak

U(n,x) = σi1 ◦ . . . ◦ σin(x)

where for each a ∈ Ak the morphism σa is defined by σa(a) = a and σa(b) =
ba for b ∈ Ak \ {a}.

Although Arnoux and Rauzy only prove Theorem III.8 for k = 2 (Propo-
sition on page 206) and k = 3 (Proposition on page 208), they point out (in
Remarque 2 on page 202) that the results in [3] extend to all k ≥ 2.

Proof of Proposition III.7. For each positive integer n let wn+1 denote
the nth bispecial word (see Definition III.1). Following [3], for x ∈ Ak, the
word U(n,x) is obtained by concatenating the labels of the edges along the
simple closed directed path in the Rauzy graph Γ|wn+1| beginning and ending
at wn+1 whose first directed edge is labeled x. It is readily verified that for
each n ≥ 1 and x ∈ Ak,

τi1 ◦ . . . ◦ τin(x) = (σi1 ◦ . . . ◦ σin(x))rev,

and hence by Theorem III.8,

τi1 ◦ . . . ◦ τin(x) = (U(n,x))rev.

Set µ(n, x) = min{|U(n,x)|, |wn+1|}. Since U(n,x) is a loop based at the
nth bispecial word wn+1 it follows that for each 1 ≤ k ≤ µ(n, x) the kth
letter of (U(n,x))rev is the kth letter of wn+1. In other words (U(n,x))rev

and wn+1 have a common prefix of length µ(n, x). Since µ(n, x) → ∞ as
n→∞ the sequence of compositions {τi1 ◦ . . . ◦ τin(x)}∞n=1 converges to the
accumulation point of the sequence {wn}∞n=1 which is lX as required.

Corollary III.9 (4). Each letter a ∈ Ak occurs in (in) with bounded
gaps if and only if X is linearly recurrent in the sense of [15] or [13].

P r o o f. By Proposition III.7, each a ∈ Ak occurs in (in) with bounded
gaps if and only if X is a primitive S-adic subshift (see §2.5 in [13]). The
result now follows from Proposition 5 in [13].

IV. Primitive substitutive subshifts. In this section we use Propo-
sition III.7 to prove Theorem I.2.

Definition IV.1. A sequence ω in a finite alphabet A is called primitive
substitutive if it is the image (under a letter-to-letter morphism) of a fixed

(4) Compare with Proposition 9 in [13].
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point of a primitive substitution. A minimal symbolic space X is said to be
primitive substitutive if it contains a primitive substitutive sequence.

Recall that a morphism τ on a finite alphabet A is called primitive if
there is a positive integer N such that for all a, b ∈ A the composition τN (a)
contains an occurrence of b (see [28]). We will need the following useful
characterization of primitive substitutive sequences due to F. Durand (5):

Theorem IV.2 (F. Durand, [12]). A sequence ω is primitive substitutive
if and only if it has a finite number of derived sequences.

Proof of Theorem I.2. In case (in) is eventually periodic, then by Propo-
sition III.7 there exist words v and w in Ak such that for each x ∈ Ak,

lX = τv ◦ τw ◦ τw ◦ τw ◦ . . . (x).

If u = u1 . . . un with ui ∈ Ak, then τu denotes the composition τu1 ◦ . . .◦τun .
Since each letter in Ak must occur in (in) an infinite number of times, the
word w contains each letter in Ak, and hence τw is a primitive morphism.
Thus lX is the image (under the morphism τv) of the fixed point of the
primitive morphism τw. Using Proposition 3.1 in [12] we conclude that lX
is primitive substitutive.

Conversely, suppose X is primitive substitutive. We use the following
lemma proved in [19]:

Lemma IV.3 (C. Holton and L. Q. Zamboni, [19]). Let Y be a primitive
substitutive subshift. Then any point y ∈ Y having more than one backward
extension is primitive substitutive.

The above lemma implies that lX is a primitive substitutive sequence.
By Proposition III.7,

ω = lX = lim
n→∞

τi1 ◦ . . . ◦ τin(x).

For each m ≥ 1 set

ω(m) = lim
n→∞

τim ◦ τim+1 ◦ . . . ◦ τim+n(x).

Then for each m ≥ 1,

ω(m+ 1) = lim
n→∞

τim+1 ◦ τim+2 ◦ . . . ◦ τim+n(x)

is (up to a bijection between Ak and {1, . . . , k}) a derived sequence of ω. In
fact ω(m+ 1) is (up to a bijection) the derived sequence of

ω(m) = lim
n→∞

τim ◦ τim+1 ◦ . . . ◦ τin(x)

(5) A slightly more general characterization of primitive substitutive sequences to-
gether with a characterization of primitive substitutive subshifts is given in [18].
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with respect to the initial letter of ω(m) (cf. [12] and [18]). More precisely,
if a ∈ Ak denotes the initial letter of ω(m), then a is the unique bispecial
word of length 1 in L(ω(m)) and therefore the return words to a are given
by {a} ∪ {ab | b ∈ Ak \ {a}} (cf. [12] or [18] for a precise definition of return
words). The sequence ω(m+ 1) is obtained from ω(m) by coding the return
words to a as follows (6): the return word a is coded by the letter a while for
each b ∈ Ak \ {a}, the return word ab is coded by the letter b. Since ω has
only finitely many induced sequences, the sequence (in) must be eventually
periodic.

V. Powers of words. In this section we prove Propositions I.3 and I.4.
We assume X is an Arnoux–Rauzy subshift on Ak.

Proposition V.1. Let X be an Arnoux–Rauzy subshift on Ak. There
exists a positive number ε0 = ε0(k) and an infinite number of bispecial words
of the form UV V V ′ with

• V ′ a prefix of V ,
• min{|V ′|/|V |, |V |/|U |} ≥ ε0.

Corollary V.2. The characteristic sequence lX begins in an infinite
number of words of the form WWw where w is a prefix of W .

P r o o f. Proposition V.1 implies that lX begins in an infinite number
of bispecial blocks of the form UV V V ′ where V ′ is a prefix of V . Writing
V = V ′V ′′ we obtain

UV V V ′ = (UV V V ′)rev = (V ′revV
′′

rev)(V ′revV
′′

rev)V ′revUrev.

Proof of Proposition V.1. We begin with a series of lemmas. Let IX =
(in) ∈ ANk be the sequence defined in Definition III.1.

Lemma V.3. Let {w1, w2, . . .} be the set of bispecial words in L(X)
ordered so that 0 = |w1| < |w2| < . . . For each n ≥ 1 we can write
wn+1 = wninvn for some suffix vn of wn. Moreover |vn| → ∞ as n→∞.

P r o o f. This follows immediately from the definition of the function F
defined in the previous section, the proof of Theorem III.5, and the fact that
for each letter a ∈ Ak, in = a for infinitely many n. In fact, if in 6= in+1,
then |vn| < |vn+1|.

Lemma V.4. There exist a ∈ Ak and a word W (possibly empty) of
length ≤ k − 1 such that the block aWa occurs an infinite number of times
in (in).

(6) In [12] and [18] return words are coded by the “derived alphabet” {1, . . . , k} in
order of first appearance.
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P r o o f. In fact for each block B of length k + 1 in (in), there is a letter
in Ak which occurs twice in B.

Lemma V.5. Let a ∈ Ak be as in Lemma V.4. There exist K1 > 0 and
an infinite number of words of the form wauau ∈ L(X) with w, wau, and
wauau each bispecial and |u| ≤ K1|w|.

P r o o f. Let a and W be as in Lemma V.4. In view of Lemma V.3
(applied |W | times), for each occurrence of aWa in (in) (say aWa =
inin+1 . . . in+|W |in+|W |+1) we can write wn+|W |+1 = wnaun and wn+|W |+2
= wnaunaun for some word un. Moreover, since |W | ≤ k−1, it follows from
the proof of Theorem III.5 that

|un| ≤ |wn|+ (2|wn|+ 2) + (4|wn|+ 4) + . . .+ (2k−1|wn|+ 2k−1).

Because for each n ≤ j ≤ n+ |W |, we have |wj+1| ≤ 2|wj |+ 1. Hence there
is a constant K1 > 0 (depending only on k) so that |un| ≤ K1|wn|.

We now return to the proof of Proposition V.1. By Lemma V.5 there
exists K1 > 0 and an infinite number of words of the form wauau ∈ L(X)
with w, wau, and wauau each bispecial and |u| ≤ K1|w|. We consider two
cases:

Case 1: |w| ≤ |u|. In this case w is a suffix of u and we can write u = vw
for some word v. This gives the decomposition wauau = (wav)(wav)w. In
this case we take V = wav, V ′ = w and U = ε (the empty word). Then

|V ′|
|V | =

|w|
|wav| =

|w|
|u|+ 1

≥ |w|
2|u| ≥

1
2K1

.

Case 2: |w| > |u|. We consider two subcases: In case |w| ≥ 3(|u| + 1),
let K2 ≥ 3 be the largest positive integer such that |w| ≥ K2(|u| + 1). We
write K2 = 3r+s for some integer r ≥ 1 and s ∈ {0, 1, 2}. Since w is a suffix
of wau, the defining condition of K2 implies that w = w′(au)r(au)r(au)r

for some word w′ with |w′| < 3(|u| + 1). In this case we take U = w′ and
V = V ′ = (au)r. Then

|V |
|U | =

|(au)r|
|w′| =

r(|u|+ 1)
|w′| ≥ r

3
≥ 1

3
.

It remains to consider the case in which |u| < |w| < 3(|u| + 1). Since
u is a suffix of w we can write w = zu for some word z. This gives the
decomposition wauau = z(ua)(ua)u. In this case we take U = z, V = ua,
and V ′ = u. Then

|V |
|U | =

|ua|
|z| ≥

|u|+ 1
|w| >

1
3
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and
|V ′|
|V | =

|u|
|u|+ 1

≥ 1
2
.

To complete the proof of Proposition V.1 we have only to take ε0 as the
minimum of the two numbers {1/(2K1), 1/3}.

Proof of Proposition I.3. We begin with a definition:

Definition V.6. Given two occurrences of a subword w in a sequence
x, say x = uw . . . = uvw . . . the word v is called the offset between these
two occurrences of w.

Lemma V.7. Let u and w be subwords of lX with uw bispecial. Then
the offset between any two consecutive occurrences of w in lX has length at
most |u|+ |w|+ 1.

P r o o f. Let {w1, w2, . . .} be the set of all bispecial words in L(X) ordered
as in Lemma V.3. Fix N so that wN = uw. By Theorem III.5 for each n ≥ N
either wn+1 = wninwn (case 1) or wn+1 = wninvn for some suffix invn of wn
(case 2). In case 2 we can write wn = wjinvn for some j < n. We divide case
2 into two subcases: |wj | < |w| (case 2a) and |wj | ≥ |w| (case 2b). We first
observe that in all cases w is a suffix of wn since we are assuming n ≥ N .
If n = N then the offset between any two consecutive occurrences of w in
wn = wN = uw has length at most |u| < |u|+ |w|+1. In case 2b we see that
w is a suffix of both wn and wj and hence the length of the offset between
any two occurrences of w does not increase in passing from wn to wn+1. On
the other hand, in case 1 or case 2a the length of the offset between the last
occurrence of w in wn (viewed as an occurrence of w in wn+1 by regarding
wn as a prefix of wn+1) and the next occurrence of w in wn+1 is at most
|u| + |w| + 1. Thus for all n ≥ N , the offset between any two consecutive
occurrences of w in wn has length at most |u|+ |w|+ 1 as required.

Corollary V.8. Let u and w be as in Lemma V.7. Then each sequence
x ∈ X begins in a block of the form u′w where |u′| ≤ |u|+ |w|+ 1.

Proposition I.3 now follows by combining Proposition V.1 and Corol-
lary V.8.

Proof of Proposition I.4. We can suppose that ω is a Sturmian sequence
on the alphabet {1, 2}. Let X = Xω be the associated subshift and IX = (in)
as in Definition III.1. We will prove that unless IX contains a periodic tail
of the form 12121212 . . . , the sequence ω contains arbitrarily large subwords
of the form V 4. Let {wn} be the set of all bispecial words in L(X) ordered
so that 0 = |w1| < |w2| < . . . Recall that inwn is right special for each
n ≥ 1. We consider three cases. First suppose that (in) contains infinitely
many occurrences of either 111 or 222. Without loss of generality we can
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suppose 111 occurs an infinite number of times in (in). For all n sufficiently
large, if in+j = 1 for 0 ≤ j ≤ 2 then we can write wn = un1vn and
wn+3 = wn1vn1vn1vn = un1vn1vn1vn1vn for some un, vn ∈ L(X).

In the second case we suppose that (in) contains finitely many occur-
rences of both 111 and 222 but infinitely many occurrences of either 11
or 22. Without loss of generality we can assume that 11 occurs an infinite
number of times in (in). Thus one of 121121, 1211221, 1221121, or 12211221
must occur an infinite number of times in (in). Since each of these words
begin in 12 we can write wn = un1̂vn2̂u′n1vn where u′n and vn are each a
suffix of un and where the 1̂ and 2̂ correspond to the prefix 12 in each of the
above words. If this occurrence of 12 in (in) is followed by 1121 or 11221
then it is easily verified using the algorithm in Theorem III.5 that wn+5

contains the subword (1vn2u′n1vn)4. On the other hand if this occurrence of
12 in (in) is followed by 21121 or 211221 then wn+6 contains the subword
(1vn2u′n1vn2u′n1vn)4.

In the final case we can suppose that (in) has finitely many occurrences
of both 11 and 22. Then (in) is ultimately equal to the periodic sequence
1212121212 . . . In this case ω is the morphic image of the Fibonacci word;
the result now follows by a theorem of Mignosi and Pirillo in [25] which
states that the Fibonacci word contains arbitrarily large subwords of the
form V (5+

√
5)/2. This completes the proof of Proposition I.4.

VI. A connection with transcendental numbers. It is generally
believed that the digit expansion of an algebraic irrational number α is
very random (7) and cannot be generated by a simple algorithm. For in-
stance the Champernowne number x = .1234567891011121314 . . . , obtained
by concatenating the decimal expansions of the consecutive integers, was
shown to be transcendental by K. Mahler in [22]. J. Loxton and A. van der
Poorten [20] stated that the digits in the k-ary expansion of an algebraic
irrational could not be generated by a finite automaton, i.e., a deterministic
machine having a finite number of allowable states.

In [17] Ferenczi and Mauduit derive the following combinatorial transla-
tion of a well known theorem of Ridout [21]:

Theorem VI.1 (S. Ferenczi and C. Mauduit, [17]). Let θ be an irra-
tional number such that its k-ary expansion begins, for every integer n ∈ N,
in 0.UnVnVnV ′n, where Un is a possibly empty word and where Vn is a
non-empty word admitting V ′n as a prefix. If |Vn| tends to infinity ,
lim sup |Un|/|Vn| <∞, and lim inf |V ′n|/|Vn| > 0, then θ is a transcendental
number.

(7) It is conjectured that an algebraic irrational number is normal in each base b ≥ 1.
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Theorem I.5 follows immediately from Theorem VI.1 and Proposition I.3.
Theorem I.5 yields a class of transcendental numbers of complexity p(n) =
(k−1)n+1 for every integer k ≥ 2. In the special case k ∈ {2, 3}, this result
was proved by Ferenczi and Mauduit (see Propositions 2 and 4 in [17]) also
by way of Theorem VI.1. Theorem VI.1 was also used by J.-P. Allouche and
L. Q. Zamboni in [1] to show that a real number whose base b digit expansion
is a fixed point of a binary morphism (either of constant length ≥ 2 or
primitive) is either rational (if and only if the sequence is eventually periodic)
or transcendental. Together with the theorem of Loxton and van der Poorten
in [20] mentioned above, these are all results establishing the existence of
transcendental numbers of complexity p(n) with kn < p(n) < k′n for any
given k and some k′.
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[6] V. Berth é, Fréquences des facteurs des suites sturmiennes, Theoret. Comput. Sci.

165 (1996), 295–309.
[7] M. G. Caste l l i, F. Mignos i and A. Rest ivo, Fine and Wilf ’s theorem for three

periods and a generalization of sturmian words, ibid. 218 (1999), 83–94.
[8] N. Chekhova, Les suites d’Arnoux–Rauzy : algorithme d’approximation et propriétés

ergodiques, preprint, 1998.
[9] N. Chekhova, P. Hubert et A. Messaoudi, Propriétés combinatoires, ergodiques

et arithmétiques de la substitution de Tribonacci, J. Théor. Nombres Bordeaux, to
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lien avec les systèmes de complexité 2n + 1, Bull. Soc. Math. France 123 (1995),
271–292.

[17] S. Ferencz i and C. Mauduit, Transcendence of numbers with a low complexity
expansion, J. Number Theory 67 (1997), 146–161.

[18] C. Holton and L. Q. Zamboni, Descendants of primitive substitutions, Theory Com-
put. Syst. 32 (1998), 133–157.

[19] —, —, Directed graphs and substitutions, in: From Crystals to Chaos, P. Hubert,
R. Lima and S. Vaienti (eds.), World Sci., 1999, to appear.

[20] J. H. Loxton and A. van der Poorten, Arithmetic properties of automata: regular
sequences, J. Reine Angew. Math. 392 (1988), 57–69.

[21] K. Mahler, Lectures on Diophantine Approximations, Part I: g-adic Numbers and
Roth’s Theorem, Univ. of Notre Dame, 1961.

[22] —, Arithmetische Eigenschaften einer Klasse von Dezimalbrüchen, Proc. Konink.
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