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Inequalities concerning the function = (z):
Applications

by

LAURENTIU PANAITOPOL (Bucuresti)

Introduction. In this note we use the following standard notations:
m(z) is the number of primes not exceeding z, while 6(z) =>_ _ logp.
The best known inequalities involving the function 7(x) are the ones
obtained in [6] by B. Rosser and L. Schoenfeld:
x

(1) logz —1/2
(2) m >m(x)  for x> e,

The proof of the above inequalities is not elementary and is based on the
first 25 000 zeros of the Riemann function £(s) obtained by D. H. Lehmer [4].
Then Rosser, Yohe and Schoenfeld announced that the first 3 500 000 zeros
of £(s) lie on the critical line [9]. This result was followed by two papers [7],
[10]; some of the inequalities they include will be used in order to obtain
inequalities (11) and (12) below.

In [6] it is proved that 7(z) ~ z/(logx —1). Here we will refine this
expression by giving upper and lower bounds for 7 (z) which both behave as
xz/(logx — 1) as x — oo.

<m(x) for x> 67,

New inequalities. We start by listing those inequalities in [6] and [10]
that will be used further:

(3) 0(z) <z for 2 < 108,

(4) 0(z) — x| < 2.05282\/z for x < 10,

(5) 10(2) — x| < 0.0239922——  for x > 758711,
log

(6) 10(z) — 2| < 0.0077620——  for z > 22,
log x
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x
(7) 0(x) — 2| < 8.072——— for z > 1.
log” x
The above inequalities are used first to prove the following lemma:

LEMMA 1. We have

(8) 0(x) < x<1 + 3(10g11‘)15) forx > 1,
(9) 0(x) > m<1 — 3(10g2x)15> for x > 6400.

Proof. For x > €7 the inequality
1
8.072 < g(1og )05
holds and therefore, using (7), it follows that

(10) |0(x) — x| < 3(og2)1®"

For ¢?? < x < €587 we have

0.0077629 < ——+
3(log x)0-5

and by using (6) we obtain (10). For 757711 < z < ¢?? we have

1
0.0239922 < ————+
3(log x:)0-5

and by using (5) we obtain again (10) for > 757 711. These results, together
with inequality (3), obviously imply (8).
Let 6400 < z < 10%. Then

2 N
2.05282 < -+ ————=
<3 (log )15

which implies (9) by using (4) and (10). =
Lemma 1 helps us to prove

THEOREM 1. We have
(11) m(z)

(12) m(z)

T
< logz — 1 — (logz)=05
T
>
logz — 1+ (log z)~0-5

for x > 6,

for x > 59.

Proof. We use the well-known identity

O(z) t 0(t)
m(@) = log z * X tloth

2
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By (8) we obtain

m(x) <

x n x ©odt 15 dt
logz  3(logx)?5 S §

=+
glog”t 3

</:R
—_

S Y S D N
~ logx 3(logx)l5 ~ logx log? 2 log t §logt

Since
2 N 1 “§ dt _ 1”§ dt
log?2 3 3 (logt)?> =3 log® t
it follows that
T 1 1 70 dt
e L
m@) < log:c< + 3(log x)!-> + logx) * 3 § log® t
For x > €825 we define
2 T 77 dt
f(@) 3 (logz)?® 3 § log® t
Then
21 - 701 05 5
)  2logr = Tloga)*® =5

3(log x)3-°
which implies that f is an increasing function. For any convex function
g : [a,b] — R we have

b

\9(x) de < T(g(aHg(b)Jrg <a+kb_a>>.

a

For g(z) = 1/log® z and n = 10°, we can apply the above inequality on each

interval [2,¢], [e,€?], ..., [e!7,el8], and [e!®,e!82%] to get
e18.25 d
t
| 5 <16870.
log” ¢

2

As the referee kindly pointed out, the above inequality may also be checked
using the software package Mathematica.
We have

1
f(e'®2%) > g(118 507 — 118 090) > 0.

Therefore f(z) > 0, which implies that for z > 1825,

(x) < T (14 ! + ! < -
e log = logxz  (logx)!® logx — 1 — (log x)—05
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Let now x < e!®25 < 108. By using (3) we obtain

tlog?t log x

m(z) =

~ logx log?t

dt

x 1 2
= 1+ g 2
log x log x log” 2 5 log”t

2 2

xT

For 4000 < = < 108 define

xT

9($)::(“E;“’—'28

2.5
log x) )

dt N 2
log®t  log®2’
Since

J(x) = logz — 2(logz)%® — 2.5
(log )35

g is an increasing function,

> 0,

E11

dt
gle!) > 149 — 2 S 5 > 149 — 140 > 0,
5 log”t

hence for e'! < z < 108 we have

(x) < T (14 ! + ! < °
™ T .
log = logz  (logx)!® logx — 1 — (log x)—05

For x > 6 it follows immediately that logz — 1 — (logx)~°5 > 0. Hence, for
6 < x < e'l, the inequality to be proved is
x

7(x)

If p,, is the nth prime, then h is an increasing function in [p,, pr+1), so it
suffices to prove that h(p,) > 0. Since p,, < e'!, the inequality (logp, )5 >
0.3 holds and therefore it suffices to prove that p,, /n —logp, > —1.3, which
may be verified by computer for e!! > p, > 7.

In order to prove inequality (12) we use (3), (9) and for = > 6400 we
have

h(z) = + 1+ (logz)™%% —logz > 0.

O(z)  6(6400) ¢ O(t)

— 7(6400) = -
@) = m(6400) = 1 T log 6400 tlog? ¢

6400
Since 7(6400) = 834 and 0(6400)/log 6 400 < 6400/log 6 400 < 731 we have

0(z) T ()
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From (9) it follows that

xT xT

T 2x dt 2 dt
71'(.’17) > 103 + - 2.5 + X p) - = X 3.5

logz  3log™x  J log”t 3 ) log™°t

T 2x T 6400
== 103 + - 2.5 + 2 - 2
logz  3log“’xz log“z log” 6400
"§ dt 2 ‘S” dt
3, 9 3.5
6doo 1087t 3 ¢ log” 7t

> 2 (1 s L2 ) > ’ .
log x logz  3log'®z logx — 1+ (log x)~0-5
The last inequality is equivalent to
22 — 5224+ 32 -1<0 where 2= (logz) "® < 0.34.

Since z(1 — z) < 1/4 it follows that z(1 —2)(3 —2z) < (3 — 2)/4 < 1 so that
the statement is proved for x > 6400. For x < 6400 we have to prove that
T 1
~w(x) Viogz
On [pn, pr+1) the function is decreasing. The checking is made for the values

pn — 1. From p, — 1 < 6399 it follows that (log(p, — 1))~%% > 0.337 and
therefore it suffices that

log(py — 1 1
o8P —1) _Pn=l 663

Pn—1 n—1

> 0.

alr) = +logx — 1+

which holds for n > 36. Computer checking for n < 36 also gives that our
inequality holds for x > 59. m

Applications. From the large list of inequalities involving the function
m(x) we recall

(13) w(2x) < 2mw(x) for z >3,

suggested by E. Landau and proved by Rosser and Schoenfeld in [8].
If a > e'/* and z > 364 then

(14) m(az) < am(x),

as proved by C. Karanikolov in [3].
If0<e<1andexr <y <z then

(15) m(z +y) <m(x) +7(y)

for z and y sufficiently large, as proved by V. Udrescu in [11].
Next, we prove two inequalities that strengthen the above results and
make them more precise.
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THEOREM 2. If a > 1 and z > (169" then m(azx) < ar(x).

Proof. We use inequalities (11) and (12). For az > 6,
ax

< .
m(az) logazr — 1 — (log ax)=0-5

For x > 59,
ax

> .
logz — 1+ (logz)=05

am(z)

It remains to show that
loga > (logaz)™"® + (log x) 5.

Since z > e*1°8 @)™ it follows that logz > 4(log a)~2 and therefore
(log az)™%® + (logz)™%® < log a.

4(loga)~2

In addition, from = > e we obtain ax > 6 too, and the proof is

complete. m
THEOREM 3. If a € (0,1] and z > y > ax, x > €% then
m(x+y) < w(x)+7(y).

Proof. Since ¢°* ~ > 59, the inequalities (11) and (12) may be applied.
It suffices to prove that

r+y
log(z +y) — 1 — (log(z +y)) %"
x Yy
< + ,
logz — 1+ (logz)=9%  logy — 1+ (logy)=95
i.e.
(16) a: log [ 1+ L log(z +y) %5 — (log x) 7%
logz — 1+ (logz)=05 x
Yy x —0.5 —0.5

+ log {14+ — ) — (log(x+ —(lo > 0.

logy — L+ (logy) 05 ( g ( y) (log(z+y)) (log y) )

From z > €% it follows that logx > 9/a?, i.e.
(log(x + )% + (logz)™® < 2a/3.
We have the inequalities

Y 2a 2a
| 1+ 2| >log(l > > —,
og< +x>_0g( +a) 20+1 — 3

(log(x +y))™*° <a/3, logy>loga+logz >loga+9a~? > 9,

i.e.

4+ =< - <log2<log <1+x>.
Yy

2
-3

LW =

(log(a + y))~*% + (logy) 7 < 3
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Therefore, the inequality (16) holds, since both expressions in parenthe-
ses are positive. m

REMARK. The inequalities (11) and (12) enable us to prove that 7(z+y)
< m(x)+m(y) under less restrictive assumptions than in Theorem 3, but the
amount of computation is much larger.

Main result. The Hardy-Littlewood inequality 7(x + y) < 7(x) + 7(y)
was proved in the last section under the very particular hypothesis ax < y
< 2. The only known result in which x and y are not imposed to satisfy such
a hypothesis, but instead they are integers with x > 2, y > 2, was obtained
by H. L. Montgomery and R. C. Vaughan [5]. They prove that

m(z +y) < 7(z) + 27 (y),

using the large sieve.

In [1] and [2], the authors take into account the possibility that the gen-
eral Hardy-Littlewood inequality might be false, and propose an alternative
(evidently weaker) conjecture

m(z+y) <2n(z/2) + 7(y).
Below, using inequalities (11) and (12), we prove the following

THEOREM 4. If x and y are positive integers with x >y > 2 and x > 6,
then

(17) m(x+y) < 2m(x/2) + 7(y).

Before giving the proof, we note that the method we use cannot be
adapted to prove 7(z + y) < 7(z) + 7 (y).

LEMMA 2. If x >y and x > 7500, y > 2000 then (17) holds.
Proof. Taking into account inequalities (11) and (12) it follows that
2m(x/2) + w(y) — m(z +y)

x(log (1 + i) +1log?2 — \/logl(x/Q) - \/Iog(lx - y))

(log(x/Q) — 1+ \/bgl(m) <1og(a:+y) —1- @)

>

(vx(043) i )
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The lemma follows using the inequalities
1 1 1

1
- < +
Viogy — \/log(z +y) ~ V10g2000  /Iog9500
1 1 1

1
Vlog(z/2) - Vog(z +y) = v/10g 3750 * V/1og 9500
LEmMA 3. If © > 25000, then
(18) m(z +2000) < 2m(x/2).
Proof. Using again inequalities (11) and (12) we have
f(x)g(x) — 2000

1
log(z +2000) — 1 —
log(x + 2000)

<log2 <log <1+m>,
Yy

<log2. m

2n(z/2) — w(x + 2000) >

where
T

fz) =
log(xz/2) — 1+

v
log (/2)

4000 1 1
g(z) = log <2 + $> - \/log(x/2) N \/log(x + 2000)'

and

For =z > 195000,
1

- > 0.1116
V10g97500  /log 197000

g(x) >log2 —

and
f(z) > £(195000) > 18084.6;
then f(z)g(xz) > 2000, therefore m(z + 2000) < 27 (x/2).
Computer check for prime x + 2000 and z < 195000 shows that the
inequality (18) holds for > 25000. =

Proof of Theorem 4. By Lemma 3 it follows that the inequality (17) holds
for > 25000 and y < 2000. By Lemma 3 it also holds for positive integers
x and y satisfying x > 25 000.

Computer check for the cases y < z < 25000 completes the proof of the
theorem. m

REMARK. Because 7(y) < 2mw(y/2) for y > 6, after some easy computa-
tions using the former theorem we obtain the statement:
If x and y are positive integers with z,y > 4 then

m(x +y) < 2(m(x/2) + 7(y/2)).

Acknowledgments. We thank the referee for suggestions leading to an
improvement of the first version of this paper.
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