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On the diophantine equation f(am, y) = bn
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Pietro Corvaja (Udine) and Umberto Zannier (Venezia)

Introduction. A classical type of exponential diophantine equation
takes the form f(X,Y ) = bn, where b is a fixed integer and f is a ho-
mogeneous polynomial. It is well known since the work of Thue and Mahler
how to solve it. On the other hand, removing the assumption that f is ho-
mogeneous leads to problems which presently cannot be overcome. Here we
show that something may be done by restricting another variable to be of
exponential type.

Let f(X,Y ) be a polynomial with rational coefficients and let a, b be
positive integers. Our aim is to prove that the equation in the title has only
finitely many solutions in integers m,n, y, apart from “trivial” cases which
can be classified. We achieve this goal under suitable technical hypothesis,
labelled (i), (ii), (iii) in the Main Theorem below.

It seems that our method and results, in their general form, do not
fall into known treatments of diophantine equations (see e.g. [ST] and the
general theorems by M. Laurent [Lau] on mixed polynomial-exponential
equations). This happens only in very special situations, like e.g. when f is
homogeneous with respect to suitable weights.

Main Theorem. Let f(X,Y ) = a0(X)Y d+a1(X)Y d−1 + . . .+ad(X) be
a polynomial with rational coefficients, of degree d ≥ 2 in Y ; let a > 1, b > 1
be integers. Suppose that

(i) a0 is constant ,
(ii) the equation f(0, Y ) = 0 has no repeated roots,

(iii) a and b are not relatively prime.

If the equation

(1) f(am, y) = bn

has an infinite sequence of solutions (m,n, y) ∈ Z × Z × Z, such that
min{|m|, |n|} → ∞, then there exist an integer h 6= 0 and a polynomial
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p(X) ∈ Q[X] such that f(Xh, p(X)) has only one term. Also, a, b are mul-
tiplicatively dependent.

Remark 1. As mentioned above, standard methods lead to the conclu-
sion when (i), (ii) and (iii) are replaced by the assumption that there exist
nonzero integers r, s such that f(Xr, Y s) is homogeneous.

Omission of the assumption min{|m|, |n|} → ∞ leads to the considera-
tion of several possibilities. We have preferred to avoid them, since it is well
known how to deal with the cases when m or n is fixed.

Finally, we remark that it is easy to generalize the arguments and to deal
with certain equations f(am, y) = bn, where am, bn are S-units satisfying
suitable assumptions which would replace (iii) above.

It is possible, thanks to the Proposition below, to find effectively all the
data h, p(X) appearing in the statement. Hence, given a polynomial f(X,Y )
satisfying the above assumptions, there exists an effective procedure to de-
cide whether equation (1) has infinitely many solutions. Unfortunately, when
there are only finitely many solutions our method does not yield effective
results (but only bounds for the number of solutions) since it rests on the
ineffective Subspace Theorem.

From our Main Theorem we can deduce the following

Corollary. Let d ≥ 2 be an integer , u(X) ∈ Q[X] be any polynomial ,
a > 1 be an integer. If the equation

yd = u(am) + an

has infinitely many integral solutions (m,n, y) with min{|m|, |n|} → ∞,
there exist a nonzero integer h and a polynomial p(X) ∈ C[X] such that
p(X)d − u(Xh) has just one term.

As for the Main Theorem, it is possible to test effectively the existence of
such an integer h and polynomial p. We express these facts in the following
Proposition, which represents the functional counterpart of the theorem.

Proposition. (a) Let f satisfy (i) and (ii) of the Theorem. There exist
finitely many polynomials pi(X), which can be found effectively , such that
f(Xh, p(X)) has only one term if and only if we have p(X) = pi(Xh/e) for
some i and some integer e | d!.

(b) All the identities p(X)d − u(Xh) = cXk are obtained from finitely
many of them, where h = d, by means of a monomial substitution X 7→ X l.
Further , if cXk + u(Xh) is a dth power in C[X] (where c 6= 0), then k ≤
d
d−1h deg u.

Remark 2. The proof of the theorem shows in fact that, for every se-
quence of solutions satisfying our assumptions, almost all of them can be ob-
tained by a substitution X = ar in some identity of the type f(Xh, p(X)) =
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cXk. The Proposition just stated allows us to find all the infinite families
of solutions. (As observed in Remark 1, the families where some variable is
bounded can be dealt with by standard techniques.)

As an amusing and simple application, one may classify the infinite fami-
lies of squares having at most three non-zero digits in the decimal expansion:
let a010n0 + a110n1 + a210n2 = y2, ai ∈ [1, 9], n0 < n1 < n2; we may absorb
10n0 in the right side, and so assume n0 = 0. Our theorem, applied with
f(X,Y ) = (Y 2− a0−a1X)/a2, gives identities p(X)2 = a0 +a1X

h +a2X
k.

Simple considerations lead to k = 2h and the classification is easily com-
pleted. We do not know how to classify squares with a given number d ≥ 4
of non-zero digits.

Proofs. We begin with a lemma.

Lemma. Let g ∈ Q[X,Y ] be nonzero and suppose that for some integers
a, b > 1 the equation g(am, bn) = 0 has infinitely many solutions (m,n) in
integers. Then there exist a nonzero rational number η and integers h, k, not
both zero, such that g(Th, ηT k) = 0. If min{|m|, |n|} → ∞ for a subsequence
of solutions, then a, b are multiplicatively dependent and h, k may be chosen
both nonzero. Let ε, δ ∈ {±1} be such that εm and δn are both positive for
an infinity of solutions (m,n). Then we can choose h, k such that εh, δk > 0.

P r o o f. It suffices to prove the assertions for the irreducible factors of g,
and so let us assume that g is irreducible (over Q). We apply Theorem 7.3,
p. 207 of [La]. This implies that infinitely many solutions correspond to an
absolutely irreducible factor of g of the form %Xk − Y h or % − XhY k, for
some nonzero complex number % and for natural numbers h, k, not both
zero. Since however a, b ∈ Q, also % must be rational (for otherwise such a
factor would correspond to no solution of the relevant type). Since however
g is irreducible over Q, g itself must be a constant multiple of such a factor.
In case g has the factor %Xk − Y h, the first claim follows by putting η = %
and similarly for the other factor.

The assumption on min{|m|, |n|} forces h, k to be both nonzero and then
the proof is easily completed as follows. Say that g is a constant multiple of
%Xk − Y h. Taking two distinct solutions (mi, ni), i = 1, 2, we get the equa-
tions %ahmi = bkni , whence ah(m1−m2) = bk(n2−n1), whence our conclusion
about the multiplicative dependence. Also, the equation forces hm and kn
to have the same sign for almost all the solutions. Similarly if g is a multiple
of %−XhY k.

Proof of Main Theorem. Suppose that equation (1) has a sequence of
solutions (mi, ni, yi) as in the statement. The sequence mi/ni admits a con-
vergent subsequence in R∪{±∞}, so we can suppose that mi/ni converges.
For notational convenience we drop the index i.
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The proof splits into cases according to the limit of m/n. (It would be
possible to argue without assuming convergence, according to the order of
magnitude of m/n, suitably specified in terms of the relevant data of the
problem. Such an approach would make it possible to estimate the number
of solutions, provided there are only finitely many of them. Our presentation
of the arguments is motivated by the simplification in the exposition.)

First case: m/n → α ≤ 0. Consider first the case n < 0. If m < 0
for an infinite subsequence, then α = 0. Also, the equation then forces
|m| � |n|: it suffices to compare the denominators of both sides of it. Since
this contradicts α = 0, we can assume m ≥ 0. But now the equation forces
n to be bounded (compare again denominators), contrary to assumptions.

Therefore we assume n ≥ 0. Let ∆ be a common denominator for the
coefficients of a1(X)/d. By a variable change, replacing Y by Y/∆−a1(X)/d
(which does not affect the assumptions), we can suppose that a1(X) = 0.
Then equation (1) reads

(2) bn − a0y
d = a2(am)yd−2 + . . .+ ad(am).

Pick an integer r ∈ {0, . . . , d − 1} and an infinite subsequence of solutions
such that n ≡ r (mod d) for all of them. Observe that for large n we must
have y 6= 0 (in fact bn is much larger than am). Then we can write n = r+ ld
and (2) takes the form

(
bl

y

)d
− a0

br
= b−r[a2(am)y−2 + . . .+ ad(am)y−d].

Observe that m/l → dα ≤ 0. Therefore the right side of the last displayed
equation is �ε b

εl for every positive ε. In turn this implies that log |y| � l,
whence for every δ > 0,

∣∣∣∣
a0

br
−
(
bl

y

)d∣∣∣∣� |y|−2+δ

where the constant involved in the symbol � depends only on the polyno-
mial f and on δ.

Using the factorization αd − βd = (α − β)(αd−1 + αd−2β + . . . + βd−1)
with α = (a0/b

r)1/d, β = bl/y, for a suitable determination of the root we
obtain ∣∣∣∣

(
a0

br

)1/d

− bl

y

∣∣∣∣� |y|−2+δ.

Put δ = 1/2, say. Since (a0/b
r)1/d is an algebraic number and its rational

approximant bl/y is a rational number of a special kind (its numerator is a
power of a fixed integer b), we can apply Ridout’s Theorem (one-dimensional
Subspace Theorem) to deduce that either y is bounded or bl/y is eventu-
ally constant (equal to (a0/b

r)1/d). In the first case l and n would also be
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bounded (since log |y| � l), a contradiction. In the second case we could
write y = cbl where c is a nonzero constant. Put now

g(X,Y ) := f(X, cY )− brY d.
If g = 0 identically, then f(X,Y ) would be a monomial in Y of degree
≥ 2, contrary to assumption (ii). Hence g 6= 0 and g(am, bl) = 0 has an
infinite sequence of integer solutions satisfying the assumptions of the above
Lemma, whose conclusion gives what we want.

Second case: m/n → α > 0 where α is a positive number (not ∞).
Suppose first that both m,n ≤ 0. Then assumption (i) shows that |y| is
bounded. In fact, either |y| ≤ 1 or

|a0y| ≤
d∑

i=1

|ai(am)|
|y|i−1 +

|bn|
|y|d−1 � 1.

Therefore we may in fact work as if y were fixed and we may apply again
the Lemma, which leads to the desired conclusion.

From now on we assume that m,n ∈ N. Choose a prime number p
dividing both a and b. We can certainly suppose that y converges p-adically
to a solution y0 of the equation f(0, Y ) = 0. By hypothesis (ii), the derivative
∂f
∂Y (0, y0) does not vanish. By the p-adic implicit function theorem (see [Se,
Theorem 1, p. 83]) the solution Y (x, z) to the equation f(x, Y ) = z in a
neighborhood of (0, y0, 0) is an analytic function of x and z, admitting a
Taylor series, converging in a neighborhood of (0, 0),

Y (x, z) =
∑

i,j

ci,jx
izj

where ci,j ∈ Qp are p-adic algebraic numbers.
We fix a real number H > 0 which is sufficiently large to justify the

subsequent arguments. Define

AH := {(i, j) : 0 ≤ i ≤ H, 0 ≤ j ≤ H}
and, for a solution (m,n, y), put

S(m,n) = SH(m,n) =
∑

(i,j)∈AH
ci,ja

mibnj .

The above Taylor expansion and the fact that m� n� m in the sequence
under consideration give an inequality

(3) |y − S(m,n)|p < θnH

for large n, where θ < 1 is a suitable positive number depending only on
a, b, f, α.
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Let BH be a minimal subset of AH with the following property: There
exist p-adic algebraic numbers λi,j , for (i, j) ∈ BH such that for an infinite
subsequence of the solutions we are considering we have

S(m,n) =
∑

(i,j)∈BH
λi,ja

mibnj .

Observe that AH trivially has the stated property (take λi,j = ci,j),
hence BH exists.

From now on we shall restrict our attention to the subsequence of solu-
tions satisfying the displayed equation relative to BH .

Observe that |y| is bounded by a fixed power of exp(n). In fact y is a
solution of a monic equation of degree d whose coefficients are so bounded,
since we are in the second case.

Suppose first that BH is empty. Then the mentioned bound for |y| and
(3) show that y must vanish for large enough n, provided H has been chosen
large. In this case we are dealing with the equation f(am, 0) = bn and the
Lemma immediately proves what we want. Therefore we assume that BH is
nonempty.

Let #BH = N > 0 and, for notational convenience, fix once and for all
an enumeration of the N pairs in BH . For h = 1, . . . , N and for a given
solution, let βh = βh(m,n) = amibnj if (i, j) is the hth pair in BH .

By the defining property of BH and by (3) we have

(4) |y − λ1β1 − . . .− λNβN |p < θnH

for suitable p-adic algebraic numbers λ1, . . . , λN .
We apply the Subspace Theorem to exploit the fact that the integer y is

well approximated by a linear combination of S-units. Let S be the set of
valuations of Q containing the infinite one and those dividing a, b. Let P be
the point in PN (Q) of homogeneous coordinates P = (y : β1 : . . . : βN ). We
denote by Ti, i = 0, 1, . . . , N , the ith homogeneous coordinate in PN .

For each v ∈ S, define N + 1 independent linear forms Lv,i(T0, . . . , TN )
as follows. Put Lv,i(T ) = Ti if i 6= 0 or v 6= p and Lp,0(T ) = T0−λ1T1− . . .−
λNTN . The coefficients of the linear forms Lv,i lie in Qv and are algebraic
over Q.

Let us estimate the double product

∏

v∈S

N∏

i=0

|Lv,i(P )|v
‖P‖v

= |Lp,0(P )|p
(∏

v∈S
‖P‖−(N+1)

v

)( ∏

v∈S\{p}
|y|v
)( N∏

i=1

∏

v∈S
|βi|v

)
,
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where ‖P‖v is the v-adic maximum of the coordinates of P . The first factor
is bounded by θnH by (4). The last factor is equal to 1 since each βi is an
S-unit. Since y is a rational integer we also have

∏
v∈S\{p} |y|v ≤ |y|. Then

∏

v∈S

N∏

i=0

|Lv,i(P )|v
‖P‖v � θnHH(P )−(N+1)|y|.

By the Subspace Theorem [Schm, Theorem 1D′, p. 178], for every ε we also
have a lower bound

∏

v∈S

N∏

i=0

|Lv,i(P )|v
‖P‖v � H(P )−(N+1+ε)

holding outside a certain finite union of rational hyperplanes (depending
on ε).

It follows that, outside such an exceptional set,

(5) 1� H(P )ε|y|θnH .
On the other hand, recalling that y is bounded by a fixed power of exp(n),
we may estimate H(P ) directly, obtaining

H(P )� ΘnH ,

where Θ > 1 is a suitable positive number depending only on the equation
and on α. This estimate however contradicts (5) for small enough ε.

This means that a linear relation of the kind

A0y = A1β1 + . . .+ANβN

with rational coefficients A0, . . . , AN not all zero, holds for an infinite sub-
sequence of solutions. As before, from now on we shall consider only these
solutions.

Suppose first that A0 = 0. Then some other coefficient, say A1, is not zero
and we may write β1 as a linear combination of βi, i > 1, with fixed rational
coefficients. Substituting for β1 in the right side of the equation S(m,n) =∑

(i,j)∈BH λi,ja
mibnj , we obtain a contradiction with the minimality of BH .

Therefore A0 6= 0. This means that for infinitely many solutions, y is
a fixed polynomial function of am and bn. Hence there exists a polynomial
q(X,Z) ∈ Q[X,Z] such that, putting g(X,Z) = f(X, q(X,Z))−Z, the equa-
tion g(am, bn) = 0 has infinitely many solutions (m,n) with min{m,n} →
∞. Observe that g(X,Z) is not identically zero. In fact, if degZ q ≥ 1, then
degZ g ≥ d ≥ 2, while, if q does not depend on Z, we have degZ g = 1. By
applying the Lemma we obtain the conclusions of the theorem. (Since the
integers h, k in the statement of the Lemma may be chosen to be positive,
q(Xh, ηXk) is a polynomial.)
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Third case: m/n → ∞. If m, n are both negative we argue as at the
beginning of the second case (namely we deduce that |y| is bounded and
apply the Lemma). Therefore we assume that m,n are both nonnegative.

We factor f(X,Y ), viewed as a polynomial in Y , in an algebraic closure
of Q(X), writing

f(X,Y ) = a0(Y − α1(X)) . . . (Y − αd(X))

where the algebraic functions α1, . . . , αd admit a Puiseux expansion at in-
finity of the form

(6) αi(X) =
∞∑

j=−h
ai,jX

−j/e,

converging for sufficiently large X. Here ai,j are algebraic complex numbers
and e is a positive integer. We reduce to the case where e = 1 in a rather
standard way: since there are infinitely many solutions there exists r such
that for infinitely many of them n ≡ r (mod e). Replacing X by arXe we
obtain infinitely many solutions for an equation of the form f1(am, y) = bn

where f1 ∈ Q[X,Y ] is a polynomial such that the solutions to f1(X,Y ) = 0
at X = ∞ are Laurent series in X−1. In conclusion we may argue as if
f1 = f , i.e. we may suppose e = 1 in (6).

In the sequel, for a solution (m,n, y) we write x = am and we assume
that all the Puiseux series converge at X = x.

Since n/m→ 0, for every positive δ we have

|f(am, y)| � |a|δm = xδ,

where the implied constant depends on δ, whence

(7) |y − α1(x)| . . . |y − αd(x)| � xδ.

Let k be the minimal index such that the coefficients a1,k, . . . , ad,k are
not all equal. We remark at once that k ≤ 0. In fact, assume the contrary and
put P (X) =

∑0
j=−h a1,jX

−j ∈ C[X]. Then all the Puiseux series at X =∞
of the polynomial F (X,Y ) := f(X,Y − P (X)) are O(1/X). Therefore all
the coefficients of Y j in F , for j < d, must be zero, for they are polynomials
vanishing at ∞. So f would be a perfect dth power in C[X,Y ], contrary to
our assumption (ii).

Since for each j the set {a1,j , . . . , ad,j} is invariant under conjugation
over Q, the algebraic numbers ai,j with j < k are all rational, with common
denominator D, say. So the substitution

Y 7→ Y

D
+

k−1∑

j=−h
ai,jX

−j
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does not affect the assumptions and we can suppose that k = −h. This is
like assuming that the coefficients of X−h in α1, . . . , αd are not all equal.

Let us suppose, as we may, that for an infinite subsequence of solutions
we have

|α1(x)− y| = min
i
{|αi(x)− y|}.

Renumbering indices we may also assume that a1,−h = . . . = at,−h and
ai,−h 6= a1,−h for t < i ≤ d. Since we are in the case k = −h, we have t < d.
Then for i > t we have

|y − αi(x)| ≥ |αi(x)− α1(x)| − |α1(x)− y| ≥ |αi(x)− α1(x)| − |αi(x)− y|,
whence

|y − αi(x)| ≥ |αi(x)− α1(x)|
2

� |x|h if i > t.

From (7) we then get

|y − α1(x)|t � xδ−h(d−t),

whence

(8) |y − α1(x)| � x(δ−h(d−t))/t.

Assume first that h ≤ 0. Then the coefficients of f(X,Y ), viewed as a
polynomial in Y , are polynomials in X which are bounded at ∞. Therefore
they are all constant and f(X,Y ) = f(Y ) in fact does not depend on X. In
particular, if (m,n, y) is a solution of (1), then (m′, n, y) is also a solution,
for all m′ ∈ Z. Therefore in this case we may conclude the proof by putting
either m′ = [

√
n], falling in the first case, or m′ = n, say, falling in the

second case, both cases being treated above (1).
From now on we shall assume h > 0.
Let N be an integer with N −h > h(d− t)/t. Then, by Taylor expansion

of α1 up to the (N − h)th term and by (8), we get

(9)
∣∣∣y −

N−h−1∑

j=−h
a1,jx

−j
∣∣∣� x(δ−h(d−t))/t + x−(N−h) � x(δ−h(d−t))/t.

We now shall proceed as in the second case, by applying the Subspace
Theorem in the projective space PN , S now being the set containing the
prime valuations dividing a and the infinite valuation.

The linear forms Lv,j are defined by Lv,j = Tj if v 6= ∞ or j 6= 0 and
L∞,0 = T0 −

∑N−h−1
j=−h a1,jTj .

(1) Recall that we are presently assuming min{m,n} → ∞. This implies that actually
the present case cannot occur at all, by known results on equations f(y) = bn.
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Put P = (y : xh : . . . : x−(N−h−1)) and consider the double product

∏

v∈S

N∏

i=0

|Lv,i(P )|v
‖P‖v

= |L∞,0(P )|∞
(∏

v∈S
‖P‖−(N+1)

v

)( ∏

v∈S\{∞}
|y|v
)(N−h−1∏

j=−h

∏

v∈S
|x−j |v

)
.

Since every power of x is an S-unit (recall that x = am) the last product is
1. Also, since y is an integer, the factor

∏
v∈S\{∞} |y|v is ≤ 1.

By (9) we thus get

∏

v∈S

N∏

i=0

|Lv,i(P )|v
‖P‖v � x(δ−h(d−t))/tH(P )−N−1.

The Subspace Theorem asserts that, for every ε > 0, we have the inequality

x(δ−h(d−t))/tH(P )−N−1 � H(P )−(N+1+ε)

provided P lies outside a certain finite union of rational hyperplanes. Then
for such P we get

1� H(P )εx(δ−h(d−t))/t.
Since y is bounded by a fixed power of x, depending only on f , for large
enough N the height of P is ≤ |y|xN−h � x2N . Therefore, since h and d− t
are positive the last displayed inequality cannot hold for small enough ε
and δ.

Therefore we may assume that P belongs to one of the finitely many
exceptional hyperplanes. In fact, we may assume that for an infinite sub-
sequence of solutions P lies in a fixed hyperplane, say of equation A0T0 +
A1T1 + . . .+ANTN . This means that

A0y +A1x
h + . . .+ANx

h−N+1 = 0.

Now, A0 cannot vanish, for otherwise we would obtain infinitely many roots
for the nonzero rational function A1X

h + . . .+ANX
h−N+1.

Hence we may divide by −A0 and suppose that in fact A0 = −1, so
y = A1x

h + . . . + ANx
h−N+1. Since y is an integer and since x = am is

an integer tending to ∞, all the coefficients Ai with h − i + 1 < 0 must
vanish. In conclusion, for our sequence of solutions, y is given by a certain
polynomial function p(x), where p ∈ Q[X].

Substituting this value for y into (1) and recalling that x = am, we see
that the (nontrivial) equation

f(X, p(X)) = Z

has a sequence of solutions X = am, Z = bn with min{m,n} → ∞. Again,
the above Lemma gives the required conclusion.
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Remark 3. Inspection of the proof (using the full force of the Lemma)
in fact shows that the cases α ∈ {0,±∞} cannot occur.

Remark 4. The above arguments need some modification in case we
work with a general number field K replacing Q. While it is straightforward
to deal with the first case and the second case, some problem may appear
in the third and last case. In fact, the presence of several archimedean abso-
lute values introduces extra factors in the double product, and some of the
factors may be quite large (depending on the height of y). To compensate
these contributions we need to improve on (8) and (9). For this we may
need expansions in two variables, similarly to the second case. Taking this
remark into account, it seems however that everything works nicely, at least
assuming the analogue of (ii) at X =∞.

Proof of the Corollary. If one of m, n is negative, the other must also
be negative. Then y must be bounded and we conclude e.g. by applying the
Lemma. So, as before we assume that m,n are both nonnegative.

We can write u(X) = Xeq(X) with q(0) 6= 0. Then the equation becomes

(10) yd = ameq(am) + an.

Suppose first that q is a nonzero constant. Then the conclusion of the
Corollary is trivially true (taking h = d). If q is not constant, then write
m = 2m′ + r, where r is 0 or 1. We may assume that the same value of r
occurs infinitely often and so, replacing m′ with m and q(X) with q(arX2),
we reduce to the case deg q ≥ 2.

We proceed by considering separately two possibilities, according as n ≥
me or not.

(1): n ≥ me. Now, from (10) we find that ame divides yd. Hence we
obtain a finite number of equations of the form

a′zd = an−me + q(am)

where a′ ∈ {1, a, . . . , ad−1} (so a′ may be assumed to be fixed). Suppose
that n − me is bounded, say equal to s for all solutions. Then, standard
results show that as + q(Xk) must be a dth power in C[X] for a suitable
integer k (equivalently, one sees that all the roots of as + q(X), with the
possible exception of 0, have multiplicity divisible by d). This concludes the
proof in this case. If n−me is unbounded, we may assume that it tends to
∞ and apply the Main Theorem, by setting f(X,Y ) = a′Y d − q(X). That
conclusion easily leads to what we need.

(2): n < me. We again reduce to a finite number of equations of the kind

a′yd = ame−nq(am) + 1
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which we rewrite as

yd = cka
mk−n + . . .+ c0a

me−n + c,

where ck, . . . , c0, c are rational numbers and k = e + deg q is the degree of
u. We can treat this case again by an application of the Taylor formula and
the Subspace Theorem, in a similiar way to the second and third cases of
the proof of the theorem. The technique is also very similar to the one used
in [CZ]. The right term is

cka
mk−n

(
1 +

ck−1

ck
a−m +

ck−2

ck
a−2m + . . .+

c0
ck
a−(k−e)m +

ca−mk+n

ck

)

and, by expanding the dth root by Taylor’s formula for (1 + X)1/d and
approximating it by a power sum plus a remainder term, we will get an ap-
proximation for an integer by a sum of S-units. This will allow an application
of the Subspace Theorem as before (or as in [CZ], especially Lemma 2).

Actually, we can also give a complete proof by using Theorem 3 in [CZ].
For the reader’s convenience we state an immediate corollary of it, sufficient
for our purposes.

Claim. Let p ∈ Q[X], d ≥ 2 be an integer , 0 ≤ r < d and 0 ≤ % < 1−1/d.
Suppose that the inequality

|yd − p(ar+ld)| � |p(ar+ld)|%

has infinitely many solutions in integers y and l ≥ 0. Then there exists a
power sum of the form β(l) :=

∑h
i=1 cib

l
i, where ci ∈ Q, bi ∈ N, b1 > . . . >

bh > 0, such that y = β(l) for an infinite subsequence of solutions (y, l).

We deduce at once that in fact we may take

(11) β(l) = h(al)

for a suitable polynomial h ∈ Q[X]. In fact, the inequality displayed in the
Claim implies |β(l) − (p(ar+ld))1/d| � θl for some positive θ < 1. On the
other hand, expansion for the dth root of p(ar+ld) gives an infinite series of
type

∑∞
j=−r c̃ja

−jl. The preceding inequality shows that the leading term
in β(l) −∑∞j=−r c̃ja−jl must be < 1 in absolute value. Since every bi is a
positive integer, we see that it equals some positive power of a, concluding
the argument.

To go on, take again equation (10) and divide n by m, obtaining n =
mc + s, where 0 ≤ s < m. Necessarily 0 ≤ c < e and we may assume that
in fact c is fixed. We divide throughout by amc and we again obtain an
equation of the form

a′zd = am(e−c)q(am) + as,
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where a′ ∈ {1, a, . . . , ad−1}. Again, we may assume that a′ is fixed. Since
deg q > 2 and e− c ≥ 1 we have

as � (am(e−c)q(am))1/3.

Therefore we may apply the Claim and its consequence (11), taking p(X) =
xe−cq(X)/a′. More precisely, for a subsequence of m’s congruent to the same
integer r modulo d we may write m = dl + r and

a′ = arc, y = alcz, z = h1(al),

for some polynomial h1 ∈ Q[X]. Substituting into equation (10) and putting
al = T , h(T ) = T ch1(T ), we obtain an identity

hd(T ) = u(arT d) + arc+sT dc.

Finally, the substitution X = ar/dT proves what we want.

Proof of Proposition. (a) Suppose we are given an identity f(Xh, p(X)) =
cXk. Let e be a common multiple of the ramification indices of the Puiseux
series in x of f(X,Y ) = 0 above X = 0 and X = ∞. Then e divides d!.
By substituting Xe in place of X, we may replace f(X,Y ) with f(Xe, Y )
and we may assume that 0 and ∞ are not ramified. In this way it suffices
to prove the conclusion with e = 1. We assume that f is not constant in X,
a trivial case easily dealt with.

We let α1(X), . . . , αd(X) ∈ C[[X]] (resp. β1(X), . . . , βd(X) ∈ C((1/X)))
be the Puiseux series of Y above X = 0 (resp. X = ∞) for the equation
f(X,Y ) = 0.

We begin to show that p(X) is a polynomial in X±h, so after another
substitution we may assume h = ±1.

We start with the case h > 0. Assume the contrary and let Xm be
a monomial appearing in p(X), with degree m not divisible by h. In the
formal power series ring C[[X]] we have the identity

(12)
d∏

i=1

(p(X)− αi(Xh)) = cXk, c 6= 0.

Recall that the constant terms αi(0) are pairwise distinct. Hence in the left
side of (12) all the terms but one have order 0 at X = 0, so the remaining
term must have order k. On the other hand the term containing Xm appears
in every factor, so the order of each factor is ≤ m. Therefore k ≤ m.

Consider now the identity at infinity (i.e. in C((1/X)))

(13)
d∏

i=1

(p(X)− βi(Xh)) = cXk.
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Even now each factor contains Xm and therefore the order at X = ∞ is
≤ −m in each factor. We conclude that k ≥ dm and comparison with the
previous bound gives a contradiction.

On the other hand, assume h = −h′ < 0. As before, but with a substi-
tution X 7→ 1/X, we get the equation

(14)
d∏

i=1

(p(1/X)− αi(Xh′)) = cX−k

valid in C((X)) and the equation

(15)
d∏

i=1

(p(X)− βi(X−h
′
)) = cXk

valid again in C((X)) (because h′ > 0).
From equation (14) we obtain k = ddeg p if deg p > 0, as we can assume

(if deg p = 0 the claim we are proving is automatic). Let again Xm be a
monomial appearing in p, where m is not a multiple of h. Then m ≤ deg p.
In equation (15) we compare the order at X = 0 in both sides. Observe that
at least one of the terms has a pole. (In fact, assume the contrary. Then,
since f is monic in Y we have

f(1/X, Y ) =
d∏

i=1

(Y − βi(X−h
′
)).

Now, if no term on the right has a pole at X = 0, we have that f is constant
in X, against our assumptions.)

The other terms have order ≤ m, whence the total order is ≤ m(d−1)−
h′ < k, a contradiction.

From now on we assume h = 1 (the case h = −1 being similar and
even simpler). By replacing Y with Y − a1(X)/d we may assume that f ,
as a polynomial in Y , has vanishing second coefficient. We show first that
D := deg p and k are bounded effectively in terms of f . From (13) with
h = 1 it follows immediately that if D is large enough, then k = dD. If we
have pd(X) = cXdD, then it is easy to see that f(X, p(X)) has at least two
terms for large D, a contradiction. Otherwise we have

deg(pd(X)− cXdD) ≤ δ +D(d− 2),

where δ := degX f . On the other hand, pd(X) − cXdD =
∏
ζd=c(p(X) −

ζXD), and all terms but one in the product have degree ≥ D, a contradiction
if D > δ.

Now, the arguments used at the beginning prove also that p(X) =
p1(X) + Xkp2(X) for polynomials p1, p2 such that p1 has degree ≤ k − 1
and coincides with the first k terms of some αi. In particular p1 has finitely
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many possibilities which can be computed. Putting β∗i (X) = βi(X)−p1(X)
we have

(16)
d∏

i=1

(Xkp2(X)− β∗i (X)) = cXk.

If in some factor some term in Xkp2(X) does not disappear, that factor will
have order ≤ −k at X =∞. But (16) says that this can happen for at most
one factor. Therefore in some other factor all the mentioned terms must
disappear. This shows that p2 will coincide with some subsum of the poly-
nomial part of the series of some β∗i , whence it has finitely many possibilities
which can be computed.

(b) Take an equation p(X)d = u(Xh) + cXk, c 6= 0, and substitute in it
ζX for X, where ζh = 1. Subtracting we obtain

(17)
∏

θd=1

(p(X)− θp(ζX)) = c(1− ζk)Xk.

A first case is when 1 = ζk for all hth roots of unity ζ. This means that
k = mh is a multiple of h. In turn, this easily implies p(X) = Xrp1(Xh) for
an integer r ≤ h such that rd = sh is a multiple of h (so s ≤ d). Now, our
equation is obtained by monomial substitution from

(Xrp1(Xh))d = u(Xh) + cXmd.

A second case occurs when 1 6= ζk for some ζ and d ≥ 3. Then all the
factors on the left side of (17) have exactly one term. Since at most one term
can have degree < deg p, we see that p itself has just one term and the proof
is easily completed.

The third and last case is when d = 2 and 1 6= ζk for some ζ. The
same argument as before shows that p has at most two terms, so we write
p(X) = µXE + νXF . Now, inserting this into the original equation shows
that at least two among 2E,E + F, 2F are divisible by h. This implies that
2E and 2F must be divisible by h and we are reduced to the case h = 2 = d.

The last assertion of the Proposition is proved simply as follows. Suppose
that

cXk + u(Xh) = (c0Xm0 + c1X
m1 + . . .)d,

with nonzero coefficients ci and decreasing degrees mi. Assume k > h deg u.
Then k = m0d. Also, the monomial X(d−1)m0+m1 appears on the right side,
so (d− 1)m0 ≤ (d− 1)m0 +m1 ≤ h deg u. This concludes the argument.
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