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1. Introduction and statement of the main result. Let H denote
the division ring of Hamilton’s quaternions and let J denote the Hurwitz
subring of integral quaternions. Thus, as sets, H = R4 and J = Z4∪( 1

2 +Z
)4

.
(See Section 8 below for some motivating comments on the choice of J.)

We are interested in an asymptotic formula for the number of quaternions
q2 with q ∈ J and with all four components of q2 lying in the interval
[−X,X], where X is a large positive parameter. This question is motivated
by H. Müller and W. G. Nowak [8] where (among other things) an analogous
problem is investigated for the ring Z[i] of Gaussian integers. But there is a
remarkable difference between squares in H and squares in C. For instance,
the equation q2 = −1 has infinitely many solutions in H and still six in J.

Now, the main result of the present paper is the following theorem.

Theorem 1. For positive real X let

A(X) := #{q2 | q ∈ J ∧ q2 ∈ [−X,X]4}.
Then as X →∞,

A(X) = cX2 − 2π
3
X3/2 +O(X96/73(logX)461/146),

where c = 7.674124 . . . is the four-dimensional volume of {q ∈ R4 | q2 ∈
[−1, 1]4}.

Remark. Clearly, cX2 equals the volume of {q ∈ R4 | q2 ∈ [−X,X]4} =:
K(X). The term 2π

3 X
3/2 occurs because of the exceptional role of the imag-

inary space ImH := {0} × R3. Actually, K(X) ∩ J ∩ ImH contains many
points but produces only few different squares.

At first sight the error estimate seems rather coarse. Although the do-
main K(X) is not convex, one might expect that standard methods for
convex bodies like Fourier transformation, the Poisson summation formula,

2000 Mathematics Subject Classification: 11P21, 11R52.

[359]



360 G. Kuba

Stokes’ theorem, etc. could be successful to obtain at least Hlawka’s clas-
sical estimate O(X6/5) (see [3]). Unfortunately, this is not the case. As we
will see in Section 5, the error estimate in Theorem 1 can only be improved
together with the sharpest-known estimate in the famous divisor problem.

2. Squaring quaternions. As usual, if a = (a0, a1, a2, a3) ∈ H let
a = (a0,−a1,−a2,−a3) the conjugate of a, Re(a) = a0 the real or scalar
part of a, and N(a) = aa = a2

0 + a2
1 + a2

2 + a2
3 the norm of a. ImH =

{0} × R3 = {a ∈ H | Re(a) = 0} = {a ∈ H | a + a = 0} is the imaginary
space. Then we have

a2 = a(2 Re(a)− a) = 2 Re(a)a−N(a)

= (a2
0 − a2

1 − a2
2 − a2

3, 2a0a1, 2a0a2, 2a0a3).

Therefore, q2 ∈ [−X,X]4 iff q ∈ K(X), where

K(X) = {(a0, a1, a2, a3) ∈ R4 | −X ≤ a2
0 − a2

1 − a2
2 − a2

3,

2a0a1, 2a0a2, 2a0a3 ≤ X}.
Define an equivalence relation ∼ on H by p ∼ q iff p2 = q2. How do the
equivalence classes look like? It is not difficult to see that [q]∼ = {q,−q} if
q ∈ H \ ImH, and [q]∼ = {a ∈ ImH | N(a) = N(q)} if q ∈ ImH, the latter
being infinite if q 6= 0.

Now let

A(X) = #{q2 | q ∈ J ∧ q2 ∈ [−X,X]4}.
Then we have

A(X) = #{[q]∼ | q ∈ J ∩K(X)}
= #{{q,−q} | q ∈ J ∩K(X) \ ImH}

+ #{N(q) | q ∈ J ∩ ImH ∧ N(q) ≤ X}
= #{q ∈ J ∩K(X) | Re(q) > 0}+O(X).

Thus our problem is to count (integral and half odd integral) lattice points
in a four-dimensional domain.

3. Preparation of the proof. It is plain that the domain K(X) is
bounded. More precisely, K(X) is a subset of the four-dimensional cuboid

[
−
√

3X
2
,

√
3X
2

]
×
[
−
√

(
√

2 + 1)X
2

,

√
(
√

2 + 1)X
2

]3

,

which is the smallest set I0 × I1 × I2 × I3 containing K(X).
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We have

A(X) =
∑

a∈ 1
2Z

0<a≤
√

3X/2

#(Ka(X) ∩ (a+ Z)3) +O(X),

where the three-dimensional domain Ka(X) is given by

Ka(X) := {(a1, a2, a3) ∈ R3 | −X + a2 ≤ a2
1 + a2

2 + a2
3

≤ X + a2 ∧ |a1|, |a2|, |a3| ≤ X/(2a)}.
Let

Da(X) := {(x, y, z) ∈ R3 | −X + a2 ≤ (x− a)2 + (y − a)2 + (z − a)2

≤ X + a2 ∧ |x− a|, |y − a|, |z − a| ≤ X/(2a)}.
Then we obviously have

#(Ka(X) ∩ (a+ Z)3) = #(Da(X) ∩ Z3) for all a ∈ 1
2Z.

Therefore our program is counting ordinary lattice points in the three-
dimensional domain Da(X) for every a ∈ 1

2Z and then summing up.
How do the domains Da(X) look like? For abbreviation, define the con-

stants

c2 :=

√√
2− 1
2

, c3 :=

√√
3− 1
2

, c4 :=

√
1
2
,

c6 :=

√√
2 + 1
2

, c7 :=

√√
3 + 1
2

, c8 :=

√
3
2
.

Then we observe that Da(X) is a ball with radius
√
X + a2 for 0 < a ≤

c2
√
X, a cube with half the length of an edge equal to X/(2a) for c4

√
X ≤

a ≤ √X, the intersection of a ball and a cube for c2
√
X ≤ a ≤ c4

√
X, a

cube minus the interior of a ball contained in the cube for
√
X ≤ a ≤ c6

√
X,

and the intersection of a cube and the complement of the interior of a ball
for c6

√
X ≤ a ≤ c8

√
X.

In order to count the lattice points in Da(X) in the various situations we
will count the lattice points in cubes, balls, ball segments, and symmetrical
intersections of two segments.

For H,R, a ∈ R define

Ca(H) := #{(x, y, z) ∈ Z3 | −H ≤ x− a, y − a, z − a ≤ H},
Ba(R) := #{(x, y, z) ∈ Z3 | (x− a)2 + (y − a)2 + (z − a)2 ≤ R2},

Sa(R,H) := #{(x, y, z) ∈ Z3 | z − a > H

∧ (x− a)2 + (y − a)2 + (z − a)2 ≤ R2},
S∗a(R,H) := #{(x, y, z) ∈ Z3 | x− a, z − a > H

∧ (x− a)2 + (y − a)2 + (z − a)2 ≤ R2}.
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Then #(Da(X)∩Z3) = Ba(
√
X + a2) for 0 < a ≤ c2

√
X, #(Da(X)∩Z3) =

Ca(X/(2a)) for c4
√
X ≤ a ≤ √X, and for a ∈ 1

2Z, by symmetry,

#(Da(X) ∩ Z3) = Ba(
√
X + a2)− 6Sa(

√
X + a2, X/(2a))

if c2
√
X < a ≤ c3

√
X,

#(Da(X) ∩ Z3) = Ba(
√
X + a2)− 6Sa(

√
X + a2, X/(2a))

+ 12S∗a(
√
X + a2, X/(2a)) if c3

√
X < a ≤ c4

√
X,

#(Da(X) ∩ Z3) = Ca(X/(2a))− Ba(
√
a2 −X) +O(X1/2+ε)

if
√
X < a ≤ c6

√
X,

#(Da(X) ∩ Z3) = Ca(X/(2a))− Ba(
√
a2 −X) + 6Sa(

√
a2 −X,X/(2a))

+O(X1/2+ε) if c6
√
X < a ≤ c7

√
X,

#(Da(X) ∩ Z3) = Ca(X/(2a))− Ba(
√
a2 −X) + 6Sa(

√
a2 −X,X/(2a))

− 12S∗a(
√
a2 −X,X/(2a)) +O(X1/2+ε)

if c7
√
X < a ≤ c8

√
X.

The O-terms arise since the points on the surface of the ball with radius
R =

√
a2 −X are counted irregularly. In fact, if a ∈ 1

2Z then

#{(x, y, z) ∈ Z3 | (x− a)2 + (y − a)2 + (z − a)2 = R2}
≤ #{(x, y, z) ∈ Z3 | x2 + y2 + z2 = 4R2} � R1+ε,

since r3(n)� n1/2+ε.
We collect similar terms and write

A(X) = Σ1(X) +Σ2(X)−Σ3(X)− 6Σ4(X)

+ 12Σ5(X) + 6Σ6(X)− 12Σ7(X) +O(X1+ε),

where, with the summation index a always running through 1
2Z,

Σ1(X) :=
∑

0<a≤c4
√
X

Ba(
√
X + a2),

Σ2(X) :=
∑

c4
√
X<a≤c8

√
X

Ca(X/(2a)),

Σ3(X) :=
∑

√
X<a≤c8

√
X

Ba(
√
a2 −X),

Σ4(X) :=
∑

c2
√
X<a≤c4

√
X

Sa(
√
X + a2, X/(2a)),

Σ5(X) :=
∑

c3
√
X<a≤c4

√
X

S∗a(
√
X + a2, X/(2a)),
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Σ6(X) :=
∑

c6
√
X<a≤c8

√
X

Sa(
√
a2 −X,X/(2a)),

Σ7(X) :=
∑

c7
√
X<a≤c8

√
X

S∗a(
√
a2 −X,X/(2a)).

4. Two estimates of rounding error sums. Let the rounding error
function ψ be defined by

ψ(z) = z − [z]− 1/2 (z ∈ R)

throughout the paper. ([ ] are the Gauss brackets.)
Note that for every z, ψ(z+a) = ψ(z) if a ∈ Z, and ψ(z+a) = ψ(z+1/2)

if a ∈ 1/2 + Z.
For the proof of Theorem 1 we will need estimates of two ψ-sums which

are variants of ψ-sums occurring in the divisor problem and the circle prob-
lem. To obtain these estimates the discrete Hardy–Littlewood method is
required. (See Huxley [5] for a profound presentation of the method and
its various applications to important problems of geometry and analytic
number theory.)

Lemma 1. Let C ≥ 1 be an absolute constant. Then as X →∞,
∑

α≤n≤β
ψ

(
X

n
+
n

2

)
� X23/73(logX)461/146

uniformly in 1 ≤ α ≤ β ≤ C√X.

P r o o f. Split the sum into
∑

α/2≤m≤β/2
ψ

(
X

2m

)
+

∑

(α−1)/2≤m≤(β−1)/2

ψ

(
X

2m+ 1
+

1
2

)

and apply [5], Theorem 18.2.3, with T = X to every part of a dyadic division
of the first and second sum, respectively, where F (x) = 1/(2x) is taken in
the first case and F (x) = 1/(2x+ 1/M) +M/(2T ) in the second.

Lemma 2. Let τ be an absolute constant , 0 < τ < 1. Then as r →∞,
∑

δ+h<n≤δ+r
ψ(δ +

√
r2 − (n− δ)2)� r46/73(log r)315/146

uniformly in 0 ≤ δ ≤ 1 and τr ≤ h ≤ r.
P r o o f. Let g(t) = δ +

√
r2 − (t− δ)2 and fix M0 = [r46/73]. Since for

r−h ≤M0 the estimate is trivial, assume r−h > M0 and choose J ∈ N with
2J−1M0 ≤ r−h < 2JM0. Define a dyadic sequence Mj = 2jM0 (j < J) and
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put MJ = [r − h]. Then

∑

δ+h<n≤δ+r
ψ(g(n)) =

J−1∑

j=0

∑

Mj≤m<Mj+1

ψ(f(m)) +O(M0),

with f(u) := g([r]−u). Now, apply [5], Theorem 18.2.3, to each of the inner
sums by setting M = Mj , M

′ = Mj+1 − 1, C = 1, T = M3/2r1/2, and
F (u) = Mf(Mu)/T .

Remark. It is important to fix τ > 0 in Lemma 2 since otherwise the
odd derivatives of f destroy the proof.

5. Lattice points in cubes, balls, and ball segments

Proposition 1. For H > 0 and a ∈ 1
2Z,

Ca(H) = 8H3 − 24H2ψ(H + a) +O(H).

P r o o f. Obviously, Ca(H) = (2[H] + 1)3 if a ∈ Z, and Ca(H) = (2[H +
1/2])3 if a ∈ 1/2 + Z.

What is the sharpest estimate of the error that inevitably arises when
we sum up the cubes? The summation interval for the cubes is c4

√
X < a ≤

c8
√
X, at least it contains the interval c4

√
X < a ≤ √X where the points

in whole cubes are to be counted. Thus, by substituting a ∈ 1
2Z by n/2 with

n ∈ Z, we have to estimate
∑

√
X�n�√X

(
X

n

)2

ψ

(
X

n
+
n

2

)
.

The best estimate of this weighted ψ-sum is obtained by Abelian summa-
tion combined with the sharpest-known estimate of the unweighted ψ-sum
(Lemma 1). This yields an error not better than O(X96/73(logX)461/146),
which should be taken into consideration when we count the points in the
other domains.

Next we consider balls. Obviously, Ba(R) = B0(R) for a ∈ Z, and
Ba(R) = B1/2(R) for a ∈ 1/2 + Z. Quite recently, improving Vinogradov’s
classical estimate ([9], Theorem 2), Chamizo and Iwaniec [1] and Heath-
Brown [2] showed that

(∗) B0(R) =
4π
3
R3 +Oε(R21/16+ε) (R→∞).

In order to obtain a formula for B1/2(R) as well, we write

B1/2(R) = #{(x1, x2, x3) ∈ (1/2 + Z)3 | x2
1 + x2

2 + x2
3 ≤ R2}.

The grid (1/2 +Z)3 has the same symmetry as Z3 but it contains no points
lying in a coordinate plane. Fortunately, we can adapt Vinogradov’s proof
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[9] for the number of integral points in the sphere to half odd lattice points
because each of the 48 pyramids 0 ≤ δixi ≤ δjxj ≤ δkxk ({i, j, k} =
{1, 2, 3}, δi, δj , δk ∈ {−1, 1}) has exactly one face lying in a coordinate
plane. Additionally, we correct the sloppy estimate

∑
(ξ(z))2 � M2(ln a)3

in [9], p. 320, l. 24, by using the upper bound M2(ln a). Altogether we obtain

(∗∗) B1/2(R) =
4π
3
R3 +O(R4/3(logR)19/4) (R→∞).

But we will use (∗) and (∗∗) only in Section 9. To reach our goal it
suffices to allow the coarser error O(R119/73(logR)315/146), which follows
immediately from the next proposition.

Proposition 2. As R→∞,

Sa(R,H) =
2π
3
R3 − πR2H +

π

3
H3 + π(R2 −H2)ψ(H + a)

+O(R119/73(logR)315/146)

uniformly in a ∈ R and −R ≤ H ≤ R.

P r o o f. We count the points in level disks by making use of Huxley’s
deep estimate in the circle problem. Obviously,

Sa(R,H) =
∑

a+H<z≤a+R

#{(x, y) ∈ Z2 | (x−a)2 + (y−a)2 ≤ R2− (z−a)2}.

In the circle problem there is no difficulty concerning the center of the circle.
It follows from Huxley [5], Theorem 18.3.2, that uniformly in (α, β) ∈ R2,

#{(x, y) ∈ Z2 | (x− α)2 + (y − β)2 ≤ T} = πT +O(T 23/73(log T )315/146).

Consequently,

Sa(R,H) = π
∑

a+H<z≤a+R

(R2 − (z − a)2) +O(R119/73(logR)315/146).

Now we apply the Euler summation formula (cf. Krätzel [6], Theorem 1.3)
to the sum. The main integral yields the main term, which clearly equals the
volume of the segment {(x1, x2, x3) ∈ R3 | x3 ≥ H ∧ x2

1+x2
2+x2

3 ≤ R2}, and
the ψ-integral is � R by the second mean-value theorem. This concludes
the proof of Proposition 2.

6. Counting in intersections of ball segments. For 0 ≤ H ≤ R/√2
let V (R,H) denote the volume of the domain

{(x1, x2, x3) ∈ R3 | x1 ≥ H ∧ x3 ≥ H ∧ x2
1 + x2

2 + x2
3 ≤ R2}.
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We compute

V (R,H) =
4
3
R3 arctan

(√
1− 2H2

R2

)
+

2
3
H2
√
R2 − 2H2

−
(

2R2H − 2
3
H3
)

arctan
(√

R2

H2 − 2
)
.

Further, for 0 ≤ H ≤ r let

ϕ(r,H) = r2 arccos
(
H

r

)
−H

√
r2 −H2

denote the area of the circle segment {(x, y) ∈ R2 | x ≥ H ∧ x2 + y2 ≤ r2}.
Proposition 3. Suppose that a ∈ 1

2Z. Then as R→∞,

S∗a(R,H) = V (R,H) + 2ψ(H + a)ϕ(
√
R2 −H2,H)

+O(R119/73(logR)315/146)

uniformly in R/
√

3 ≤ H ≤ R/√2.

P r o o f. We write

Sa(R,H) =
∑

a+H<z≤a+
√
R2−H2

σa(
√
R2 − (z − a)2,H),

where

σa(r,H) = #{(x, y) ∈ Z2 | x− a > H ∧ (x− a)2 + (y − a)2 ≤ r2}.
First we count the lattice points in circle segments. We have
1
2
σa(r,H) =

∑

a+H<x≤a+r

√
r2 − (x− a)2−

∑

a+H<x≤a+r

ψ(a+
√
r2 − (x− a)2),

since [a+ b]− [a]− ψ(a) = b− ψ(a+ b). In view of
r−1\
H

t√
r2 − t2ψ(t+ a) dt� r − 1√

r2 − (r − 1)2
� √r (H ≤ r − 1)

and ∣∣∣∣
r\
r−1

t√
r2 − t2ψ(t+ a) dt

∣∣∣∣ ≤
r\
r−1

t√
r2 − t2 dt =

√
2r − 1� √r

we obtain, by applying the Euler summation formula to the first sum and
Lemma 2 (with δ = a− [a]) to the second,

σa(r,H) = ϕ(r,H) + 2ψ(H + a)
√
r2 −H2 +O(r46/73(log r)315/146)

uniformly in r/
√

2 ≤ H ≤ r.
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We insert this formula into the sum which we started from and get

Sa(R,H) =
∑

a+H<z≤a+
√
R2−H2

ϕ(
√
R2 − (z − a)2, H)

+ 2ψ(a+H)
∑

a+H<z≤a+
√
R2−H2

√
R2 −H2 − (z − a)2

+O(R119/73(logR)315/146).

Again by the Euler summation formula, the second sum equals

1
2
ϕ(
√
R2 −H2,H) + ψ(H + a)

√
R2 − 2H2 +O(

√
R)

and the first equals
√
R2−H2\
H

ϕ(
√
R2 − t2,H) dt+ ψ(H + a)ϕ(

√
R2 −H2, H)

−2

√
R2−H2\
H

t arccos
(

H√
R2 − t2

)
ψ(t+ a) dt.

The main integral is, by the Cavalieri principle, equal to V (H,R), and the
ψ-integral is, by the second mean-value theorem, � R. This concludes the
proof of Proposition 3.

7. Proof of Theorem 1. First we substitute the summation index
a ∈ 1

2Z by n/2 with n ∈ Z. Then we insert the formulas given in Proposi-
tions 1–3, and the formula

Ba(R) =
4π
3
R3 +O(R119/73(logR)315/146)

into the seven terms Σi(X) (1 ≤ i ≤ 7) from Section 3.
For abbreviation, let αi, βi (1 ≤ i ≤ 7) be defined by the following table.

i 1 2 3 4 5 6 7

αi 0 2c4 2 2c2 2c3 2c6 2c7
βi 2c4 2c8 2c8 2c4 2c4 2c8 2c8

Let

F1(X, t) :=
4π
3

(
X +

(
t

2

)2)3/2

, F2(X, t) := 8
(
X

t

)3

,

F3(X, t) := − 4π
3

((
t

2

)2

−X
)3/2

,
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F4(X, t) := − 6π
(

2
3

(
X +

(
t

2

)2)3/2

−
(
X +

(
t

2

)2)(
X

t

)
+

1
3

(
X

t

)3)
,

F5(X, t) := 12V
(√

X +
(
t

2

)2

,
X

t

)
,

F6(X, t) := 6π
(

2
3

((
t

2

)2

−X
)3/2

−
((

t

2

)2

−X
)(

X

t

)
+

1
3

(
X

t

)3)
,

F7(X, t) := − 12V
(√(

t

2

)2

−X, X
t

)
,

so that

F6±1(X, t) = ∓ 2(t2 ∓ 4X)3/2 arctan

√
t4 ∓ 4Xt2 − 8X2

t4 ∓ 4Xt2

∓ 4X2

t3

√
t4 ∓ 4Xt2 − 8X2

± 2X
t3

(3t4 ∓ 12t2X − 4X2) arctan
(

1
2X

√
t4 ∓ 4Xt2 − 8X2

)
.

Then we have

A(X) =
7∑

i=1

(Si(X) + Ψi(X)) +O(X96/73(logX)315/146),

where

Si(X) :=
∑

αi
√
X<n≤βi

√
X

Fi(X,n) (1 ≤ i ≤ 7),

and Ψi(X) are weighted ψ-sums,

Ψi(X) =
∑

αi
√
X<n≤βi

√
X

Gi(X,n)ψ
(
X

n
+
n

2

)
(1 ≤ i ≤ 7),

with G1(X, t) = G3(X, t) = 0, and the other weight functions Gi(X, t)
being monotonic and � X. (Note that ϕ(r1,H1) < ϕ(r2,H2) if r1 < r2

and H1 > H2.) We estimate these weighted ψ-sums by Abelian summation
combined with Lemma 1 and obtain

A(X) =
7∑

i=1

Si(X) +O(X96/73(logX)461/146).

Applying the Euler summation formula to each of the seven sums Si(X),
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we derive
7∑

i=1

Si(X) =
7∑

i=1

βi
√
X\

αi
√
X

Fi(X, t) dt− 2π
3
X3/2

+
7∑

i=1

βi
√
X\

αi
√
X

(
d

dt
Fi(X, t)

)
ψ(t) dt,

since

−F1(X, 2c4
√
X) + F2(X, 2c4

√
X)− F4(X, 2c4

√
X)− F5(X, 2c4

√
X) = 0,

−F2(X, 2c8
√
X)− F3(X, 2c8

√
X)− F6(X, 2c8

√
X)− F7(X, 2c8

√
X) = 0,

F3(X, 2
√
X) = F4(X, 2c2

√
X) = F5(X, 2c3

√
X) = F6(X, 2c6

√
X)

= F7(X, 2c7
√
X) = 0,

and

−1
2
F1(X, 0) = −2π

3
X3/2.

First we estimate the ψ-integrals. Let

d

dt
Fi(X, t) =: Di(X, t) (1 ≤ i ≤ 7).

Obviously, for 1 ≤ i ≤ 7,

Fi(X,u
√
X) = X3/2Fi(1, u) (αi ≤ u ≤ βi).

Thus, for 1 ≤ i ≤ 7,

Di(X, t) = XDi(1, t/
√
X) (αi

√
X ≤ t ≤ βi

√
X).

We compute

D2(1, u) = −24
u4 , D2±1(1, u) = ∓π

2
u
√
u2 ∓ 4,

D5±1(1, u) = ±3π
2

(
u
√
u2 ∓ 4− 1∓ 4

u2 −
4
u4

)
,

D6±1(1, u) = ∓6f±(u)± 6g±(u)h±(u)± 12f̃±(u),

where

f±(u) = u
√
u2 ∓ 4 arctan

(√
u4 ∓ 4u2 − 8
u4 ∓ 4u2

)
,

g±(u) =
(

1± 2
u2

)2

, h±(u) = arctan
(

1
2

√
u4 ∓ 4u2 − 8

)
,

f̃±(u) =
1
u4

√
u4 ∓ 4u2 − 8.
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We observe that, if i = 1, 2, 3, 4, 6, Di(1, u) is monotonic on αi ≤ u ≤ βi.
Consequently, if i = 1, 2, 3, 4, 6 then Di(X, t) is monotonic on αi

√
X ≤ t ≤

βi
√
X. Hence, by | Tb

a
ψ(t) dt| ≤ 1/8 and the second mean-value theorem,

∣∣∣
βi
√
X\

αi
√
X

Di(X, t)ψ(t) dt
∣∣∣� 1

4
X max

αi≤u≤βi
|Di(1, u)| � X (i = 1, 2, 3, 4, 6).

Furthermore, f±(u), g±(u), h±(u), f̃±(u) are monotonic on α6±1 ≤ u ≤
β6±1. Hence, with the maxima to be taken over α6±1 ≤ u ≤ β6±1,

∣∣∣
β6±1

√
X\

α6±1
√
X

Di(X, t)ψ(t) dt
∣∣∣

≤ 3X(max |f±(u)|+ (max |g±(u)|)(max |h±(u)|) + max |f̃±(u)|)� X.

It remains to calculate the integrals
Tβi√X
αi
√
X
Fi(X, t) dt. We replace t by u

√
X

to get
βi
√
X\

αi
√
X

Fi(X, t) dt = X2
βi\
αi

Fi(1, u) du (1 ≤ i ≤ 7).

Since the functions F5 and F7 can be integrated only numerically we abstain
from integrating the other five functions in closed form. With electronic
support,

7∑

i=1

βi\
αi

Fi(1, u) du = 7.674124222443732 . . .

From the preparation of the problem it is clear that 7.67412 . . . X2 equals
the volume of the domain K(X), and this concludes the proof of Theorem 1.

8. On squares of Lipschitz integral quaternions. Historically, the
ring J does not stand at the beginning of the number theory of quaternions.
It is not surprising that the first investigated discrete subring of H is J0 :=
Z4. The “integral” quaternions due to Lipschitz are exactly the elements of
J0 (cf. [4]). It turned out that J0 is too small to have interesting arithmetic
properties. The main arithmetical difference between J0 and J is that the
Euclidian division algorithm works in J but fails in J0. Nevertheless it may
be interesting to ask for the distribution of squares of elements in J0. Let us
also consider the grid (1/2 + Z)4 = J \ J0 =: J1/2 which of course is neither
closed under addition nor under multiplication but which is closed under
squaring. Then, by adapting the proof of Theorem 1 in a natural way, we
obtain
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Theorem 2. For positive real X let

Aν(X) := #{q2 | q ∈ Jν ∧ q2 ∈ [−X,X]4} (ν ∈ {0, 1/2}).
Then as X →∞,

A0(X) =
c

2
X2 − 2π

3
X3/2 +O(X96/73(logX)461/146),

A1/2(X) =
c

2
X2 +O(X96/73(logX)461/146),

where c is the constant in Theorem 1.

Clearly, the term 2π
3 X

3/2 does not occur in the second formula since
J1/2 ∩ ImH = ∅.

9. A variation of the problem. There is another generalization of the
problem in Müller and Nowak [8] to quaternions, which can be handled in
a very easy way.

Let Im(q) := (q1, q2, q3) denote the imaginary or vector part of the
quaternion q = (q0, q1, q2, q3). Then for ν ∈ {0, 1/2, 1} let

Ãν(X) := #{q2 | q ∈ Jν ∧ |Re(q2)|, |Im(q2)| ≤ X} (ν ∈ {0, 1/2, 1}),
where J1 := J and | · | is the Euclidian norm. Then, before summing up
over the first component again, we have to count lattice points in the three-
dimensional domain

K̃a(X) := {(a1, a2, a3) ∈ R3 | −X + a2 ≤ a2
1 + a2

2 + a2
3

≤ min{X + a2, X2/(4a2)}},
which is always a ball with another (possibly empty) concentric ball re-
moved.

Taking into account the exceptional role of the imaginary space and the
counting on the surface of the smaller ball, we have

Ãν(X) =
∑

0<a≤
√

(
√

2−1)X/2

Ba(
√
X + a2)

+
∑

√
(
√

2−1)X/2<a≤
√

(
√

2+1)X/2

Ba

(
X

2a

)

−
∑

√
X<a≤

√
(
√

2+1)X/2

Ba(
√
a2 −X) +O(X1+ε),

where the summation index a runs through Z for ν = 0, through 1/2 + Z
for ν = 1/2, and through 1

2Z for ν = 1.
Then, by (∗) and (∗∗) in Section 5, it is straightforward to verify
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Theorem 3. As X →∞,

Ã0(X) = πX2 − 2π
3
X3/2 +Oε(X37/32+ε),

Ã1/2(X) = πX2 +O(X7/6(logX)19/4),

Ã1(X) = 2πX2 − 2π
3
X3/2 +O(X7/6(logX)19/4).

Note that now the O-terms are sharper than Hlawka’s bound O(X6/5) for
the lattice rest of a four-dimensional convex body. Furthermore, the O-terms
are also sharper than the bound O(X13/11(logX)5/11) given by Krätzel and
Nowak [7].
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