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1. Introduction. We introduce and investigate a family of functions
called nonanalytic “pseudo-Poincaré series”. These functions are inspired
by Douglas Niebur’s work [5, 6] on automorphic forms and integrals of neg-
ative weight. We prove that an arbitrary Niebur modular integral (including
a modular form) on the full modular group, Γ (1), of weight k, 0 < k < 1,
can be decomposed uniquely as a sum of a cusp form and a finite linear
combination of (special values of) pseudo-Poincaré series. We derive exact
formulas, as convergent infinite series, for the Fourier coefficients of these
pseudo-Poincaré series. In the weight range 0 < k < 2/3, the formulas we
produce for these series have precisely the same structure as the well-known
expressions for negative weights found by Rademacher and Zuckerman [10];
both involve the modified Bessel function of the first kind and generalized
Kloosterman sums. In the weight range 2/3 ≤ k < 1, however, the formulas
we discover are not as satisfying because they contain Selberg’s Klooster-
man zeta-function evaluated outside of its known range of convergence. In
our prequel [9] we already found expressions, which contain residues of the
zeta-function just mentioned, for the Fourier coefficients of small positive
powers (between 0 and 2) of the Dedekind eta-function. So our decomposi-
tion theorem implies that we possess the Fourier expansions of all Niebur
modular integrals on Γ (1) of weight k, 0 < k < 1.

The results established here mirror those presented in our first paper [9],
which focused on Niebur modular integrals in the weight range 1 < k < 2.
Recall that this previous paper provided an extension of Knopp’s work [4]
on the Fourier coefficients of modular forms of weight k, 4/3 < k < 2.
Several of the tools we employ here are the same as those used in [4] and
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[9]. These include Poisson summation and work pertaining to the analytic-
ity and growth behaviour of Selberg’s Kloosterman zeta-function [2, 11, 12].
However, there are some interesting differences here as well. Our point of de-
parture is not to invoke (nonanalytic) Poincaré series, which converge abso-
lutely for Re(s) > 2−k, but rather to explore (nonanalytic) pseudo-Poincaré
series (mentioned above), which converge absolutely for Re(s) > k. This fa-
vorable convergence property (recall that here 0 < k < 1) is created by
the subtracted “Rademacher convergence summand” present in the pseudo-
Poincaré series. Ironically, it is this difference which ultimately permits us
the use of the same results on Selberg’s Kloosterman zeta-function that we
invoked in [9]. Another major difference here is the use of a two-variable
summation formula [7, 8], one which is needed to handle a certain series
that arises in the period of the modular relation for our pseudo-Poincaré
series. In fact, the study of this series provides us with a rediscovery of the
known formulas [4, 9] for the Fourier coefficients of arbitrary cusp forms of
weight k, 1 < k < 2. Lastly, by summoning properties of cusp forms on the
full modular group, we prove that “most” of the Niebur modular integrals
studied here are actually modular forms.

2. Definitions and notation. The basic notation is the same as in
[9]. The full modular group, Γ (1), refers to both SL(2,Z) and PSL(2,Z).
This abuse is innocuous. We define the real power of a nonzero complex
number by zr = er(log|z|+i arg z), where −π ≤ arg z < π and log |z| is real.
Throughout, k is a real number and v is a multiplier system (MS ) for Γ (1)
in the weight k. Specifically, v is a function from the matrix group Γ (1)
into the unit circle which, for τ ∈ H, the upper half-plane, satisfies the
“consistency condition”

v(M1M2)(c3τ + d3)k = v(M1)v(M2)(c1M2τ + d1)k(c2τ + d2)k,

where Mj =
(∗ ∗
cj dj

) ∈ Γ (1), for j = 1, 2, and M1M2 =
(∗ ∗
c3 d3

)
. Connected

with this MS is a parameter κ, which is determined from v by

v(S) = e2πiκ, 0 ≤ κ < 1,

where S =
(1 1

0 1

)
. Observe that the conjugate function v is a MS for Γ (1) in

the weight 2− k.
A Niebur modular integral on Γ (1) of weight k and MS v is a function F

which is holomorphic in H, meromorphic at ∞, and for which there exists
a cusp form G ∈ C0(2− k, v) such that

(1) [F (τ)− v(V )(γτ + δ)−kF (V τ)]− =
i∞\

V −1(∞)

G(z)(z − τ)−k dz,
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for all V ∈ Γ (1) and τ ∈ H. Here [·]− denotes complex conjugation and the
path of integration is a vertical line in H. If V is a translation, then the right
side is defined to be identically zero. (Actually, an equivalent definition can
be given [5, p. 5] in which relation (1) is assumed for all non-translations
only.) It is clear that F must possess a Fourier expansion of the type

F (τ) =
∞∑

n=−µ
ane

2πi(n+κ)τ ∀τ ∈ H.

If F is not identically zero, then we assume that a−µ 6= 0 and we say that
the order at ∞ of F is −µ+κ. The vector space of Niebur modular integrals
on Γ (1) of weight k and MS v which have order at ∞ greater than or equal
to −µ+ κ is denoted by I(µ, k, v). If the right side of (1) is identically zero
for all V ∈ Γ (1), then of course F is a modular form on Γ (1) of weight
k and MS v. The subspace of all modular forms in I(µ, k, v) is denoted
by C(µ, k, v) and the space of cusp forms, C(−b1− κc, k, v), is denoted by
C0(k, v). Here b·c is the greatest integer function. We note that each Niebur
modular integral has a unique cusp form corresponding to it.

3. Nonanalytic pseudo-Poincaré series. We define the functions
that will eventually give us Niebur modular integrals (in the desired weight
range). Let 0 < k < 1 and ν ∈ Z, ν < 0. For τ ∈ H and Re(s) > k put

(2) Hν(τ |s) = Hν(τ |s; k, v)

= 2e2πi(ν+κ)τ +
∑

c,d∈Z
(c,d)=1

(c,d)6=(0,±1)

e2πi(ν+κ)Mτ

v(M)(cτ + d)k|cτ + d|s g
(−2πi(ν + κ)

c(cτ + d)
; 1−k

)
,

where M =
(∗ ∗
c d

) ∈ Γ (1) and

(3) g(w) = g(w;β) =

Tw
0 t

β−1e−t dt
Γ (β)

.

(Note that the numerator in (3) is the incomplete gamma function.) We call
the functions Hν nonanalytic pseudo-Poincaré series. They are motivated
by certain conditionally convergent series discovered by Niebur [5, p. 43]. Al-
though Hν(τ |s) is not holomorphic in τ , it is holomorphic in s for Re(s) > k.
(This latter fact follows from a basic bound on g coupled with a modification
of the usual reasoning which is used to study Poincaré series.) The modular
relation for Hν(τ |s), which is derived below in Lemma 1, involves a multi-
variable Poincaré series. Specifically, with z ∈ H and all remaining notation
as before, define
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G−ν−1(z|τ |s) = G−ν−1(z|τ |s; 2− k, v)(4)

=
∑

c,d∈Z
(c,d)=1

e2πi[(−ν−1)+(1−κ)]Mz

v(M)(cz + d)2−k|cτ + d|s .

Observe that G−ν−1(z|τ |s) is analytic in s for Re(s) > k.
We now outline the contents of this paper. Section 5 contains the con-

struction of an analytic continuation of both Hν(τ |s) and G−ν−1(z|τ |s) into
a region including the origin. These continuations, which rely heavily on the
lemmas provided in Section 4, give us explicit formulas (see Section 5, Theo-
rems 7(b) and 9(b)) for the Fourier expansions of Hν(τ |0) and G−ν−1(z|τ |0).
In Section 6 we establish the

Main Theorem. Assume 0 < k < 1 and ν ∈ Z, ν < 0. Let Hν(τ) =
Hν(τ |0) and G−ν−1(z) = G−ν−1(z|τ |0), where Hν(τ |s) and G−ν−1(z|τ |s)
are defined initially by (2) and (4), respectively. The vector spaces I(·, ·, ·)
and C0(·, ·) are defined at the end of Section 2.

(a) Hν(τ) ∈ I(−ν, k, v). Specifically , for all V =
(∗ ∗
γ δ

) ∈ Γ (1) and τ ∈ H
we have

[Hν(τ)− v(V )(γτ + δ)−kHν(V τ)]− =
i∞\

V −1(∞)

G∗−ν−1(z)(z − τ)−k dz,

where

G∗−ν−1(z) :=
[2πi(ν + κ)]1−k

Γ (1− k)
G−ν−1(z) ∈ C0(2− k, v).

(b) Let W (µ, k, v), µ ∈ Z+, denote the space spanned by {Hν}−µν=−1. Then

I(µ, k, v) = W (µ, k, v)⊕ C0(k, v).

This result tells us that every Niebur modular integral on Γ (1) of weight
k and MS v can be uniquely written as the sum of a cusp form and a finite
linear combination of the functions Hν(τ). In Section 7 we investigate when
the Niebur modular integral Hν(τ) is in fact a modular form.

We present the behaviour of Hν(τ |s) under modular transformations.

Lemma 1. Let Hν(τ |s) and G−ν−1(z|τ |s) be defined by (2) and (4),
respectively. Also, let V =

(∗ ∗
γ δ

) ∈ Γ (1). Then for all τ ∈ H and Re(s) > k,

[Hν(τ |s)− v(V )(γτ + δ)−k|γτ + δ|−sHν(V τ |s)]−

= A

i∞\
V −1(∞)

G−ν−1(z|τ |s)(z − τ)−k dz,

where

A =
[2πi(ν + κ)]1−k

Γ (1− k)
.
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P r o o f. If V is a translation, then the statement is obvious and so we
assume that γ 6= 0. Note that

g

(−2πi(ν + κ)
c(cτ + d)

)
= 1− 1

Γ (1− k)

∞\
−2πi(ν+κ)
c(cτ+d)

t−ke−t dt.

(Here the path of integration is a horizontal line in the right half-plane.)
Putting this into the definition for Hν(τ |s) and rewriting the integral some
more gives

Hν(τ |s) = 2e2πi(ν+κ)τ

+
∑

c,d∈Z
(c,d)=1

(c,d)6=(0,±1)

{
e2πi(ν+κ)Mτ

v(M)(cτ+d)k|cτ + d|s −
A

v(M)(cτ+d)k|cτ + d|s

×
−i∞\
M(∞)

(u−Mτ)−ke2πi(ν+κ)u du

}
.

From the above and traditional arguments we obtain

Hν(τ |s)− v(V )(γτ + δ)−k|γτ + δ|−sHν(V τ |s)

= − 2A
v(V )(γτ + δ)k|γτ + δ|s

−i∞\
V (∞)

(u− V τ)−ke2πi(ν+κ)u du

+ 2A
−i∞\

V −1(∞)

(u− τ)−ke2πi(ν+κ)u du

+
∑

c,d∈Z
(c,d)=1

(c,d) 6=±(0,1)
(c,d)6=±(γ,δ)

A

v(M)(cτ+d)k|cτ+d|s
M(∞)\

MV −1(∞)

(u−Mτ)−ke2πi(ν+κ)u du.

Note that the integral in the summand is over a (hyperbolic) geodesic in the
lower half-plane. Transforming this integral as well as the first one and then
combining everything we get

Hν(τ |s)− v(V )(γτ + δ)−k|γτ + δ|−sHν(V τ |s)

= A
∑

c,d∈Z
(c,d)=1

−i∞\
V −1(∞)

(z − τ)−ke2πi(ν+κ)Mz

v(M)(cz + d)2−k|cτ + d|s dz.

The proof follows readily from the above equality.
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4. Expansions and auxiliary lemmas. We next record the Fourier
expansion of Hν(τ |s).

Lemma 2. Let Hν(τ |s) be defined by (2). Then for Re(s) > k and y =
Im(τ) > 0 we have

Hν(τ |s) = 2e2πi(ν+κ)τ + 2i−k
(2π)s+2−k(−ν − κ)1−k

Γ (s/2)

×
{ ∞∑
n=0

(n+ κ)se2πi(n+κ)τ
∞∑
p=0

[−4π2(n+ κ)(ν + κ)]p

Γ (p+ 2− k)Γ (p+ s/2 + 1)

× σ(4π(n+ κ)y, p+ s/2 + 1, s/2)Zν,n(s/2 + p+ 1− k/2)

+
∞∑
n=1

(n− κ)se−2πi(n−κ)τ
∞∑
p=0

[−4π2(n− κ)(ν + κ)]p

Γ (p+ 2− k)Γ (p+ s/2 + 1)

× σ(4π(n− κ)y, s/2, p+ s/2 + 1)Zν,−n(s/2 + p+ 1− k/2)
}
.

Here,

(5) σ(η, α, β) =
∞\
0

(u+ 1)α−1uβ−1e−ηu du

and

(6) Zm,n(w) = Z(w;m,n, k, v) =
∞∑
c=1

Ac(m,n)
c2w

is Selberg’s Kloosterman zeta-function, where

(7) Ac(m,n) = A(c;m,n, k, v) =
c−1∑

−d=0
(c,d)=1

v(M)e
2πi
c [(m+κ)a+(n+κ)d]

is the generalized Kloosterman sum and M =
(
a ∗
c d

) ∈ Γ (1).

The above lemma is derived in very much the same way as one finds
the Fourier expansion for nonanalytic Poincaré series. The main difference
is that along the way we employed the power series

ewg(w;β) =
∞∑
p=0

wp+β

Γ (p+ 1 + β)
,

which itself follows from the fact that ewg(w;β) satisfies the first order linear
ODE u′ − u = wβ−1/Γ (β), u(0) = 0.

We now concoct an expansion for G−ν−1(z|τ |s), the series (with s re-
placed by its complex conjugate) which appears in the modular relation for
Hν(τ |s). Although G−ν−1(z|τ |s) cannot have Fourier expansions in z or τ
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(since it is neither periodic in z nor in τ individually), it does possess a
hybrid expansion, one which exploits the periodicity of G−ν−1(z|τ |s) in z
and τ simultaneously.

Lemma 3. Let G−ν−1(z|τ |s) be defined by (4). Then for Re(s) > k,
y = Im(τ) > 0 and z ∈ H we have

G−ν−1(z|τ |s)

= 2e2πi[(−ν−1)+(1−κ)]z − 2(2π)s+2−kik

Γ 2(s/2)

×
{ ∞∑

l=0

e2πi(l+1−κ)z
∞∑
n=0

e2πinτ
∞∑
p=0

{−4π2[(−ν − 1) + (1− κ)]}p
p!Γ (p+ 2− k)

×D1(s; l, n, p)Z(s/2 + p+ 1− k/2;−ν − 1, l + n, 2− k, v)

+
∞∑

l=0

e2πi(l+1−κ)z
∞∑
n=1

e−2πinτ
∞∑
p=0

{−4π2[(−ν − 1) + (1− κ)]}p
p!Γ (p+ 2− k)

×D2(s; l, n, p)Z(s/2 + p+ 1− k/2;−ν − 1, l − n, 2− k, v)
}
,

where the Dirichlet series Z is defined by (6),

D1(s; l, n, p) =
b\
0

(n+t)s−1(l+1−κ−t)p+1−ke2πi(τ−z)tσ(4π(n+t)y, s/2, s/2) dt

and

D2(s; l, n, p) =
b\
0

(n−t)s−1(l+1−κ−t)p+1−ke2πi(τ−z)tσ(4π(n−t)y, s/2, s/2) dt.

Here the function σ is defined by (5) and

b = b(l) =
{
l − κ if l = 0,
1 if l = 1, 2, . . .

(Note that we have suppressed the dependence of both D1 and D2 on z, τ, k
and v.)

P r o o f. Rewriting G−ν−1(z|τ |s) in the usual way we get

G−ν−1(z|τ |s) = 2e2πi(−ν−κ)z

+ 2
∞∑
c=1

1
c2−k+s

c−1∑

−h=0
(c,h)=1

v(Mc,h)e2πi(−ν−κ) ac
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×
∞∑

m=−∞

e2πiκm

(z + h/c+m)2−k|τ + h/c+m|s

×
∞∑
p=0

( −2πi(−ν−κ)
c2(z+h/c+m)

)p

p!
,

where Mc,h =
(
a ∗
c h

) ∈ Γ (1) and we let d = h + cm with 0 ≤ −h ≤ c − 1,
(c, h) = 1, and m ∈ Z. Interchanging summations on m and p we are left
staring at the following innermost sum:

∞∑
m=−∞

e−2πi(1−κ)m

(τ + h/c+m)s/2(τ + h/c+m)s/2(z + h/c+m)2−k+p
.

We cannot use Poisson summation here! Nonetheless, we have developed a
two-variable summation formula specifically designed to handle this sum.
An application of this (see [7] or [8, pp. 63–68]; we do not display this
gargantuan identity here) gives

G−ν−1(z|τ |s) = 2e2πi(−ν−κ)z

− 2(2π)s+2−kik

Γ 2(s/2)

∞∑
c=1

1
cs+2−k

c−1∑

−h=0
(c,h)=1

v(Mc,h)e2πi(−ν−κ) ac

×
∞∑
p=0

(−4π2(−ν−κ)
c2

)p
p!Γ (p+ 2− k)

∞∑

l=0

e2πi(l+1−κ)(z+h
c )

×
{ ∞∑
n=0

e2πin(τ+h
c )D1(s; l, n, p)

+
∞∑
n=1

e−2πin(τ+h
c )D2(s; l, n, p)

}
.

Lastly, we change the order of summation. This is permitted by absolute
convergence, for Re(s) > k, of both quadruple sums on c, p, l, and n.

In order to further examine Hν(τ |s) (as well as G−ν−1(z|τ |s)) we require
some properties of Zm,n(w), which is defined by (6) and (7) for all integers
m and n. It is easy to see that Zm,n(w) is holomorphic in Re(w) > 1. In
his groundbreaking work Selberg [12] proved that Zm,n(w) has an analytic
continuation to a function meromorphic in the whole w-plane. Furthermore,
he showed that Zm,n(w) is holomorphic in Re(w) > 1/2 with the possible
exception of a finite number of simple poles on the real segment 1/2 < w ≤ 1
(the “exceptional poles”). The following derives from Roelcke’s study [11]
of the non-Euclidean Laplacian (in weight k).
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Lemma 4. Let 0 < k < 2 and m and n be any integers. Then
Z(w;m,n, k, v) is holomorphic in Re(w) > 1/2 + |k − 1|/2. Moreover , we
have the following :

(a) If 0 < k < 1, then Z(w;m,n, k, v) is holomorphic in Re(w) ≥ 1−k/2
with the possible exception of a simple pole at 1−k/2. This pole occurs if and
only if m and n are both nonnegative and there exists an f ∈ C0(k, v) such
that the terms e2πi(m+κ)τ and e2πi(n+κ)τ both occur in its Fourier expansion.

(b) If 1 < k < 2, then Z(w;m,n, k, v) is holomorphic in Re(w) ≥ k/2
with the possible exception of a simple pole at k/2. This pole occurs if and
only if m and n are both negative and there exists an f ∈ C0(2− k, v) such
that the terms e2πi[(−m−1)+(1−κ)]τ and e2πi[(−n−1)+(1−κ)]τ both occur in its
Fourier expansion.

It is easy to bound Zm,n(w) if Re(w) ≥ 1 + δ, δ > 0, but much more
difficult otherwise. In the early 80’s, however, Goldfeld and Sarnak [2] es-
tablished

Lemma 5. Let k ∈ R and m,n ∈ Z. Also assume that (m+κ)(n+κ) 6= 0.
If 1/2 < Re(w) < 3/2 and |Im(w)| ≥ 1, then

|Zm,n(w)| ≤ C |m+ κ| · |n+ κ| · |Im(w)|1/2
Re(w)− 1/2

,

where C is a positive constant depending at most upon k and κ.

From the above bound on |Zm,n(w)| Knopp [3, 4] proved

Lemma 6. Let 0 < k < 2 and m,n ∈ Z.

(a) If 0 < k < 2/3 and Zm,n(w) is holomorphic at w = 1− k/2, then

Zm,n(1− k/2) =
∞∑
c=1

Ac(m,n)
c2−k

.

(b) If 4/3 < k < 2 and Zm,n(w) is holomorphic at w = k/2, then

Zm,n(k/2) =
∞∑
c=1

Ac(m,n)
ck

.

5. Analytic continuation and Fourier expansion

Theorem 7. Let Hν(τ |s) be defined by (2), where 0 < k < 1 and ν ∈ Z,
ν < 0. Then

(a) Hν(τ |s) has an analytic continuation in s into the closed half-plane
Re(s) ≥ 0.
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(b) Hν(τ) = Hν(τ |0) is analytic in τ and has the following Fourier
expansion:

Hν(τ) = 2e−2πi|ν+κ|τ +
∞∑
n=0

an(ν, k, v)e2πi(n+κ)τ , τ ∈ H,

where

an(ν, k, v)

= 4πi−k
{ ∞∑
c=1

[
Ac(ν, n)

c

( |ν + κ|
n+ κ

)(1−k)/2

I1−k

(
4π
c

√
(n+ κ)|ν + κ|

)

− [2π|ν + κ|]1−k
Γ (2− k)

· Ac(ν, n)
c2−k

]
+

[2π|ν + κ|]1−k
Γ (2− k)

Zν,n(1− k/2)
}
.

Here

I1−k(u) =
∞∑
p=0

(u/2)2p+1−k

p!Γ (p+ 2− k)
, u > 0,

is the modified Bessel function of the first kind of order 1− k.

P r o o f. We shall perform an analytic continuation of the Fourier expan-
sion (Lemma 2) of Hν(τ |s) into an open half-plane containing the origin
s = 0. The key is to examine the “σ-functions” and the zeta-functions.
From (5) we see that the function σ(4π(n−κ)y, s/2, p+s/2 +1) is itself an-
alytic in Re(s) > −2 (because p ≥ 0), whereas [Γ (s/2)]−1σ(4π(n+ κ)y, p+
s/2 + 1, s/2) has an analytic continuation to Re(s) > −2 which can be
found by using integration by parts once. The zeta-functions require more
delicate analysis. For p ≥ 1, however, both Zν,n(s/2 + p + 1 − k/2) and
Zν,−n(s/2 + p+ 1−k/2) are easily seen to be holomorphic in Re(s) > k− 2.
This leaves us with the case p = 0. But from Lemma 4(a), we know that both
Zν,n(s/2 + 1−k/2) and Zν,−n(s/2 + 1−k/2) are holomorphic in Re(s) ≥ 0.
So there exists a δ > 0 (and independent of n) such that, once we pull in
the function 1/Γ (s/2), both major summands on the right-hand side of the
Fourier expansion of Hν(τ |s) are analytic in Re(s) > −δ.

In order to finish the proof of part (a) it suffices to show that (once
1/Γ (s/2) is pulled in) both infinite sums on n converge uniformly in compact
subsets of Re(s) > −δ. But this follows from Lemma 5 and known bounds
on the σ-function (see, for example, Lemma 6 in [9]).

We now show part (b) by evaluating Hν(τ |s) at s = 0. Using the fact
that

σ(4π(n+ κ)y, k + p+ s/2, s/2)
Γ (s/2)

∣∣∣∣
s=0

= 1
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and noting that the second infinite sum vanishes at s = 0 we find that

an(ν, k, v)

= 2i−k(2π)2−k|ν + κ|1−k
∞∑
p=0

[−4π2(n+ κ)(ν + κ)]p

p!Γ (p+ 2− k)
Zν,n(p+ 1− k/2).

By definition (6),

Zν,n(p+ 1− k/2) =
∞∑
c=1

Ac(ν, n)
c2p+2−k for p ≥ 1.

The desired expansion results from plugging this in, interchanging sums
(the double sum on p ≥ 1 and c is absolutely convergent) and recalling the
definition of I1−k.

Corollary 8. Let Hν(τ) be defined as before but now assume that
0 < k < 2/3. Then Hν(τ) is analytic in τ and has the following Fourier
expansion:

Hν(τ) = 2e−2πi|ν+κ|τ +
∞∑
n=0

cn(ν, k, v)e2πi(n+κ)τ , τ ∈ H,

where

cn(ν, k, v)

= 4πi−k
( |ν + κ|
n+ κ

)(1−k)/2 ∞∑
c=1

Ac(ν, n)
c

I1−k

(
4π
c

√
(n+ κ)|ν + κ|

)
.

P r o o f. This follows right away from Lemma 6(a) and Theorem 7.

Theorem 9. Let G−ν−1(z|τ |s) be defined by (4), where 0 < k < 1 and
ν ∈ Z, ν < 0.

(a) For both z and τ fixed in H, G−ν−1(z|τ |s) has an analytic continu-
ation in s into the closed half-plane Re(s) ≥ 0.

(b) G−ν−1(z) = G−ν−1(z|τ |0) is analytic in z and has the following
Fourier expansion:

G−ν−1(z) = 2e2πi[(−ν−1)+(1−κ)]z

+
∞∑

l=0

bl(−ν − 1, 2− k, v)e2πi(l+1−κ)z, z ∈ H,

where
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bl(−ν − 1, 2− k, v)

= − 4πik
{ ∞∑
c=1

[
A(c;−ν − 1, l, 2− k, v)

c

(
l + 1− κ

[(−ν − 1) + (1− κ)]

)(1−k)/2

× J1−k

(
4π
c

√
[(−ν − 1) + (1− κ)](l + 1− κ)

)

− [2π(l + 1− κ)]1−k

Γ (2− k)
· A(c;−ν − 1, l, 2− k, v)

c2−k

]

+
[2π(l + 1− κ)]1−k

Γ (2− k)
Z(1− k/2;−ν − 1, l, 2− k, v)

}
.

Here

J1−k(u) =
∞∑
p=0

(−1)p(u/2)2p+1−k

p!Γ (p+ 2− k)
, u > 0,

is the Bessel function of the first kind of order 1− k.

P r o o f. Obviously, proving part (a) is equivalent to showing that
G−ν−1(z|τ |s) has an analytic continuation in s into Re(s) ≥ 0. We shall
work with the expansion given in Lemma 3. First note that the factor pre-
ceding both infinite sums on l is an entire function in s with a double zero
at s = 0 (and also at negative even integers). Next observe that all of the
factors in both of the summands are independent of s except for D1, D2,
and the zeta-functions. Now, Lemma 4(b) tells us that both Z(s/2 +p+ 1−
k/2;−ν−1, l+n, 2−k, v) and Z(s/2+p+1−k/2;−ν−1, l−n, 2−k, v) are
holomorphic in Re(s) ≥ 0. Here the fact that −ν−1 ≥ 0 is crucial. Further-
more, we know that there exists a δ, 0 < δ ≤ 1− k, which is independent of
l and n, such that both zeta-functions are holomorphic in Re(s) > −δ.

We next examine the analyticity, in s, of the integrals D1(s; l, n, p) and
D2(s; l, n, p). The function σ(4π(n± t)y, s/2, s/2) is clearly holomorphic in
Re(s) > 0 and has a simple pole at s = 0. This implies that both D1 and D2

are holomorphic in Re(s) > 0 and have a (not necessarily simple) pole at
the origin. In fact the poles at the origin are at most double poles and their
order depends on l and n. It is not hard to see that the following functions
are analytic in Re(s) > −2 except for a simple pole at s = 0: (i) D1(s; l, n, p)
for n ≥ 1, (ii) D2(s; l, n, p) for n ≥ 2 and (iii) D2(s; 0, 1, p). It remains to
consider D1(s; l, 0, p), l ≥ 0 and D2(s; l, 1, p), l ≥ 1. We claim that both of
these functions have a double pole at s = 0 and are otherwise analytic in
Re(s) > −1. The proof is tedious and we omit it.

We now finish showing that G−ν−1(z|τ |s) is analytic in Re(s) > −δ.
From the above analysis we see that, once we pull in 1/Γ 2(s/2), both of
the major summands in our expansion for G−ν−1(z|τ |s) are holomorphic in
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Re(s) > −δ. We also know that G−ν−1(z|τ |s) is analytic in Re(s) > k and
so it suffices to prove that both infinite sums on l (with the gamma-factors
included) converge uniformly on compact subsets of −δ < Re(s) < 1. It can
be shown that

|s2Dj(s; l, n, p)| ≤ Kj(n+ 1)(p+ 1)(l + 1)p+1,

for j = 1, 2, where Kj is a constant which depends at most upon the compact
set, z, τ, k and κ. The use of these bounds in conjunction with those from
Lemma 5 secures part (a).

In order to demonstrate part (b) we must evaluateG−ν−1(z|τ |s) at s = 0.
Substantial vanishing gives

G−ν−1(z|τ |0)

= 2e2πi[(−ν−1)+(1−κ)]z − 1
2

(2π)2−kik

×
{ ∞∑

l=0

e2πi(l+1−κ)z
∞∑
p=0

{−4π2[(−ν − 1) + (1− κ)]}p
p!Γ (p+ 2− k)

× [s2D1(s; l, 0, p)]
∣∣
s=0 · Z(p+ 1− k/2;−ν − 1, l, 2− k, v)

+
∞∑

l=1

e2πi(l+1−κ)ze−2πiτ
∞∑
p=0

{−4π2[(−ν − 1) + (1− κ)]}p
p!Γ (p+ 2− k)

× [s2D2(s; l, 1, p)]
∣∣
s=0 · Z(p+ 1− k/2;−ν − 1, l − 1, 2− k, v)

}
.

From a calculation we get

[s2D1(s; l, 0, p)]
∣∣
s=0 = 2(l + 1− κ)p+1−k

and

[s2D2(s; l, 1, p)]
∣∣
s=0 = 2e2πi(τ−z)(l − κ)p+1−k.

Plugging in these expressions and rearranging completes our derivation.
Note that the expansion is indeed independent of τ and thus we are jus-
tified in letting G−ν−1(z) = G−ν−1(z|τ |0).

Corollary 10. Let G−ν−1(z) be defined as before but assume that 0 <
k < 2/3. Then G−ν−1(z) is analytic in z and has the following Fourier
expansion:

G−ν−1(z) = 2e2πi[(−ν−1)+(1−κ)]z

+
∞∑

l=0

dl(−ν − 1, 2− k, v)e2πi(l+1−κ)z, z ∈ H,
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where

dl(−ν − 1, 2− k, v) = − 4πik
(

l + 1− κ
[(−ν − 1) + (1− κ)]

)(1−k)/2

×
∞∑
c=1

A(c;−ν − 1, l, 2− k, v)
c

× J1−k

(
4π
c

√
[(−ν − 1) + (1− κ)](l + 1− κ)

)
.

P r o o f. This is an instant consequence of Knopp’s result (Lemma 6(b))
and the previous theorem.

We conclude this section by observing that the space spanned by the
functions {G−ν−1}−∞ν=−1 is in fact the space of cusp forms C0(2 − k, v),
where 0 < k < 1. This follows from our knowledge that the above Fourier
expansions for G−ν−1 were already shown to represent cusp forms (see [4]
for forms of weight between 4/3 and 2 and [9] for the remainder of the weight
range). We shall not prove this anew.

6. Niebur modular integrals. Our work now culminates with a proof
of the Main Theorem, which was stated in Section 3. We first consider
part (a). From Lemma 1 we have

(8) [Hν(τ |s)− v(V )(γτ + δ)−k|γτ + δ|−sHν(V τ |s)]−

=
[2πi(ν + κ)]1−k

Γ (1− k)

i∞\
V −1(∞)

G−ν−1(z|τ |s)(z − τ)−k dz

for Re(s) > k. Now by Theorem 7(a), for fixed τ ∈ H the left-hand side
above is analytic in s for Re(s) ≥ 0. Next we use Theorem 9(a), which tells
us that for fixed z and τ in H, G−ν−1(z|τ |s) is analytic in s for Re(s) ≥ 0.
Also, for fixed τ and s we know that G−ν−1(z|τ |s) vanishes exponentially in
z as Im(z)→∞. These facts imply that the right-hand side of (8) is analytic
in s for Re(s) ≥ 0. Invoking the identity principle and setting s = 0 in (8)
establishes the modular relation for Hν . Combining this with Theorem 7(b)
and the ultimate paragraph of the previous section (which tells us that
G−ν−1 is a cusp form) finishes the proof of part (a).

The proof of part (b) relies on Petersson’s Riemann–Roch Theorem for
automorphic forms. It is the same as that given in the prequel to this paper
(see the proof of Theorem 17 in [9]) and we do not reproduce it here.

7. Modular forms. In the previous section we proved that Hν(τ) is
a Niebur modular integral. But is it a modular form? Clearly, it is one if
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and only if G∗−ν−1(z), the cusp form of complementary weight and con-
jugate multiplier system corresponding to it, is identically zero. Recalling
the paucity of nontrivial cusp forms on Γ (1) of small weight we have the
following

Theorem 11. Let the Niebur modular integral Hν(τ) = Hν(τ ; k, v) be
defined as before, with ν < 0 and 0 < k < 1. Also, let vη be the MS
associated with the Dedekind eta-function, defined by

η(τ) = eπiτ/12
∞∏

l=1

(1− e2πilτ ), τ ∈ H.

(a) If v ≡ v2k+4j
η , j ∈ {0, 1, 2, 3, 4}, then Hν(τ) is a modular form for

all ν.
(b) If v ≡ v2k+20

η , however , then Hν(τ) is a modular form if and only
if the (−ν − 1)th Fourier coefficient of η4−2k(τ) vanishes. In particular , we
know that H−1(τ) is not a modular form.

P r o o f. Part (a) is a consequence of the fact that C0(2− k, v) is either
0-dimensional or is spanned by just one function, η4−2k(τ). The latter hap-
pens for only one out of the six possible MS for Γ (1) in weight k, namely
v ≡ v4−2k

η . Now, if v ≡ v2k−4
η ≡ v2k+20

η , then Hν(τ) is a modular form if and
only if G−ν−1(z) ≡ 0. But this happens only when the (−ν − 1)th Fourier
coefficient of η4−2k(τ) equals zero. (This follows from consideration of the
Petersson inner product of G−ν−1 and η4−2k.) Since the 0th Fourier coef-
ficient of η4−2k(τ) is clearly nonzero, we see that H−1(τ) is not a modular
form.

Corollary 12. Let the Niebur modular integral Hν(τ ; k, v) be defined
as before. Then Hν(τ ; 1/2, v21

η ) is a modular form if and only if ν 6=
−m(m+ 1)/2− 1, m ∈ Z.

P r o o f. This is a consequence of part (b) of the previous theorem and
Jacobi’s famous triple product identity (see, for example, [1, pp. 21–22]),
which implies that the Fourier coefficients of e−πiτ/4η3(τ) are supported on
the triangular numbers: m(m+ 1)/2, m ∈ Z.
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