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To Professor Goro Shimura, with admiration and gratitude

Introduction. Let E/F be a totally real quadratic extension of a to-
tally real algebraic number field. To a suitably defined automorphic form h
defined with respect to a quaternion algebra BE over E, we can associate
a Hilbert modular form I(z, h) defined with respect to the field F . Such
a lifting has been explicitly considered in the author’s recent paper [D99],
via a convolution with a theta function, and the Fourier coefficients of the
theta lift have been computed in terms of certain periods of the original
form. The purpose of the current paper is to establish an explicit formula
relating the actions of the Hecke operators on the original automorphic form
and its theta lift. This result is analogous to theorems of Shimura in, for
example, [Sh82] and [Sh88], where he has shown commutativity properties
with respect to these Hecke operators. In addition to their inherent interest,
these commutativity results are necessary in obtaining algebraicity results
concerning Shimura’s period invariants as well as certain special L-values
which naturally arise. The reader can consult Shimura’s [Sh88] for further
motivation in this regard. See also [Y]. It is the author’s hope to discuss
applications in this direction in the near future.

Since it is essential for our purposes to consider everything explicitly, the
quantity of technical details is considerable. In the interest of space, and also
in order not to obscure essential ideas, a large amount of computation has
been suppressed. Instead we have endeavored to point out key ingredients
in the computations and to give precise references. It is then hoped that
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the abbreviated calculations can be filled out, when necessary, without too
much difficulty. Also, relevant facts from [D99] are briefly recalled in this
paper as the need occurs, so that this paper can be read independently of
[D99].

This paper is dedicated to the author’s former thesis advisor, Professor
Goro Shimura. Professor Shimura has on many occasions shared his insights
with the author in the most generous manner. Indeed, he proposed the
current project to the author in the first place, and even allowed him access
to some of his unpublished notes ([Sh]). Most fundamentally, the author is
grateful to him for his continuous interest in the author’s general well-being.
The author also thanks Professors A. W. Bluher, K. Kramer, B. Palka,
and H. Yoshida for their advice and help. Further, he is grateful for the
corrections and suggestions he received from the referee. Finally, the author
thanks his family for their steadfast support and unwavering confidence.

1. Automorphic forms on Hζ and on G′A. We begin by establishing
notation and recalling the definition of the automorphic forms for which a
theta lift has been constructed in [D99]. Since the details can be found there,
we give here only a very brief account; in the meantime we establish some
notation.

Let F be a totally real algebraic number field, and let E/F be a totally
real quadratic extension. Let BE be a quaternion algebra over E equipped
with an F -linear automorphism τ such that τ2 = idBE , but τ |E 6= idE .
The main involution of BE will be denoted by ∗. We consider the following
subsets of BE :

B = {x ∈ BE | xτ = x} and V = {x ∈ BE | xτ = −x∗}.
Then B is a quaternion algebra over F , and V is a vector space over F
of dimension 4. As usual, we define the norm and trace by the formulas
N(x) = xx∗ and Tr(x) = x + x∗. It is easy to check that, on the vector
space V , N is an F -valued quadratic form. Moreover, given any a ∈ BE , V
is stable under the mapping x 7→ aτxa∗, and we have the formula

N(aτxa∗) = N′(a)N(x), where N′(a) := NE/F (N(a)).

Our theory is essentially independent of the choice of the automorphism τ ,
as explained in Proposition 1.1 of [D99].

Denote the set of archimedean primes in F by a, and the set of finite
primes by h. The set of archimedean primes in E is written J(E). Let
δ denote the set of primes v ∈ a which are unramified in B, and δ′ =
a − δ the set of those ramified in B. The subsets of J(E) consisting of
extensions of primes in δ and δ′ are denoted by ζ and ζ ′, respectively. Using
these notations, we have R-linear isomorphisms Ba ∼= M2(R)δ × Hδ′ and
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(BE)a ∼= M2(R)ζ × Hζ′ . Here H denotes the ring of Hamilton quaternions,
and the subscript a indicates the infinite part of the adelized space under
consideration. The adelization itself will be denoted by the subscript A, and
its finite part will be given the subscript h. For each v ∈ a, we fix, once and
for all, an extension u ∈ J(E). The collection of these chosen u is written ι.
Further, we denote by η and η′, respectively, the subsets of ι corresponding
to δ and δ′. Throughout this paper, we shall assume ζ 6= ∅.

For every m ≥ 0, there is an R-rational irreducible polynomial represen-
tation σm : H× → GLm+1(C) of degreem, which is unique up to equivalence.
By fixing suitable isomorphisms for Ba and (BE)a, we may assume that σm
respects the Q-structure. If k ∈ Zι is a weight such that ku ≥ 1 for u ∈ η
and ku ≥ 2 for u ∈ η′, then we define a representation on (B×E )A by

(1) σ(α) =
⊗

u∈η′
σku−2(αu), ∀α ∈ (B×E )A.

The representation space for σ will be denoted by X . It may be identified
with

⊗
u∈η′ Cku−1.

To define the factor of automorphy in the definition of automorphic
forms, we need some more notation. Let

G′ = (BE)×, G′a+ = {x ∈ G′a | N(x)� 0},
G′A+ = {x ∈ G′A | xa ∈ G′a+}, G′1 = {x ∈ G′ | N(x) = 1}.

Thus the representation in (1) is σ : G′A → GL(X ). For α ∈ G′A and w ∈ Hζ ,
we put

αw = α(w) = (αuwu)u∈ζ =
(
auwu + bu
cuwu + du

)

u∈ζ
and

j(α,w) = (j(αu, wu))u∈ζ = (|det(αu)|−1/2(cuwu + du))u∈ζ ,

where au, bu, cu and du are the entries of αu in the standard order.
We now define End(X )-valued holomorphic automorphic forms of weight

k + τk on Hζ , where k ∈ Zι as above. Given a mapping f : Hζ → End(X ),
we define another mapping of the same kind, denoted by f‖k+τkα and some-
times simply f‖α, by the following formula:

(f‖k+τkα)(w) = j(α,w)−kη−τ(kη)σ(N(α)1/2α−1)f(αw)σ(N(α)−τ/2ατ ).

Let Γ be a congruence subgroup of G′1. The space of holomorphic automor-
phic forms of weight k + τk with respect to Γ is the set of all holomorphic
mappings f : Hζ → End(X ) such that f‖α = f for all α ∈ Γ , and also the
usual cusp condition in the case where BE = M2(E). This space is denoted
by Sk+τk(Γ ). The union of such spaces over all congruence subgroups is de-
noted by Sk+τk(BE). Denoting by dζHw the Haar measure on Hζ , we define



240 Z. L. Dou

an inner product of two C∞-mappings f and g of Hζ into End(X ), such
that f‖α = f and g‖α = g for all α ∈ Γ for some congruence subgroup Γ ,
by the formula

〈f, g〉 = vol(D)−1
\
D

Tr(tf(w)g(w))Im(w)kη+τ(kη)dζHw.

Here D := Γ\Hζ , and vol(D) :=
T
D
dζHw. This definition is independent of

the choice of Γ .
We now consider adelic automorphic forms defined on G′A. Let g and gE

denote the rings of integers in F and in E, respectively. Denote by dB the
product of all finite primes of F which are ramified in B, and by dEB the
product of all finite primes of E which are ramified in BE . It is not difficult
to check that, if v is a finite place of F which is inert in E, then the place in E
lying over v is unramified in BE . Thus a prime u of E divides dEB if and only
if it divides dB and splits over F . We note that there exists a maximal order o
in BE which contains a maximal order of B, such that we can find, for every
v ∈ h prime to dEB , an Ev-linear isomorphism µv : (BE)v → M2(Ev) with
the property µv(ov) = M2(gEv ). Moreover, if v - dB , then µv(xτ ) = µv(x)τ ,
where we understand that τ acts entry-wise on M2(Ev). A proof of this fact
can be found in [D98]. We shall from now on fix o and µv as above.

Let m be an integral ideal in E. We define an order of level m to be the
gE-lattice o1 ⊂ BE given by

(i) o1v = gEv + mov if v | dEB ;
(ii) o1v = µ−1

v ({x ∈ M2(Ev) | ax ∈ gEv , bx ∈ d−1gEv , cx ∈ dmv, dx ∈ gEv })
if v - dEB .

Here d denotes the different of F over Q. Given such an m, put

W ′m = G′a+

∏

v∈h

o×1v,

where G′a+ := {x ∈ G′a | N(x) � 0}. When m is understood, we sometimes
write W ′ to shorten notation. There exists a finite subset Q′ ⊂ G′h such that
we have a coset decomposition

(2) G′A =
⊔

q∈Q′
G′qW ′m.

Finally, let Φ be a Hecke character of E such that the conductor of Φ is
prime to dEB and is a divisor of m, and, in addition,

(3) Φa(x) = sgn(xa)k+τk|xa|2iκ,
where κ ∈ Ea = RJ(E), and ‖κ‖ = 0. Here ‖κ‖ denotes the sum of the
components of κ.
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The space of adelic automorphic forms Sk+τk(m, Φ;BE) is now defined
to be the set of all mappings g : G′A → End(X ) satisfying the following three
conditions:

(a) g(sx) = Φ(s)g(x), ∀s ∈ E×A , ∀x ∈ G′A.
(b) g(βxw) = Φm(dw)g(x), ∀β ∈ G′, ∀w ∈W ′, wa = 1, ∀x ∈ G′A.
(c) For every p ∈ G′h, there is an element gp of Sk+τk(BE) such that

g(py) = Φ(N(p))N(y)iκ(gp‖k+τky)(i), ∀y ∈ G′a+.

As usual, we have here i = (i, i, . . . , i) ∈ Hζ , Φm =
∏
u|m Φu, while dw ∈ E×h

is defined as follows. The v-component of dw is 1 for all v except when
v |N(m) and v is prime to dEB , in which case it is defined to be the d-entry
of µv(w). We sometimes also write d(w), etc., as in (4) below.

Let Φ and m be given as above, and choose a κ such that (3) holds. For
each p ∈ G′h, we put

∆′p = pW ′p−1 ∩ G′.
We then define a subspace of Sk+τk(BE), denoted by C(∆′p, Φm, κ), to be
the set of all elements of Sk+τk(BE) such that

(4) h‖k+τkγ = Φm(a(p−1γp))N(γ)iκh, ∀γ ∈ ∆′p.
With respect to the coset decomposition (2) we have an embedding

(5) Sk+τk(m, Φ,BE) ↪→
∏

q∈Q′
C(∆′q, Φm, κ).

For a given form g ∈ Sk+τk(m, Φ,BE), the embedding above is defined by
condition (c) above, with the p there replaced by the various q ∈ Q′. It is
straightforward to check that gq ∈ C(∆′q, Φm, κ) for every q ∈ Q′. We remark

that our definition of C(∆′p, Φm, κ) is analogous to Shimura’s Sk(Γ̃p, φ, λ) in

[Sh91]. Some further properties which parallel those of Sk(Γ̃p, φ, λ) can be
proved for C(∆′p, Φm, κ), but are omitted here.

Naturally, if f = (fq)q∈Q′ and g = (gq)q∈Q′ are in Sk+τk(m, Φ,BE), then
their inner product is defined by

〈f ,g〉 = ‖Q′‖−1
∑

q∈Q′
〈fq, gq〉.

Finally, it is also necessary to consider automorphic forms with respect
to a subgroup G of G′ defined by

G = {x ∈ G′ | N(x) ∈ F}.
The significance of this possibility is that the vector space V is stable under
the mapping x 7→ αxα−τ for every α ∈ G, as can be easily checked. Put

W = Wm = W ′m ∩ GA and G+ = G ∩ G′+.
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Then there is a finite set Q ⊂ Gh such that we have the following coset
decomposition:

(6) GA =
⊔

q∈Q
GqWm.

The rest of the development is left to the reader; some technically more
intricate results in this connection are explained in [D98].

2. Theta correspondence. In this section we generalize the theta lift
constructed in [D99] to adelic forms. We first recall the relevant facts from
that paper. Let v ∈ δ and let u be the extension of v in ι. Then we have

(7) (BE)v = (BE)u × (BE)τu = Bv ×Bv = M2(R)×M2(R).

Consequently, for x, y ∈ Bv we have (x, y)τ = (y, x). Thus we further identify

(8) Vv = {(x,−x∗) | x ∈ Bv} = Bv.

When v ∈ δ′, a similar consideration leads to the conclusion (BE)v = H×H.
Denote by S the F -valued symmetric form attached to 2N, i.e.,

S(x, y) = Tr(xy∗), ∀x, y ∈ V.
Then we readily see that Sv has signature (2, 2) if v ∈ δ, and signature (4, 0)
if v ∈ δ′. In view of our identifications, we see that for v ∈ δ we have

N(x) = det(x), S[x] = S(x, x) = 2det(x), S(x, y) = xy∗ + yx∗,

where the symbol ∗ above is now simply the canonical involution for M2(C).
The theta function is defined by following the standard construction

given in, for example, [Sh80]. In our setting its explicit construction is as
follows. Let ξ ∈ V and w ∈ Cζ . We define an element [ξ, w] of Cδ by putting

[ξ, w]v = [ξ, w]u = [ξu;wu, wτu] = (−1 wu ) ξu

(
wτu

1

)

for all v ∈ δ. We also define, for ξ, w as above and z ∈ Ha, an element of Ca

in the following manner. At each v ∈ a, put

R[ξ, z, w]v

=
{

N(ξu)zv if u|F = v ∈ δ′,
N(ξu)zv + iIm(zv)|[ξ, w]v|2(Im(wu)Im(wτu))−1 if u|F = v ∈ δ.

Then a positive definite form majorizing S is given by

Pv[ξ;w] = 2N(ξ) + Im(w1)−1Im(w2)−1|[ξ;w1, w2]|2,
∀v ∈ δ,∀ξ ∈ Vv, ∀w = (w1, w2) ∈ H ×H.

Let Pδ′ =
⊗

v∈δ′ Pv, where Pv is the space of Sv-harmonic homogeneous
polynomial functions on Vv of degree kv−2 for every v ∈ δ′. (We also consider
v as an element of η′.) Then, viewing V as embedded into

∏
v∈δ′ Vv, we can
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define a representation of (BE)a on Pδ′ which extends the representation σ
in (1). This representation will again be denoted by σ. Finally, denote by
L(V ) the Schwartz–Bruhat space of Vh, the finite part of VA. Alternatively,
we may describe L(V ) as the space of locally constant functions on V ,
identifying an element in the Schwartz–Bruhat space with its restriction
to V . Recall that a locally constant function C on V is characterized by
the existence of lattices L and M such that C vanishes off L and that
C(v +m) = C(v) for all m ∈M .

If C ∈ L(V ) and an element r ∈ F is chosen such that rv > 0 for v ∈ δ
and rv < 0 for v ∈ δ′, then we define an End(X )-valued function θ(z, w;C, r)
on Ha ×Hζ as follows:

θ(z, w;C, r) = Im(z)δIm(w)−kη−τ(kη)(9)

×
∑

ξ∈V
C(ξ)[ξ, w]kησ(ξ)eF (rR[ξ, z, w]).

Here ξ, z, w are as above, and the notation eF (x) means exp(2πi
∑
v∈a xv).

We shall later need explicit transformation formulas for θ(z, w;C, r).
The behavior of θ(z, w) under the action of G′+ on the variable w can be
determined by relatively straightforward computations. In particular, we
have

(10) θ(z, w;C, r)‖k+τkα = θ(z, w;Cα,N′(α)r), ∀α ∈ G′+,
where Cα(ξ) = N′(α)k/2−η

′
C(αξα∗τ ), and if α ∈ G′+ and N(α) ∈ F×, then

(11) θ(z, w;C, r)‖k+τkα = θ(z, w;Cα, r),

where Cα(ξ) := C(αξα−τ ). As for the action of SL2(F ) on the variable z
of our theta function, we can specialize a theorem of Shimura’s in [Sh93]
to our setting. We summarize the properties we shall use later as follows.
Write G = SL2(F ). Every γ ∈ GA gives rise to a C-linear automorphism of
L(V ), which we denote by (γ, C) 7→ γC, such that the following properties
hold:

(TFa) j(γ, z)−kθ(γz, w; γC, r) = θ(z, w;C, r), ∀γ ∈ G.
(TFb) (γδ)C = γ(δC), ∀γ, δ ∈ GA.
(TFc) For every C, there exists a congruence subgroup Γ of G, such that

γC = C, ∀γ ∈ Γ.
(TFd) If β ∈ Gh and cβ = 0, then

(βC)(x) = |aβ |2Aωh(aβ)eh(rN(x)aβbβ)C(xaβ),

where ω denotes the Hecke character of F corresponding to E,
and eh(y) := eA(yh).
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(TFe) For every p ∈ F, p� 0,

pk/2θ(pz, w;C, r) = θ(z, w; pδ+k/2C, pr).

Properties (TFa) through (TFd) correspond to items (0), (2), (4), and
(5) of Theorem 3.2 in [Sh93], while (TFe) follows from an easy calculation.
A more detailed discussion can be found in [D99].

Let h ∈ Sk+τk(BE). Because of (11), we may consider the inner product
of the theta function θ(z, w;C, r) with h, which we denote as I(z;C, r;h):

(12) I(z;C, r;h) = 〈θ(z, w;C, r), h(w)〉.
Take a congruence subgroup ∆ ⊂ G′1 such that h ‖ γ = h and C(γξγ−τ ) =
C(ξ) for all γ ∈ ∆, then we have

(13) I(z;C, r;h) = vol(D)−1
\
D

Tr(tθ(z, w;C, r)h(w))Im(w)kη+τ(kη)dζHw,

where D = ∆\Hζ . This integral is convergent. Indeed, in the non-cocompact
case GL2(E) = G′, θ(z, w;C, r) is slowly increasing at every cusp. When
C ∈ L(V ) and r ∈ F are understood, we sometimes write I(z, h) for the
sake of notational simplicity. As a function of z, this belongs to Sk(SL2(F )),
as shown in Theorem 2.4 of [D99]. The following formula is easy to verify:

(14) I(z;C, r;h)‖kγ = I(z; γ−1C, r;h), ∀γ ∈ G.
In order to develop the theta correspondence in the adelic setting, we

first need some technical preparation. Observe that the properties of µv :
(BE)v → M2(Ev) in Section 1 imply that

(15) µv(Vv) =
{(

a b
c −aτ

) ∣∣∣∣ b, c ∈ Fv, a ∈ Ev
}

if v - dB .

Let us take a Hecke character ψ1 of F such that the conductor of ψ1 is prime
to dB and such that

(16) ψ1a(x) = sgn(xa)k|xa|2iκ,
where κ ∈ Ra, and ‖κ‖ = 0. This choice is natural in view of Section 1. We
have used a lower case letter here since the two fields E and F have to be
considered simultaneously. We now consider a special type of C.

Proposition 2.1. There exists C ∈ L(V ) satisfying the following prop-
erties:

rN(ξ) ∈ g if C(ξ) 6= 0.(17)

C(sx) = ψ1(s)C(x), ∀s ∈
∏

v∈h

g×v .(18)

C(wxw∗τ ) = ψ1n(NE/F (aw))C(x), ∀w ∈W ′m.(19)
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Here n := m ∩ F , and m is an integral ideal in E, such that m is divisible
by the conductor of ψ1, and such that mτ = m.

P r o o f. We give an example of such a C. Our strategy is similar to that
of Shimura in Section 6 of [Sh88]. Take an integral ideal b in F such that
it is prime to dB and divisible by the conductor of ψ1. For every v ∈ h, let
εv ∈ BEv be an element such that εv = 1 if v | dB and µv(εv) = diag[1, ev] if
v - dB . Here ev is an element of Fv such that evgv = bdv. Given v ∈ h, we
define the v-component of C, Cv, as follows:

(a) Cv is the characteristic function of Vv ∩ εvovε−1
v if v - b.

(b) If v | b, then Cv(α) 6= 0 only if α ∈ εvovε−1
v and bbdv = gv, in which

case C(α) = ψ1v(bev), where b is the b-entry of µv(α). Define C by the
following formula:

C(x) =
∏

v∈h

Cv(xv), x ∈ Vh.

Then the properties (17)–(19) follow from direct, though rather long, com-
putations. We omit the details here to save space. Note that if r ∈ g, then
C satisfies the properties with any multiple m of bgE such that mτ = m.

Following Shimura, we shall call C a standard function of type (b, ψ1).
We insert here some more notation. Define G = SL2(F ), G̃ = GL2(F ).

For two fractional ideals x and y in F such that xy ⊂ g, write o[x, y] = {x ∈
M2(F ) | ax ∈ g, bx ∈ x, cx ∈ y, dx ∈ g}. We then put, for an integral ideal n,

D̃n = D̃[d−1, nd] = G̃a+

∏

v∈h

o[d−1, nd]×v .

Further, we put Dn = GA ∩ D̃n, Γ̃ = G̃ ∩ D̃n, Γ = G ∩Dn.
Let C ∈ L(V ) be a standard function of type (b, ψ1), and let p ∈ Gh. We

define another locally constant function C(p) ∈ L(V ) as follows:

(20) C(p)(x) = C(p−1xpτ ).

Proposition 2.2. The locally constant function C(p) satisfies (17), (18),
and

(21) C(p)(yxy∗τ ) = ψ1n(NE/F (a(p−1yp)))C(p)(x), ∀y ∈ pW ′mp−1.

Moreover , we have

(22) γC(p) = ωc(aγ)ψ1f(aγ)C(p), ∀γ ∈ Γ.
Here, ω is the Hecke character of F corresponding to E, c is the conductor
of ω, and f is the conductor of ψ1. Finally , n is a suitable multiple of
c ∩ f, which can be defined as n = f ∩ c ∩ t, with t defined to be tv = (4) if
v | 2g + dB + c, and tv = (dB)v otherwise.
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Indeed, all the assertions except for (22) follow from straightforward
computations. As for (22), we specialize Proposition 3b.2 of [Sh93] to our
setting. Let S in that paper be 2rN, and x there be 2g. Then one checks easily
that the conditions of that proposition are all satisfied, and the assertion
there translates into our (22).

For the rest of this section, let C,C(p),m, and n be fixed as in Proposi-
tions 2.1 and 2.2. Set

ψ = ψ1ω and Φ = ψ1 ◦NE/F .

Now an application of (TFa) yields

j(γ, z)−kθ(γz, w;C(p), r) = ωc(aγ)ψ1f(aγ)−1θ(z, w;C(p), r), ∀γ ∈ Γ.
Take γ = diag[b, b−1] with any b ∈ g×, we then obtain

θ(b2z, w;C(p), r) = |b|2iκ−kθ(γz, w;C(p), r).

Put
U+ = {a ∈ g× | a� 0},

and let U be a subgroup of U+ of finite index contained in {b2 | b ∈ g×}.
We define

Θ(z, w;C(p), r) = [U+ : U ]−1
∑

a∈U+/U

ak/2−iκθ(az, w;C(p), r).

This definition is independent of the choice of U . It is straightforward to
check that

(23) j(γ, z)−kΘ(γz, w;C(p), r)

= ψn(aγ)−1N(γ)−iκΘ(z, w;C(p), r), ∀γ ∈ Γ̃ .
Given an adelic automorphic form g ∈ Sk+τk(m, Φ;BE), let the index

set Q be defined as in (6). Then the theta lift is defined by the following
formula:

I(z;C, r; g) = ‖Q‖−1
∑

q∈Q
〈Θ(z, w;C(q), r), gq〉,

where gq is determined by g and q, as in condition (c) of the definition of
adelic forms. This is independent of the choice of representatives q in Q.

Theorem 2.3. As a function of w, Θ(z, w;C(p), r) belongs to
C(∆′p, Φm, κ), where κ is an element of RJ(E) such that |x|iκ = |NE/F (x)|iκ
for x ∈ E×a . As a function of z, I(z;C, r; g) belongs to Sk(Γ̃ , ψn, κ).

This follows from (23), (10), and (TFe). We leave the details of compu-
tation to the reader.

3. Hecke operators and theta correspondence. In this section we
consider the behavior of automorphic forms under the theta correspondence
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and the action of Hecke operators. The main theorem gives an explicit “com-
mutativity” property analogous to the ones in Shimura’s papers [Sh82], Sec-
tion 3, and [Sh88], Section 6. Starting from a form g ∈ Sk+τk(m, Φ,BE), we
need to consider the theta lift of its image under a Hecke operator (with
respect to E), and compare the result with the image under a correspond-
ing Hecke operator (with respect to F ) of the theta lift of g. Since it is our
purpose to investigate this situation explicitly, a certain amount of technical
calculation and “bookkeeping” is inevitable. To keep clear the outlines of
our ideas, we point out here that the following items will be considered in
order: certain special Hecke operators on GL2(F ); their action on the theta
lift of an automorphic form; Hecke operators on G′A; the theta lift of the
image of a form under such a Hecke operator. The last theorem combines
all these considerations to give the main result of this paper.

To consider the Hecke operators on GL2(F ), we specialize the discussion
in the first sections of [Sh91] to our situation. Following Shimura’s approach
there, we formulate everything in terms of SL2(F ) as much as possible. We
assume that the reader is familiar with Hilbert modular forms. Thus let
k ∈ Za be an integral weight, n be an integral ideal in F , and Ψ be a Hecke
character such that Ψa(x) = sgn(xa)k|xa|2iλ, where λ ∈ Ra with ‖λ‖ = 0.
Then we have the space of adelic automorphic forms Sk(n, Ψ). For p ∈ G̃A,
we define Γ̃p = G̃ ∩ pD̃np

−1. Let φ be a character coinciding with Ψ on
(g/n)×. There exists a finite set Q ⊂ G̃h such that G̃A =

⊔
q∈Q G̃qD̃c. Then

there is an embedding

Sk(n, Ψ) ↪→
∏

q∈Q
Sk(Γ̃q, φ, λ),

where for each q ∈ Q a form fq is defined by the equation

(24) f(qy) = Ψ(det(q)) det(y)iλ(fq‖ky)(i), ∀y ∈ G̃a+.

From now on we identify f and (fq)q∈Q.
Let Y be the subset of G̃A consisting of all elements y such that yv ∈

o[d−1, nd]v and a(yv) ∈ g×v for every v | n. Given y0 ∈ Y , we have a coset
decomposition D̃ny0D̃n =

⊔
w∈W D̃nw, where W is a finite subset of G̃h.

More precisely, it is a complete set of representatives of (D̃n∩G̃h)\(D̃ny0D̃n

∩ G̃h).
Let f = (fq)q∈Q. We define

(25) (f |D̃ny0D̃n)(x) =
∑

w∈W
φ(a−1

w )f(xw∗), ∀x ∈ G̃A.

Here w∗ is the main involution of w as usual. If we write f |D̃ny0D̃n =
(f ′q)q∈Q, then the f ′q are related to the fq as follows. Given q ∈ Q, there
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exists a unique p ∈ Q and an element α0 ∈ G̃ such that qy0 ∈ α0pD̃n. Then
we may write Γ̃qα0Γ̃p =

⊔
α∈A Γ̃qα for some finite set A, and

(26) f ′p =
∑

α∈A
φ(a(q−1αp))−1 det(α)−iλfq‖kα.

Given f ∈ Sk(Γ, φ, λ), we can define a function fA on GA by

(27) fA(αw) = φ(aw)−1(f‖kw)(i), ∀α ∈ G,∀w ∈ Dn.

The symbols Γ and Dn have been defined in Section 2. We then have

(28) fA(αxw) = φ(aw)−1j(w, i)−kfA(x), ∀α ∈ G, ∀x ∈ GA, ∀w ∈ Dn.

In fact, the mapping f 7→ fA is an injection of Sk(Γ, φ, λ) into the space of all
functions g on GA satisfying equation (28) with fA replaced by g. Suppose
that f ∈ Sk(c, Ψ). Consider the form f1 ∈ Sk(Γ̃ , φ, λ) as in (24). Then the
restriction of f to GA coincides with (f1)A as defined by (27): f |GA = (f1)A.

Let y ∈ GA ∩ F×A Y . Then we can find a finite subset W ⊂ Gh such that
we simultaneously have D̃nyD̃n =

⊔
w∈W D̃nw and DnyDn =

⊔
w∈W Dnw.

Furthermore, there exists an element α0 and a finite subset I of G such
that DnyDn = Dnα0Dn = Dnα0Γ =

⊔
ι∈I Dnι and Γα0Γ =

⊔
ι∈I Γι hold

simultaneously. Let g be a mapping on GA such that g satisfies (28) with
the symbol fA replaced by g. Then, given y ∈ GA ∩ F×A Y and W as above,
we define

(29) (g|DnyDn)(x) =
∑

w∈W
φ(aw)−1g(xw−1), ∀x ∈ GA.

Because of the simultaneous decompositions shown above, if g is the restric-
tion of some g ∈ Sk(c, Ψ) to GA, then our definition here is consistent with
(25).

Now let f ∈ Sk(Γ, φ, λ). Then, with the α0 and I given above, we define
another element f |Γα0Γ of Sk(Γ, φ, λ) by

(30) f |Γα0Γ =
∑

ι∈I
φ(aι)−1f‖kι.

Then it turns out that

(f |Γα0Γ )A = fA|DnyDn.

We shall from now on use the same symbol DnyDn to denote the double
coset operation on f as well as on fA. That is, we shall write f |DnyDn for
f |Γα0Γ .

Let us now apply the Hecke operators to I(z;C, r;h). To simplify nota-
tion let us write Dn as D. Note that if C ∈ L(V ) satisfies

(31) γC = φ(aγ)C

for all γ ∈ Γ , then I(z;C, r;h) ∈ Sk(Γ, φ).
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Proposition 3.1. Let y0 ∈ Gh ∩ Y and let f(z) = 〈θ(z, w;C, r), h(w)〉
with C satisfying (31). Let Dy0D =

⊔
uDu, where u runs through a finite

subset of Gh as usual. Then

fA|Dy0D = 〈θ(z, w;C ′, r), h(w)〉A,
where

C ′ =
∑
u

φ(a(un))u−1C.

Moreover , the assertion remains valid if we substitute θ there by Θ.

P r o o f. To prove the first assertion, we specialize a theorem of Shimura
to our situation. Let us define a function θA(x,C) on GA by

θA(αy,C) = j(y, i)
−k
θ(y(i), w;C, r),

for α ∈ G, y ∈ GA, and yC = C. Then we have fA(x) = 〈θA(x,C), h〉.
Proposition 3.6 of [Sh93] now gives the desired result. The second assertion
follows directly from the definition of Θ.

Proposition 3.2. Let y0 = diag[π−1, π] and p = πg with a prime
element π of Fv, where v ∈ h and v - n. Let C ′ be as in Proposition 3.1.
Then, for ξ ∈ V such that rN(ξ) ∈ g, we have

C ′(ξ) = ωv(π)C(πξ) + ωv(π)−1N(p)2C(π−1ξ)(32)

+
{

[N(p)− 1]C(ξ) if rN(ξ) ∈ p,
−C(ξ) if rN(ξ) 6∈ p.

Moreover , suppose that C(ξ) = 0 if rN(ξ) 6∈ g. Then C ′ has the same
property.

P r o o f. We begin with a remark on notation: here we have ω(π) =
ωv(π) = ωh(π). For the sake of notational consistency we will always write
ωv(π). For v - n, the following N(p)2 + N(p) elements form a complete set of
representatives for D\Dy0D:

αb =
(

1/π b/(πδ)
0 π

)
, ∀b ∈ gv/p

2
v,

βh =
(

1 h/(πδ)
0 1

)
, ∀h ∈ (gv/pv)×,

γ =
(
π 0
0 1/π

)
.

An explanation of this fact can be found, for example, in [Sh90]. Here δ is an
element of Fv such that δgv = dv. We now calculate C ′(ξ) by taking these
elements as the u in the formula in Proposition 3.1. Thus

C ′(ξ) =
∑

b

α−1
b C +

∑

h

β−1
h C + γ−1C.
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We can now compute the three summands separately by applying (TFd).
We record the final results here:

∑

b

α−1
b C =

∑

b

N(p)−2ωv(π)eh

(
rN(ξ) · −b

δ

)
· C(πx)

=
{
ωv(π)C(πx) if rN(ξ) ∈ gv,
0 if rN(ξ) 6∈ gv;

∑

h

β−1
h C = C(x)

∑

h

eh

(
rN(ξ) · −h

πδ

)

=
{
C(x)[N(p)− 1] if rN(ξ) ∈ pv,
−C(x) if rN(ξ) 6∈ pv;

and
γ−1C = N(p)2ωv(π)−1C(π−1x).

Collecting these facts we obtain (32).

Notice that condition (31) implies that our result is independent of the
choice of π.

Suppose ψ1 is a Hecke character of F such that ψ1 satisfies the condition
(16), and such that ψ1 = φ on

∏
v|n g×v . Take an element s of F×h such that

sg ⊂ g. Then we have the following natural consequence of Proposition 3.2:

Proposition 3.3. If v | n and rN(ξ) ∈ g, then

C ′(ξ) = (ψ1ω)v(π)C(πξ).

The last assertion of Proposition 3.2 is also valid here.

We now turn our attention to Hecke operators on the adelic automorphic
forms. The development essentially parallels what we have just seen. We
define a subset Y of G′A+ as follows:

Y =
{
y ∈ G′A+

∣∣∣∣ yv ∈ o1v (∀v ∈ h), yu ∈ o×1u (if u | dEB + m),

µv(yv) =
(
a ∗
∗ ∗

)
, where a ∈ (gEu )× (if u |m, u - dEB)

}
.

For y0 ∈ Y and g ∈ Sk+τk(m, Φ,BE), we have a coset decomposition

W ′y0W
′ =

⊔

y∈J
W ′y

for some finite set J . More precisely, J is a complete set of representatives
for the quotient space (W ′ ∩ G′h)\(W ′y0W

′ ∩ G′h). We define g|W ′y0W
′ by

(33) (g|W ′y0W
′)(x) =

∑

y∈J
Φm(ay)−1g(xy∗), ∀x ∈ G′A.
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If y0 ∈ Y and q ∈ Q′ are given, there exist an element α0 ∈ G′ and a unique
p ∈ Q′, such that qy0 ∈ α0pW

′. Then there is a coset decomposition

(34) ∆′qα0∆
′
p =

⊔

α∈A
∆′qα

for some finite set A.
If g = (gq)q∈Q′ ∈ Sk+τk(m, Φ,BE) and g|W ′y0W

′ = (g̃q)q∈Q′ , then it is
straightforward to check that

(35) g̃p =
∑

α∈A
Φm(a(q−1yp))−1N(α)−iκgq‖α.

Because of this fact, given (fq)q∈Q′ ∈
∏
q∈Q′ C(∆′q, Φm, κ), we may define

(fq)|W ′y0W
′ = (f̃q)q∈Q′ ,

where the f̃q are determined by (35), with g replaced by f .
Regarding automorphic forms defined with respect to G, we define oper-

ators WyW in an analogous manner. The details will mostly be left to the
reader, but we point out here the connection between the operators W ′yW ′

and WyW for y ∈ GA. Suppose, therefore, that we are given y ∈ GA. Con-
sider a coset decomposition

(36) WyW =
⊔
r

Wr,

where the r run through a finite subset of Gh. Also, given q ∈ Q, there is
(as usual) a unique p ∈ Q and some α0 ∈ G such that qy ∈ α0pW . Letting
∆q = ∆′q ∩ G, we can take a coset decomposition

(37) ∆qα0∆p =
⊔

α∈A
∆qα.

We then have

W ′yW ′ = W ′yW,

and more generally,

∆′qα0∆
′
p = ∆′qα0∆p =

⊔

α∈A
∆′qα.

The interested reader can find a proof in [D98]. In view of this fact, we have

(g|W ′y0W
′)(x) =

∑
r

Φm(ar)−1g(xr∗)

with the same r as those in the formula (36). Moreover, we see that (35) is
valid in this setting—that is, with respect to the A in (37)—as well.
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From now on, we shall again adopt the notation and conventions made
in the last part of Section 2. Recall that by definition

I(z;C, r; g) = ‖Q‖−1
∑

q∈Q
〈Θ(z, w;C(q), r), gq〉.

Also, for each q ∈ Q, we can find an element α0 ∈ G and a unique p ∈ Q such
that qy0 ∈ α0pW . Let ∆qα0∆p=

⊔
α∈A∆qα. Write Θq(w)=Θ(z, w;C(q), r)

and Tv = W ′my0W
′
m. We recall the following fact from [D98]. Let (fq)q∈Q ∈∏

q∈Q C(∆q, Φm, κ), and define (f̃q)q∈Q by (35) with g there replaced by f .
Let g = (gq)q∈Q ∈ Sk+τk(m, Φ,BE), and write g|Wy0W = (g̃q)q∈Q. Suppose
y0 ∈ Y and that N(y0)gE is prime to m. Then

Φ∗(N(y0)gE)〈f̃p, gp〉 = 〈fq, g̃q〉,
so long as the inner products are convergent. Applying this fact to our Θ
and g, we derive

I(z;C, r; g|Tv) = ψ(π)2‖Q‖−1
∑

p∈Q
〈Θ̃p, gp〉,

where Θ̃p =
∑
α∈A Φm(a(q−1αp))−1N(α)−iκΘq‖α. Define

(38) C̃(x) =
∑

y∈W\Wy0W

Φm(ay)−1ψ1(N(y))C(yxy−τ ).

We now use {(q−1αp)h | α ∈ A} as the y in C̃. Then we easily obtain

Proposition 3.4. With the C̃ in (38) we have

(39) I(z;C, r; g|Tv) = ψ(πv)2I(z; C̃, r; g).

We are now ready to present the main theorem of this paper.

Theorem 3.5. Let us write f(z) = I(z;C, r; g). Let Zv = Dnz0Dn, with
z0 := diag[π−1

v , πv], where πv is a prime element of Fv. Then for almost all
primes v, we have

(40) ψ(πv)−1I(z;C, r; g|Tv) = f |Zv + f + ω(πv)Nvf,

where Nv = N(πvg).

P r o o f. We begin by observing that we have (C ′)(q) = (C(q))′. Therefore,
by Propositions 3.1 and 3.2, we have

f |Zv = I(z;C ′, r; g)

with the C ′ there for v - n. Combining this with Proposition 3.4, we see that
(40) is reduced to the verification of the equation

(41) ψ(πv)−1C̃ = C ′ + C + ω(πv)NvC

for almost all v. Notice that I(z;C, r; g) is anti-C-linear in C.
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We can find a finite subset b of h such that

C(x) = C1(xb)
∏

v 6∈b

Cv(xv),

where Cv is the characteristic function of Vv∩εvovε−1
v with the εv as in part

(a) of the definition of the standard function, and where C1 is a function on∏
v∈b Vv. Then, for each v 6∈ b, we have

C(x) = Cv(xv)C∗v (x′v)

with a function C∗v on
∏
w 6=v Vw, where we have written the projection of x

to that product by x′.
The y in (38) can be chosen from Gv. With such y, let us denote by C̃v

the function on Vv given by the right-hand side of (38), but with C there
replaced by Cv. Similarly, we let C ′v be the function on Vv defined by the
formula (32) for C ′ in Proposition 3.2, but with C replaced by Cv.

With these notations in place, we find that the equation (41) is now
equivalent to

(42) ψ(πv)−1C̃v = C ′v + Cv + ω(πv)NvCv, ∀v 6∈ b.

Finally, we observe that to prove (42), we may assume that v - dBmn and
that r is a v-unit. Also, it is sufficient to consider the set {x ∈ Vv | N(x) ∈
gv}.

The rest is computation. In the main we can follow the framework of
Shimura’s proof of his Theorem 6.7 in [Sh88]. In order not to obscure ideas,
we shall outline the computations only in the following case:

(43) We assume that πx ∈ ov, x 6∈ o′v, and v splits in E.

For notational simplicity, we shall write πv simply as π from now on.
Take an element δ of gv so that δgv = dv. By Proposition 3.2, we have
C ′v(x) = ωv(π). To compute C̃v, we shall identify (BE)v with M2(Fv × Fv)
and identify Vv with the set

{( a b

c −aτ
) ∣∣ b, c ∈ Fv, a ∈ Ev

}
via (15). We define

the following symbols:

p = πgv, z =
(
π 0
0 1

)
,

and

wi =
(

1 i/π
0 π

)
, i ∈ R,

where R is a fixed set of representatives for gv/p. Then there are [N(v) + 1]2

elements of the form (wi, wj), (z, wj), (wi, z), and (z, z). We can take these
elements as the y in (38).

Note that an element x of Vv can be written as x = (u,−u∗), where
u =

(
a b/δ

cδ d

)
with a, b, c, and d in Fv.
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We now put

(44) Wij = wiuw
−1
j , Xi = wiuz

−1, Yi = zuw−1
i , Z = zuz−1.

Then we see that the [N(v)+1]2 elements yxy−τ are (U,U∗) with U in the set
of elements of (44). Finally we make two simple computational observations.
First of all, we have

(45) (a+ ci)(d− cj)− (ad− bc) = c(b− aj + di− cij);
and secondly, the b-entry of Wij is (b− aj + di− cij)/(πδ).

Let us now consider the various cases. If c 6∈ gv, then πc is a v-unit. Under
the condition (43), we see that there is a unique (i, j) such that a+ ci ∈ gv
and d− cj ∈ gv. By (45), then, we find that the Wij for this (i, j) is the only
element among those in (44) which is contained in o′v. Therefore, by (38),
we conclude that C̃(x) = ψ1v(π).

Next we consider the case c ∈ gv, but a 6∈ gv. This time the only possible
elements among those in (44) that are contained in o′v are the Yj . Now
b− aj ∈ gv for a unique j and we have

d− cj ≡ d− cb

a
≡ ad− cb

a
≡ 0 (mod p).

Therefore, we see that in fact only the Yj for this particular j belongs to o′v.
Therefore, again we have C̃(x) = ψ1v(π).

The case c ∈ gv and d 6∈ gv is similar to the case above. The conclusion
is that there exists a unique i such that Xi ∈ o′v.

Finally we consider the case where we have c ∈ gv, a ∈ gv, and d ∈ gv,
but b 6∈ gv. In this case, Z is the only element in (44) that belongs to o′v.
The details can be omitted.

This then verifies (42) in the case specified by (43). Therefore the theorem
is proved in that case. For the other cases, the computations have the same
flavor; a detailed explanation can therefore be spared.
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