A note on evaluations of some exponential sums

by

MARKO J. MOISIO (Vaasa)

1. Introduction. The recent article [1] gives explicit evaluations for exponential sums of the form

$$S(a, p^{\alpha} + 1) := \sum_{x \in \mathbb{F}_q} \chi(ax^{p^{\alpha} + 1})$$

where χ is a non-trivial additive character of the finite field \mathbb{F}_q , $q = p^e$ odd, and $a \in \mathbb{F}_q^*$. In my dissertation [5], in particular in [4], I considered more generally the sums S(a, N) for all factors N of $p^{\alpha} + 1$. The aim of the present note is to evaluate S(a, N) in a short way, following [4]. We note that our result is also valid for even q, and the technique used in our proof can also be used to evaluate certain sums of the form

$$\sum_{x \in \mathbb{F}_q} \chi(ax^{p^{\alpha}+1} + bx).$$

2. Evaluation of S(a, N)**.** Let \mathbb{F}_q denote the finite field with $q = p^e$ elements, χ_1 the canonical additive character of \mathbb{F}_q and α a non-negative integer. Let N be an arbitrary divisor of $p^{\alpha} + 1$. Our task is to evaluate the sums

$$S(a,N) := \sum_{x \in \mathbb{F}_q} \chi_1(ax^N)$$

for non-zero elements a of \mathbb{F}_q .

Let $d = \gcd(\alpha, e)$. Since $S(a, N) = S(a, \gcd(N, p^e - 1))$ and

$$gcd(p^{\alpha}+1, p^{e}-1) = \begin{cases} 1 & \text{if } e/d \text{ is odd and } p = 2, \\ 2 & \text{if } e/d \text{ is odd and } p > 2, \\ p^{d}+1 & \text{if } e/d \text{ is even}, \end{cases}$$

as proved in [1] and [3, p. 175], it is enough to consider sums S(a, n) for all divisors n of $p^d + 1$. The case e/d odd is easily established (see [1]).

2000 Mathematics Subject Classification: Primary 11T24.

[117]

To state our result we fix a primitive element of \mathbb{F}_q , say γ , and denote the multiplicative group of \mathbb{F}_q by \mathbb{F}_q^* .

THEOREM 1. Let e = 2sd and $n \mid p^d + 1$. Then

$$\sum_{x \in \mathbb{F}_q} \chi_1(ax^n) = \begin{cases} (-1)^s p^{sd} & \text{if } \operatorname{ind}_{\gamma} a \not\equiv k \pmod{n}, \\ (-1)^{s-1}(n-1)p^{sd} & \text{if } \operatorname{ind}_{\gamma} a \equiv k \pmod{n}, \end{cases}$$

where k = 0 if

(A) p = 2; or p > 2 and 2 | s; or p > 2, $2 \nmid s$ and $2 | (p^d + 1)/n$, and k = n/2 if

(B) p > 2, $2 \nmid s$ and $2 \nmid (p^d + 1)/n$.

In the special case $n = p^d + 1$, p odd, our Theorem 1 gives Theorem 2 of [1].

The proof of our theorem is based on the relation (see [2, p. 217])

(1)
$$\sum_{x \in \mathbb{F}_q^*} \chi_1(ax^n) = \sum_{\psi \in H} G(\overline{\psi})\psi(a)$$

where H is the subgroup of order n of the multiplicative character group of \mathbb{F}_q , and $G(\overline{\psi})$ is the Gauss sum

$$G(\overline{\psi}) = \sum_{x \in \mathbb{F}_q^*} \chi_1(x)\overline{\psi}(x).$$

Proof of Theorem 1. Let H' be the subgroup of order n of the multiplicative character group of $\mathbb{F}_{p^{2d}}$. The surjectivity of the norm mapping N from \mathbb{F}_q to $\mathbb{F}_{p^{2d}}$ implies $H = \{\psi \circ \mathbb{N} \mid \psi \in H'\}$. Now (1) and the Davenport-Hasse theorem (see [2, pp. 195–199]) imply

$$(2) \sum_{x \in \mathbb{F}_q^*} \chi_1(ax^n) = \sum_{\psi \in H'} G(\overline{\psi} \circ \mathbf{N})\psi(\mathbf{N}(a)) = (-1)^{s-1} \sum_{\psi \in H'} G'(\overline{\psi})^s \psi(\mathbf{N}(a)),$$

where $G'(\overline{\psi})$ is computed over $\mathbb{F}_{p^{2d}}$.

Let ψ_0 denote the trivial multiplicative character of $\mathbb{F}_{p^{2d}}$. Since $G'(\psi_0) = -1$, it follows from (2) that

$$\sum_{x \in \mathbb{F}_q} \chi_1(ax^n) = (-1)^{s-1} \sum_{\psi \in H'^*} G'(\overline{\psi})^s \psi(\mathcal{N}(a)),$$

where $H'^* := H' \setminus \{\psi_0\}.$

Let $\psi \in H'^*$. Since $\operatorname{ord}(\psi) | p^d + 1$, we observe that Stickelberger's theorem (see [2, p. 202]) is applicable.

Now, if p = 2 or 2 | s, then $G'(\overline{\psi})^s = p^{sd}$. To consider the remaining cases, we fix a generator of the multiplicative character group of $\mathbb{F}_{p^{2d}}$, say λ , and define $t = (p^{2d} - 1)/n$.

Now $\psi = \lambda^{tj}$ for some $j \in \{1, \ldots, n-1\}$. Since $\operatorname{ord}(\psi) = n/\operatorname{gcd}(n, j)$, we see that $(p^d + 1)/\operatorname{ord}(\psi)$ is even if $(p^d + 1)/n$ is even. Consequently, $G'(\overline{\psi})^s = p^{sd}$ if $(p^d + 1)/n$ is even.

Thus in Case A we have

$$\sum_{x \in \mathbb{F}_q} \chi_1(ax^n) = (-1)^{s-1} p^{sd} \sum_{j=1}^{n-1} \lambda^{tj}(\mathcal{N}(a))$$

In Case B, $(p^d + 1)/\operatorname{ord}(\psi)$ is even if and only if j is even. Thus

$$\sum_{x \in \mathbb{F}_q} \chi_1(ax^n) = (-1)^{s-1} p^{sd} \sum_{j=1}^{n-1} (-1)^j \lambda^{tj}(\mathcal{N}(a)).$$

Noting that $N(\gamma)$ is a primitive element of $\mathbb{F}_{p^{2d}}$, we easily obtain the result.

If $n = p^d + 1$ and s = 1, for example, we can prove by a more or less similar reasoning (see [5])

THEOREM 2. Let $a, b \in \mathbb{F}_q$, $b \neq 0$. Then

$$\sum_{x \in \mathbb{F}_q} \chi_1(ax^{p^d+1} + bx) = \begin{cases} 0 & \text{if } a + a^{p^d} = 0, \\ -p^d \chi_1'(-b^{p^d+1}(a + a^{p^d})^{-1}) & \text{if } a + a^{p^d} \neq 0, \end{cases}$$

where χ'_1 is the canonical additive character of the field \mathbb{F}_{p^d} .

Acknowledgements. The author is indebted to Professor Keijo Väänänen for his valuable comments on a preliminary version of this note.

References

- R. S. Coulter, Explicit evaluations of some Weil sums, Acta Arith. 83 (1998), 241-251.
- [2] R. Lidl and H. Niederreiter, *Finite Fields*, Encyclopedia Math. Appl. 20, Addison-Wesley, Reading, 1983 (now distributed by Cambridge Univ. Press).
- [3] R. J. McEliece, Finite Fields for Computer Scientists and Engineers, Kluwer, Dordrecht, 1987.
- M. J. Moisio, On relations between certain exponential sums and multiple Kloosterman sums and some applications to coding theory, preprint, 1997.
- [5] —, Exponential sums, Gauss sums and cyclic codes, Dissertation, Acta Univ. Oul. A 306, 1998.

Department of Mathematics and Statistics University of Vaasa Box 700, 65101 Vaasa, Finland E-mail: mamo@uwasa.fi

> Received on 11.8.1998 and in revised form on 30.12.1999

(3442)