Corrigendum to the paper
“The number of solutions of the Mordell equation”

by

DIMITRIOS POULAKIS (Thessaloniki)

In Lemma 2 we produce an algebraic integer ξ which satisfies some conditions. For our purpose ξ must not be a rational integer. As Professors T. Wooley and M. Bennett pointed out to me this is not obvious by our arguments. So there is a gap in the proof. In this note we give a short proof of Lemma 2 by another method, which yields a significantly better estimate, and we considerably improve the estimates of our Theorems 1 and 2. For any positive integer a we write $\log^* a$ for $\max\{1, \log a\}$ and $\omega(a)$ for the number of its prime divisors.

Lemma 2. Let D be a rational integer with $|D| > 1$. Denote by $P(D)$ the product of distinct prime divisors p of D with $p > 3$. If D has no prime divisors > 3 put $P(D) = 1$. Then the number of cubic fields (up to isomorphism) of discriminant D is at most $225P(D)^{1/2}\log^* P(D)$.

Proof. If D is a perfect square, then [1, Chapter 6, p. 333] implies that the number of cubic fields (up to isomorphism) of discriminant D is $\leq 2^{\omega(D) - 1}$. Suppose now that D is not a perfect square. Then $D = a(3^m b)^2$, where $a, b \in \mathbb{Z}$, b is not divisible by 3, a is square free and m a nonnegative integer. It follows from [4, Théorème 2.5] that the number of cubic fields (up to isomorphism) of discriminant D is $\leq 2^{\omega(b) - 1}h$, where h is the class number of the quadratic field $\mathbb{Q}(\sqrt{-3a})$. By [2, pp. 620–625] we can take $|D| \geq 23$. Furthermore, [3] implies that $h < 5d^{1/2}\log^* d$, where d is the discriminant of $\mathbb{Q}(\sqrt{-3a})$. Combining the above estimates yields the lemma.

Using the above version of Lemma 2, we obtain the following improved version for Theorem 2.

Theorem 2. Let S be a finite set of rational primes with $2, 3 \in S$.

2000 Mathematics Subject Classification: 11D25, 11G05.
Denote by \(P(S) \) the product of primes \(p \) in \(S \) with \(p > 3 \). If \(S = \{2, 3\} \), put \(P(S) = 1 \). Then the number of \(\mathbb{Q} \)-isomorphism classes of elliptic curves over \(\mathbb{Q} \), with good reduction outside of \(S \), is
\[
< 10^{11 \sharp S + 23} P(S)^{1/2} \log^* P(S).
\]

As a consequence of Theorem 2, we get the following improved version for Theorem 1.

Theorem 1. Let \(k \) be a nonzero rational integer. Denote by \(P(k) \) the product of the prime divisors \(p \) of \(k \) with \(p > 3 \). If \(k \) has no prime divisors \(> 3 \), put \(P(k) = 1 \). Then the number of solutions \((x, y) \in \mathbb{Z}^2 \) of the equation \(y^2 = x^3 + k \) is
\[
< 10^{11 \omega(k) + 45} P(k)^{1/2} \log^* P(k).
\]

References

Department of Mathematics
Aristotle University of Thessaloniki
54006 Thessaloniki, Greece
E-mail: poulakis@ccf.auth.gr

Received on 28.9.1999