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1. Introduction. In this paper, an algebraic extension of Q of finite
degree is called a number field . The class number of a number field F is
denoted by hF . A totally imaginary quadratic extension F of a totally real
number field is called a CM-field . The maximal totally real subfield of F is
denoted by F+. It is known that hF+ divides hF . The quotient h−F = hF /hF+

is called the relative class number of F . When two CM-fields k and K satisfy
k ⊂ K, we say k ⊂ K are (two) CM-fields.

Horie [12, Theorem 1] showed that h−k | 4h−K for an arbitrary pair of
imaginary abelian number fields k and K such that k ⊂ K. We generalize
this as follows:

Theorem 1. Let k ⊂ K be two CM-fields. Then

(1) h−k | 4h−K .
The coefficient 4 is best possible: h−k = 4 and h−K = 1 holds for k =

Q(
√−3 · 4 · 7) and K = Q(

√−3,
√−4,

√−7). We are not assuming K/k
to be normal in Theorem 1. Horie’s proof uses decomposition of relative
class numbers into generalized Bernoulli numbers via analytic class number
formula. Our proof, in contrast, is purely algebraic.

Theorem 3 of [12] determines a necessary and sufficient condition for
h−k - 2h

−
K under the assumption k and K are imaginary abelian 2-fields. In

particular, it is necessary that K contains the class field associated with
C2
k, where Ck denotes the class group of k. However, it is an open problem

whether h−k - 2h
−
K necessarily implies that the class field associated with C2

k is
contained in K in general. It is also open whether h−k -h

−
K necessarily implies

that K contains a quadratic extension of k. There are examples of pairs of
k and K with h−k -h

−
K such that K contains a ramified quadratic extension
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of k but no unramified quadratic extensions of k (cf. the first remark to
Corollary 28).

An obvious application of Theorem 1 is the following:

Corollary 2. Let k be an imaginary quadratic field contained in a
CM-field K whose relative class number is 1. Then

(2) hk = 1, 2 or 4.

In particular , the number of the prime divisors of the discriminant of k is
at most 3.

The second assertion is interesting in connection with class field towers.
An imaginary quadratic field with 6 or more prime divisors of discriminant
has an infinite 2-class field tower (cf. [20]). The 2-rank of the class group of
a field in such a class field tower is greater than 1. Therefore, the relative
class number of a CM-field in such a tower is even (cf. the second remark
to Lemma 26). Corollary 2 is stronger than such an application of infinite
class field tower. (It also states that the 2-class field tower of an arbitrary
imaginary quadratic field with four or more prime divisors of discriminant
never terminates in the class of CM-fields, i.e., it may terminate but the
maximal unramified 2-extension is not a CM-field (cf. [17, pp. 211–212]).

The first assertion of Corollary 2 and determination of all imaginary
quadratic fields of class number 1, 2 and 4 by Heegner [8], Baker [2, 3],
Stark [23, 24], Lehmer–Lehmer–Shanks [14], Montgomery–Weinberger [19],
Goldfeld [5], Gross–Zagier [6] and Arno [1] imply the following:

Theorem 3. Let N be a normal CM-field whose relative class number is
1 and dN its discriminant. A zero of the Dedekind zeta function ζN of N in
the interval [1 − 2/(3 + 2

√
2) log |dN |, 1[, if any , is a zero of the Dedekind

zeta function ζF of some real quadratic subfield F of N .

Remark. Theorem 3 asserts that a possible Siegel’s zero of a Dedekind
zeta function of a normal CM-field of relative class number one is benign.
For example, it suggests a possibility of improving Hoffstein’s bound [11] on
the degree of (normal) CM-fields of relative class number one.

We shall employ three basically different tools for proving Theorem 1:
a class number relation, a field theoretic tool, and a group theoretic tool.
The first tool is well known. However, Lemmermeyer’s presentation [15] is
particularly suitable for our purpose. The second and the third tools will be
developed for our purpose. In the development of the field theoretic tool,
understanding of CM-fields in terms of Galois theory will be required.

Therefore, we shall review the standard theory of Galois properties of
CM-fields in Section 2; quote Lemmermeyer’s class number relation and
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collect the necessary standard facts on indices related with CM-fields in
Section 3; develop a field theoretic tool for the study of relative class numbers
in Section 4; develop a group theoretic tool for the study of relative class
numbers in Section 5; investigate a certain intermediate field of CM-fields
in Section 6; and lastly prove the main results in Section 7.

It turns out that the field theoretic tool gives interesting results by itself.
Indeed, it reveals an interesting relation of unramifiedness and divisibility of
relative class numbers (cf. Propositions 22 and 23). Theorem 30 of Section 6,
which is the Key Lemma for our proof of Theorem 1, has more information
than Theorem 1. Hence, the object of Theorem 30 is studied in more detail.

The author expresses his gratitude to Professor K. Miyake for helpful
discussions.

2. CM-fields. In Section 4, we shall prove surprising statements (Propo-
sitions 22 and 23) via class field theory and the theory of CM-fields. The
theory of CM-fields will be used in a complicated situation: CM-fields will
often appear as subfields of non-CM-fields and often be non-normal; their
automorphism groups (instead of Galois groups) will be investigated. For
convenience of the readers who check the proofs of Section 4, we review here
the standard theory of CM-fields.

We follow [22, Lemma 3 (p. 66)] (cf. also [21, Lemma 18.2 (p. 122)] and
[7]). We adopt an alternative definition of a CM-field (Definition 5) which
is more convenient than the definition given at the beginning of this paper.
Equivalence of the two definitions is verified in Lemma 9. We give several
examples for indicating how the standard theory avoids troubles related to
the above mentioned situation.

Definition 4. Let F be a number field. Then an automorphism σ ∈
Aut(F/Q) is called a complex conjugation of F if στ = τσC for an imaginary
embedding τ of F and the complex conjugation σC of C.

A complex conjugation is necessarily an involution: Let σ be a complex
conjugation of F with respect to an imaginary embedding τ . Then σ2τ =
στσC = τσ2

C = τ . Hence, σ2 = 1 since τ is injective. It is obvious from the
definition that a complex conjugation is non-trivial.

Example A1. Let F = Q(
√
−3− 2

√
5). Here

√
−3− 2

√
5 stands for a

root α of X4+6X2−11, i.e., X in Q[X]/(X4+6X2−11). The field F has two
real embeddings and a pair of imaginary embeddings. There is no complex
conjugation with respect to either of the two real embeddings. On the other
hand, the automorphism induced by α 7→ −α is a complex conjugation with
respect to any of the two imaginary embeddings.
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Example A2. Let F = Q(
√

2 +
√−3). Here

√
2 +
√−3 stands for a

root α of X4−4X2 +7, i.e., X in Q[X]/(X4−4X2 +7), and
√−3 stands for

α2 − 2. If a complex conjugation of F exists, it must carry
√−3 to −√−3

and hence 2 +
√−3 to 2 −√−3. However, the former is a square in F but

the latter is not. Hence, no automorphism of F can carry
√−3 to −√−3.

The contradiction proves that F has no complex conjugation although it
is totally imaginary. This example also tells us that a complex conjugation
of a subfield does not necessarily extend to a complex conjugation of an
extension field.

A complex conjugation with respect to a given imaginary embedding,
if any, is unique since τ is injective. (Strictly speaking, we can talk of the
complex conjugation with respect to τ .) In particular, the relation στ = τσC
uniquely determines a complex conjugation σ with respect to an imaginary
embedding τ if the image of τ is closed under σC. This is the case when
F is normal and totally imaginary. However, a complex conjugation of a
normal totally imaginary number field depends, in general, on the imaginary
embedding.

Example A3. Let F = Q( 6
√−3). Then F is normal and totally imagi-

nary. Write α = 6
√−3. Then the automorphism % induced by α2 7→ α2 and

α3 7→ −α3 is a complex conjugation with respect to an imaginary embedding
which maps α2 to the real cube root of −3.

Conversely, let τ be an imaginary embedding of F such that % is a
complex conjugation with respect to τ . Then α2τ = α2%τ = α2τσC . Hence,
α2τ is real. Therefore, the equality (α2)3 = −3 implies that α2τ is necessarily
the real cube root of −3.

We saw that % is not a complex conjugation with respect to any imagi-
nary embedding which carries α2 to an imaginary cube root of −3.

The Galois property of Q( 6
√−3) is similar to that of the class field

Q(
√−23)[X]/(X3−X − 1) of Q(

√−23), which is more related to the topic
of this paper.

Definition 5. A totally imaginary number field is called a CM-field if a
complex conjugation with respect to each imaginary embedding makes sense
and is independent of the imaginary embedding.

We can speak of the complex conjugation of a CM-field F . (We can
say that the complex conjugation of F makes sense if and only if F is a
CM-field.) It will be verified later in Lemma 9 that Definition 5 coincides
with the ordinary definition of a CM-field quoted at the beginning of this
paper.

The complex conjugation of a CM-field has an important property:
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Lemma 6. The complex conjugation σ of a CM-field F commutes with
Aut(F/Q).

P r o o f. Let % be an arbitrary element of Aut(F/Q) and τ an arbitrary
imaginary embedding of F . Then σ is a complex conjugation with respect to
τ and %σ%−1 is a complex conjugation with respect to %τ . (Verify %σ%−1 %τ =
%στ = %τσC.) Independence of σ of the choice of an imaginary embedding
implies σ = %σ%−1.

A converse (in some sense) of Lemma 6 holds:

Lemma 7. A normal totally imaginary number field N is a CM-field if a
complex conjugation σ of N commutes with Gal(N/Q).

P r o o f. Assume that σ is a complex conjugation with respect to an
imaginary embedding τ of N . Then an arbitrary imaginary embedding of
N is written as %τ with some % ∈ Gal(N/Q). The commutation relation
σ%τ = %τσC follows from στ = τσC and the assumption that σ commutes
with Gal(N/Q).

Example A4. Normality in Lemma 7 is essential in a certain sense: Some
(non-normal) totally imaginary number field F is not a CM-field while it
has a complex conjugation which commutes with Aut(F/Q). An example is
F = Q[X]/(X6−X2 +1). Denote by

√−β the residue class of X. Then β is
a root of Y 3−Y −1. It is easily verified, by differentiation, that β has a real
embedding and a pair of imaginary embeddings. The image of the unique
real embedding of β is positive. Therefore,

√−β is totally imaginary, i.e., F
is totally imaginary. Since the discriminant of Y 3−Y −1 is −23, the normal
closure ofQ(β) isQ(β,

√−23). On the other hand, the normNQ(β)/Q(23β) =
233 is not a square in Q. Hence, 23β is not a square in F (= Q(

√−β )). Thus,
F does not contain the normal closure of Q(β). (Hence, F is non-normal.)
Since β is cubic, this implies that β is a unique root of Y 3 − Y − 1 that
is contained in F . Therefore, Aut(F/Q) consists of the identity and the
automorphism σ induced by

√−β 7→ −√−β. The non-trivial automorphism
σ is a complex conjugation with respect to an embedding of F in which β is
mapped to a real number. It obviously commutes with the group Aut(F/Q)
of order 2. However, σ is not a complex conjugation with respect to any
embedding of F in which β is mapped to a complex number. Therefore, F
is not a CM-field.

For convenience, we introduce the term CM-extension:

Definition 8. A totally imaginary quadratic extension of a totally real
number field is called a CM-extension.

Definition 5 of a CM-field coincides with the ordinary definition:
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Lemma 9. A number field F is a CM-field if and only if it is a CM-
extension of a totally real number field. Further , the maximal totally real
subfield F+ of a CM-field F is identified as the fixed field of the complex
conjugation of F .

P r o o f. We first assume F to be a CM-field. Let σ denote the complex
conjugation of F . Then the fixed field F0 of σ has a real image under an
arbitrary imaginary embedding τ of F . (To see this, verify ατ = αστ = ατσC

for an arbitrary element α of F0.) Since τ is arbitrary, this implies that F0 is
totally real. Conversely, an arbitrary totally real subfield of F is fixed by σ.
(Read the commutation relation of σ from right to left.) Therefore, F0 is
identical to the maximal totally real subfield F+ of F . Since σ is an involu-
tion, F/F0 is quadratic. Therefore, a CM-field is necessarily a CM-extension
of a totally real number field. The “only if” part of the first assertion and
the second assertion are proven.

Let F be a CM-extension of a totally real number field M , σ the non-
trivial conjugation of F/M and τ an arbitrary imaginary embedding of F .
Assume α generates F/M . We can assume ασ = −α by replacing α with
α− ασ if necessary. It is obvious that α2 is invariant under σ, i.e., α2 ∈M .
Moreover, (στ)|M = τ |M = (τσC)|M since σ is trivial on M . In particular,
α2στ = α2τ = α2τσC . Therefore, αστ = −ατ = ατσC . (Note that ατ 6= ατσC

since α is totally imaginary.) We get στ = τσC since both sides coincide on
M and on the generator α of F/M . Since τ is arbitrary, σ is the complex
conjugation of F . Thus, F is a CM-field.

Example A5. Let F = Q(
√
−9−√13). Write α =

√
−9−√13. Then

α 7→ −α induces the complex conjugation of F .

Lemma 10. The composition of two CM-fields is also a CM-field.

P r o o f. Let F1 and F2 be two CM-fields. Denote by σF1 and σF2 re-
spectively the complex conjugation of F1 and F2. Put F = F1F2 and let
L be the normal closure of F . Then F and L are totally imaginary. Let
τ0 be an imaginary embedding of L and σ a complex conjugation of L
with respect to τ0. (Normality of L guarantees the existence of σ.) We have
σ|Fiτ0 = τ0|FiσC = σFiτ0|Fi for i = 1, 2. Noting that τ0 is injective, we get
σ|Fi = σFi . Hence, σ|F induces the unique automorphism σF ∈ Aut(F/Q)
that induces σFi on Fi for i = 1, 2. (Note that σ|F preserves F1 and F2 so
that σ|F preserves F = F1F2.)

Let τ be an arbitrary imaginary embedding of L. Then the conclusion of
the previous paragraph implies σ|Fiτ = σFiτ |Fi = τ |FiσC for i = 1, 2. Since
F = F1F2, this implies σF τ |F = σ|F τ = τ |FσC. Since an arbitrary imaginary
embedding of F is obtained by restricting an imaginary embedding of L, this
identity and Definition 5 imply that F is a CM-field.
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Lemma 11. The normal closure of a CM-field is also a CM-field.

P r o o f. Let F be a CM-field. Then all conjugate fields of F are
CM-fields. By Lemma 10, the composition of all conjugate fields of F is
a CM-field.

A CM-field has a nice property with respect to subfields:

Lemma 12. A subfield of a CM-field is either a CM-field or a totally
real number field. In particular , an intermediate field of two CM-fields is a
CM-field.

Let k be a subfield of a CM-field K and assume k not to be totally real.
Let N be the normal closure of K. Then N is a CM-field by Lemma 11.
Let σ denote the complex conjugation of N . Since k is not totally real,
σ 6∈ Gal(N/k). Since σ commutes with Gal(N/Q) by Lemma 7, σ nor-
malizes Gal(N/k). Therefore, σ acts non-trivially on k, i.e., σ|k induces
σk ∈ Aut(k/Q) − {1}. The commutation relation σkτ = τσC for an arbi-
trary archimedean embedding τ of k follows from the corresponding relation
for σ. Since σk is non-trivial and τ is injective, the embeddings τσC = σkτ
and τ are different. Hence, an arbitrary archimedean embedding τ is nec-
essarily imaginary, i.e., k is totally imaginary. Now, the field k satisfies the
conditions of Definition 5 and hence is a CM-field.

Remark. Lemma 12 holds in the following sense: if k ⊂ K are two
CM-fields, the restriction to k of the complex conjugation K is the complex
conjugation of k.

Remark. Lemmata 11 and 12 imply the following equivalence: a number
field is a CM-field if and only if its normal closure is a CM-field.

3. Units and class groups. In this section, we collect basic defini-
tions and facts concerning indices related with CM-fields. We also quote a
property of a class group and Lemmermeyer’s class number relation.

We write respectively CF and C+
F for the (weak) class group and the strict

class group of a number field F . We call hF = #CF the (weak) class number
of F and h+

F = #C+
F the strict class number of F . We write respectively

EF and E+
F for the unit group and the totally positive unit group of F . We

denote by WF the group of roots of unity of F and by wF its order.
Let F be a CM-field. We write F+ for the maximal totally real subfield

of F ; h−F for the relative class number hF /hF+ ; and ιF for the natural map
from the group of ideals of F+ to F . The subscript F is omitted if it is
obvious. The order of the kernel of the homomorphism CF+ → CF induced
by ιF is denoted by κF . The Hasse unit index [EF : WFEF+ ] is denoted
by QF .
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Note that the plus sign in C+
F designates “strict sense” here while it des-

ignates “relation with the maximal totally real subfield” in many positions
of the literature.

Definition 13. A CM-field F is said to be of unit radical form if F =
F+(
√−η ) for some η ∈ E+

F+
. A CM-field F is said to be non-primary if

F = F+(
√−δ) for some δ ∈ F+ which generates a square ideal of F+;

it is said to be primary otherwise.

Lemma 14. Let F be a CM-field. Then κF QF | 2. When κF QF = 2,
the CM-field F is non-primary. When QF = 2, the CM-field F is of unit
radical form. Conversely , a non-primary CM-field F satisfies κF QF = 2
unless F = F+(

√−1). A CM-field F of unit radical form satisfies QF = 2
unless F = F+(

√−1). Moreover , F is non-primary if F/F+ is unramified
at the finite primes. On the other hand , F/F+ is unramified at all odd primes
if F is non-primary.

P r o o f. This is well known (cf. [16] or [27, Theorems 4.12 and 10.3]).

Lemma 15. Let M be a totally real number field and r the 2-rank of C+
M .

Then the number of non-primary CM-extensions F/M is 2r. Hence, the
number of CM-extensions F/M such that κF QF = 2 is either 2r − 1 or 2r.
Moreover , there is no CM-extension F/M such that κF QF = 2 if r = 0.

P r o o f. Let C1 be the group of strict ideal classes which are principal
in the weak sense and C2 the group of strict ideal classes whose squares
are principal in the strict sense. Set m = #(C2/C1) and let ideals di with
i ∈ {1, . . . ,m} be a complete system of representatives for C2/C1. Choose
a totally positive generator δi ∈ M of d2

i for each i = 1, . . . ,m. Let ηj with
j ∈ {1, . . . , n = #C1} be a complete system of representatives for E+

F /E
2
F .

Then each M(
√−δiηj ) with i = 1, . . . ,m and j = 1, . . . , n is a non-primary

CM-extension of M . Conversely, any non-primary CM-extension F of M is
of the above form. The first assertion is now obvious. By Lemma 14, we get
the second assertion. Assume r = 0 and let F be an arbitrary CM-extension
of M . Then κF = 1 follows from the first assertion of Lemma 14. The fact
QF = 1 is well known (cf. [16]).

Example B1. Let F+ = Q(
√

12) with F = F+(
√−4) or F+(

√−8).
Then QF = 2. The extension F/F+ is unramified at the finite primes in the
former case, and is ramified above (2) in the latter.

Example B2. Let F+ = Q(
√

40) with F = F+(
√−4) or F+(

√−8).
Then κF = 2. The extension F/F+ is ramified above (2).

Example B3. Let F+ = Q(
√

60) with F = F+(
√−3), F+(

√−4),
F+(
√−8) or F+(

√−24). Then QF = 2 and κF = 1 in the last case, and
QF = 1 and κF = 2 in the other cases. The extension F/F+ is unramified



CM-fields 327

at the finite primes in the former two cases, and ramified above (2) in the
latter two cases.

Example B4. Let F+ =Q(
√

5) with F =F+(
√−4). Then κF =QF =1.

The extension F/F+ is ramified above (2).

Lemma 16. Let k ⊂ K be two CM-fields. Then κkQkwk | κK QKwK and
Qkwk |QKwK . In particular , κk = κK and Qk = QK if [K : k] is odd.

P r o o f. This follows from a characterization of κF and QF of a CM-field
F that is used in the proofs for [27, Theorems 4.12 and 10.3] (cf. [10] for
subtle examples).

Lemma 17. Let F be a CM-field and t the number of finite primes of F+

ramified in F/F+. Assume that the 2-rank of C+
F+

is zero. Then the 2-rank
of CF is t− 1.

P r o o f. This is well known: it is summarized in Satz 15 of Takagi’s fun-
damental paper [26, p. 106] on class field theory; notation and terminology
defined in Satz 14 of p. 103 and the second footnote of p. 100 of the cited
paper. The proofs of Satz 14 and Satz 15 also prove the lemma.

For convenience of the reader, the following argument recovers the lemma
from the assertion of Satz 15.

An ideal class of a CM-field F is called ambiguous if the complex conju-
gation of F fixes it. Let AF be the group of ambiguous ideal classes of F .
Let Q̃F be the index of E2

F+
in NF/F+F

×∩EF+ . Satz 15 evaluates the order
of AF :

#AF =
Q̃F
QF

2t−1hF+ .

In the situation of the lemma, the quotient of indices is 1.
On the other hand, the group AF is isomorphic to the direct product of

ιCF+ and ker(2 : CF → CF ). Here, the group ιCF+ is isomorphic to CF+ since
hF+ is odd and κF divides 2 by Lemma 14. The formula of the previous
paragraph and the isomorphisms imply the lemma.

We quote Lemmermeyer’s class number relation from [15].

Lemma 18. Let L1 and L2 be two distinct CM-extensions of L+ and
M = L1L2. Then

(3) h−M =
[EM : EM+EL1EL2 ]

21+v h−L1
h−L2

where v = 1 if both L1 and L2 are of unit radical form, and v = 0 otherwise.

This relation agrees with the analytic class number formula (cf. [16]).
This presentation is more convenient for our purpose. It also enables us to
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algebraically prove everything but Theorem 3 since it has a purely algebraic
proof (cf. [15]).

4. Maximal CM-fields in class fields. Many facts concerning rela-
tive class numbers of CM-fields are found via field theoretic arguments on
subfields of class fields.

Let F be a number field. We denote by HF the Hilbert class field of F ,
i.e., the maximal unramified abelian extension of F . Assume F to be a
CM-field. We have h−F = [HF : FHF+ ] by class field theory.

Definition 19. Let F be a CM-field. Then H0
F denotes the maximal

CM-field in the Hilbert class field HF of F .

This definition makes sense since F is a CM-field and the class of
CM-fields is closed under composition by Lemma 10. The following two
properties of H0

F /F+ are essential.

Lemma 20. Let F be a CM-field. Then H0
F /F+ is abelian.

P r o o f. By definition,H0
F /F is abelian. Hence, Aut(H0

F /F+) contains an
abelian subgroup Gal(H0

F /F ). Let σ be the complex conjugation of H0
F . It

acts trivially on the maximal totally real subfield of H0
F . Hence, it fixes F+,

i.e., Aut(H0
F /F+) contains σ. By Lemma 6, σ commutes with Aut(H0

F /F+).
Hence, the group G generated by σ and Gal(H0

F /F ) is abelian.
Since σ acts non-trivially on F , the order of G is larger than Gal(H0

F /F ).
Hence, the fixed field of G is a proper subfield of F . Since G fixes F+ and
F/F+ is quadratic, the fixed field of G coincides with F+. Therefore, H0

F /F+

is normal and Gal(H0
F /F+) = G. Since G is abelian, the assertion follows.

Lemma 21. Let k ⊂ K be two CM-fields. Then [Hk : H0
k] |h−K .

P r o o f. Let H = KHK+ ∩ Hk. Then [Hk : H] = [KHK+Hk : KHK+ ]
since Hk/k is normal. Since KHK+⊂KHK+Hk⊂HK , [KHK+Hk : KHK+ ]
divides h−K = [HK : KHK+ ]. On the other hand, H is an intermediate field
between the CM-fields k and KHK+ . Hence, H is a CM-field by Lemma 12.
Since it is a subfield of Hk, it follows that H ⊂ H0

k. Therefore, [Hk : H0
k]

divides [Hk : H]. The lemma follows immediately from the identity and the
two divisibility relations.

Lemma 21 is a nice tool for the study of relations between relative class
numbers. An application is the following:

Proposition 22. Let k ⊂ K be two CM-fields and assume k/k+ is
unramified at the finite primes. Then h−k |h−K .

P r o o f. Let H = H0
k. Then H/k+ is abelian by Lemma 20 and so is

H+/k+. Since k/k+ is unramified at the finite primes, so is H/k+. Hence,
H+/k+ is an unramified abelian extension, i.e., H+ ⊂ Hk+ . The converse
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Hk+ ⊂ H+ is obvious. Therefore, we get the identity H+ = Hk+ . Since
k ⊂ H, we have kH+ ⊂ H. Comparison of degrees over H+ implies the
identity kH+ = H. These two identities and the choice of H imply kHk+ =
H0
k. Hence, h−k = [Hk : H0

k]. Now, Lemma 21 implies the desired assertion.

Although Proposition 22 is not used in our proof for Theorem 1, it is
interesting in its own right since it illustrates that something stronger than
Theorem 1 can be said in an interesting situation.

The method for proving Lemma 21 also gives the following:

Proposition 23. Let k ⊂ K be two CM-fields and assume K+/k+ is
unramified. Then h−k |h−K .

P r o o f. Let H = KHK+ ∩ Hk. Then H ⊂ H0
k by Lemma 12. Hence,

H+/k+ is abelian by Lemma 20. On the other hand, H+ ⊂ (KHK+)+ =
HK+ by the choice of H. Since K+/k+ is unramified, this implies that
H+/k+ is unramified. Therefore, H+ ⊂ Hk+ and hence H ⊂ kHk+ . The
reverse inclusion is obvious from the choice of H and hence the identity
H = kHk+ follows. Further, the choice of H and normality of Hk/H im-
ply [Hk : H] = [KHK+Hk : KHK+ ] | [HK : KHK+ ]. The desired assertion
follows from the identity and the divisibility relation.

Example C1. Let k = Q(
√−31,

√−8 · 5) and K = k(
√

5). Then k/k+

is unramified at the finite primes and K+/k+ is unramified. We have h−k =
6 |h−K = 6.

Example C2. Let k = Q(
√−31,

√−8 · 5) and K = k(
√

8). Then k/k+

is unramified at the finite primes and K+/k+ is ramified at the finite prime
above (2). We have h−k = 6 |h−K = 24.

Example C3. Let k = Q(
√−3,

√
8 · 5) and K = k(

√
8). Then k/k+ is

ramified above the two finite primes above (3) and K+/k+ is unramified.
We have h−k = 2 |h−K = 2.

However, neither unramifiedness of K/K+ at the finite primes nor un-
ramifiedness of K/k implies h−k |h−K :

Example C4. Let k = Q(
√−3 · 5,√−7 · 5) and K = k(

√
5). Then

K/K+ is unramified at the finite primes and K/k is unramified. However,
h−k = 2 -h−K = 1.

Lemma 24. Let k ⊂ K be two CM-fields, and r1 the 2-rank of
ker(N : Ck → Ck+). Then h−k | 2r1h−K .

P r o o f. Let σ be the complex conjugation of k. By class field the-
ory, Gal(H0

k/kHk+) is isomorphic as a σ-module to some quotient C1/C0

with some subgroup C0 of the specified kernel which is denoted by C1.
By Lemma 6, the action of σ on Gal(H0

k/k) is trivial and so is its action on
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C1/C0 by class field theory. By definition of C1, σ acts as inversion on C1/C0.
For these two descriptions of σ to agree, we must have C1/C0 ' (Z/2Z)r

′

with some integer 0 ≤ r′ ≤ r1. Hence, we get [Hk : H0
k] = h−k /2

r′ . By
Lemma 21, we now see that h−k /2

r′ divides h−K . The desired assertion fol-
lows immediately.

Lemma 25. Let k ⊂ K be two CM-fields and assume h−K = 1. Then the
complex conjugation of k fixes Ck.

P r o o f. By Lemma 21, we get Hk = H0
k. Hence, by Lemma 6, the action

of the complex conjugation σ of k on Gal(Hk/k) is trivial. So is the action
of σ on Ck by class field theory.

Remark. We say a class group CF of a CM-field F is ambiguous if
the complex conjugation of F fixes CF . Ambiguity of a class group is not
inherited by subfields. Let k = Q(

√−7 · 8) and K = Q(
√−7,

√
8). Then

Ck ' Z/4Z and CK ' Z/2Z. Since the complex conjugation inverts Ck,
the class group Ck (' Z/4Z) is not ambiguous. On the other hand, CK is
ambiguous since the automorphism group of CK (' Z/2Z) is 1.

5. Quotients of class groups. Although many facts are proven via
field theoretic arguments, several important facts concerning relative class
numbers of CM-fields are proven via group theoretic arguments on class
groups. The most natural object related to relative class numbers is the
kernel of the norm map of class groups. Surprisingly, however, quotients of
ideal groups by liftings of ideals from subfields turn out very useful for our
purpose. Hence, we devote a separate section to the discussion of quotients
of the form CF /ιCF+ .

It is obvious that

(4) h−F = #(CF /ιCF+)/ κF .

Lemma 26. Let F be a CM-field and r be the 2-rank of C+
F+

. Put uF = 2
if F/F+ is unramified at the finite primes, and uF = 1 otherwise. Then
2r/uF κF |h−F .

Remark. This is a partial refinement of [4, Theorem 2] and [27, Propo-
sition 10.12]. The latter is recovered as follows: When uF = 2, the 2-rank
r′ of CF is less than r. (Note that 2r

′
[resp. 2r] is the degree (over F+) of

the maximal elementary abelian 2-extension of F+ that is unramified [resp.
unramified at the finite primes].) Hence, the lemma implies 2r

′
/κF |h−F .

P r o o f (of Lemma 26). The norm from ideals of F to ideals of F+ in-
duces a homomorphism N : CF → C+

F+
. (Note that all norms of numbers of

F are totally positive.) Obviously, N(ιC+
F+

) = (C+
F+

)2. On the other hand,
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the index of the image of N in C+
F+

is uF , i.e., #(N(CF )/(C+
F+

)2) = 2r/uF .
Therefore, 2r/uF divides #(CF /ιCF+). Now, (4) implies the desired asser-
tion.

Remark. Let F be a CM-field of odd relative class number. It is known
that the 2-rank of CF is at most 1 (cf. [13, Theorem 1]). This assertion
is confirmed by Lemma 26: Observe that Lemma 26 or a weaker version
[27, Proposition 10.12] implies that the 2-rank of CF+ is at most 1. Since the
2-parts of CF+ and CF are isomorphic when h−F is odd, we conclude that the
2-rank of CF is at most 1.

Example D1. In the first case of Example B1, we have r = 1, uF = 2,
κF = 1 and h−F = 1. In the latter case, r = 1, uF = κF = 1 and h−F = 2.

Example D2. In both cases of Example B2, we have r = 1, uF = 1,
κF = 2 and h−F = 1.

Example D3. In the former two cases of Example B3, we have r = 2,
uF = κF = 2 and h−F = 1. We have r = 2, uF = 1, κF = 2 and h−F = 2 in
the third case, and r = 2, uF = 1 = κF = 1 and h−F = 4 in the last case.
Note that the 2-rank of CF and that of E+

F /E
2
F equal 1.

Example D4. In Example B4, we have r = 0, uF = κF = 1 and h−F = 1.

Proposition 27. Let k ⊂ K be two CM-fields. Then the exponent of
coker(N : CK/ιCK+ → Ck/ιCk+) divides 2.

P r o o f. Let C = Im(N : CK → Ck)ιCk+ . Then, by class field theory,
the class field H associated with C is contained in K. Let σ be the com-
plex conjugation of K. Then σ preserves CK and hence it preserves Im(N :
CK → Ck). It obviously preserves ιCk+ . Therefore, it preserves C. Noting
also that σ acts on a field K which contains H, we get an isomorphism
Gal(H/k) ' Ck/C of σ-modules by class field theory.

By Lemma 12, an intermediate field H of K/k is a CM-field. By Lem-
ma 6, the action of σ on Gal(H/k) is trivial and so is the action of σ on
Ck/C. On the other hand, σ acts as inversion on Ck/ιCk+ and hence on Ck/C.
Since the two descriptions of the action of σ on Ck/C agree, the exponent
of Ck/C divides 2. This quotient is the cokernel in question.

Corollary 28. Let k ⊂ K be two CM-fields. Assume that K contains
at most one quadratic extension of k. Then h−k | 4h−K . Assume further that
κK | κk. Then h−k | 2h−K .

P r o o f. Let r be the 2-rank of the cokernel in Proposition 27. Then
#(Ck/ιCk+)/2r divides #(CK/ιCK+) by (4), i.e., h−k divides 2rh−K κK / κk.
The assumption of the lemma implies r ≤ 1 by class field theory. The desired
assertions follow immediately from Lemma 14.
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Remark. There are examples of h−k -h
−
K with N : CK → Ck being

surjective: K = Q(
√−8,

√
40) and k = Q(

√−20) (where K is an F of
Example B2/D2); or K = Q(

√−3,
√

60) and k = Q(
√−20) (where K is

an F of Example B3/D3). On the other hand, there is an example such
that h−k -h

−
K with N : CK → Ck not being surjective: K = Q(

√−4,
√

5) and
k = Q(

√−20) (where K is an F of Example B4/D4).

Remark. Although calculation of κK is difficult in general, Corollary 28
sometimes gives a sharper estimate than Lemma 21.

Example E1. Let p0 ≡ 3 (mod 4) and p1 ≡ . . . ≡ pr ≡ 1 (mod 4)
(r ≥ 3) be distinct prime numbers. Set k = Q(

√−p0p1 . . . pr ) and K =
Q(
√−p0,

√
p1p2 . . . pr ). Then Corollary 28 yields that h−k | 4h−K while Lem-

ma 21 only gives h−k | 2rh−K .

Example E2. Let k = Q(
√−11 · 13 · 29) and K = k[X]/(X4−388X2−

3016X − 6096). Then K+ = Q[X]/(X4 − 388X2 − 3016X − 6096) under
the obvious inclusion. Calculation with Pari-GP gives the class numbers
hk = 22·3, hK = 25·3·13 and hK+ = 22. Hence, h−K/h

−
k = (23·3·13)/(22·3) =

2 · 13 ∈ Z. Calculation with Pari-GP also gives the discriminants dK+ =
72 ·132 ·292 and dK = 74 ·114 ·134 ·294. From these values of the discriminants,
we see K+(

√
13,
√

29)/K+ is unramified. Hence, Lemma 21 only explains
3 = h−k /4 |h−K . However, Proposition 27 explains h−k |h−K as follows: Since
an odd prime is ramified in K/K+, Lemma 14 implies that K is primary.
It further implies κK = 1. On the other hand, K+ is a primitive quartic
field whose normal closure has Galois group isomorphic to the alternating
group of degree 4. Hence, K+ does not contain a quadratic extension of Q.
Thus, K does not contain a quadratic extension of k. Therefore, the second
assertion of Corollary 28 implies 12 = h−k |h−K .

We also get the following:

Corollary 29. Let k ⊂ K be two CM-fields. Assume that [K : k] is
odd. Then h−k |h−K .

P r o o f. This is a slight generalization of Proposition 4 of [12]. Here we
give a completely different proof, which is independent of normality of K/k.

Since [K : k] is odd, N : CK/ιCK+ → Ck/ιCk+ is surjective by Proposi-
tion 27 and class field theory. On the other hand, κk = κK by Lemma 16.
Thus, we get the assertion by (4).

6. An intermediate field. To prove Theorem 1, we shall look at a
maximal intermediate field L of K/k such that h−k |h−L . Such an intermediate
field contains the essential information for our purpose. We describe it in
the following:
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Theorem 30. Let k ⊂ K be two CM-fields and L a maximal intermedi-
ate field of K/k (with respect to the partial order “⊂”) such that h−k |h−L .
Assume that K contains at least two distinct quadratic extensions of L.
Then L satisfies the following conditions:

(i) The strict class number h+
L+

is odd.
(ii) The number of finite primes ramified in L/L+ is 3.

(iii) The 2-rank of CL is 2.

The field K contains three distinct CM-extensions L1, L2 and L3 of L+

other than L. Each of them satisfies the following conditions:

(iv) Each extension Li/L+ is ramified at a unique finite prime.
(v) Each relative class number h−Li is odd.

The CM-extensions, in combination, satisfy the following conditions:

(vi) The extensions L1/L+, L2/L+ and L3/L+ are ramified at distinct
finite primes.

(vii) L ⊂ L1L2L3.
(viii) Im(N : CLL1L2L3 → CL) = C2

L.
(ix) The CM-extensions L, L1, L2 and L3 of L+ are all the CM-exten-

sions of L+ that are contained in K.

P r o o f. Assume that K contains at least two distinct quadratic exten-
sions of L. Then it contains a bicyclic biquadratic extension of L. Hence, K
contains at least three quadratic extensions of L.

Let M be a quadratic extension of L in K. Then M is also a CM-field
by Lemma 12. Hence, M+ makes sense and it contains L+ (cf. Lemma 9).
Since M/L+ is quartic and M/M+ is quadratic, the extension M+/L+ is
quadratic. Hence, M = M+L is bicyclic biquadratic over L+. Let M−/L+

be the other quadratic extension in M/L. Then M = M−M+ and hence
M− is totally imaginary. By Lemma 9, M− is a CM-field. We also have
M = M−L. It is clear that the correspondence M ↔M− is one-to-one.

Hence, K contains three or more distinct CM-extensions of L+ other
than L. Let L1, L2, L3, . . . , Lm be the list of such CM-extensions. (Of course,
we have m ≥ 3.) Without loss of generality, we assume that L1, L2, L3 lie
in a bicyclic biquadratic extension of L:

Choice. L ⊂ L1L2L3.

We shall prove several claims in order to show the theorem.

Claim 1. We have 4 -h−Li for each i = 1, . . . ,m in general and 2 -h−Li
for each i = 1, . . . ,m if L is not of unit radical form. Moreover , we have
2 -h−Li for each i ∈ {1, . . . ,m} such that Li is not of unit radical form.
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Suppose one of the conditions fails to hold. Then h−L would divide h−LLi
by Lemma 18. This contradicts the maximality of L.

Claim 2. Two of Li/L+’s, say L2 and L3, are ramified at some finite
prime.

Suppose, on the contrary, that two of the Li’s, say L1 and L2, are unram-
ified extensions of L+ at the finite primes. Set M = L1L2. Then M+/L+

would be an unramified quadratic extension. Hence, h−L must divide h−M
by Proposition 23. This contradicts the maximality of L since K contains
M = L1L2.

Claim 3. The 2-rank of C+
L+

is at most 1.

Suppose that the 2-rank were greater than 1. One of L2 or L3, say L3,
of Claim 2 differs from L+(

√−1). By Claim 2, L3/L+ is ramified at some
finite prime. If L3 were of unit radical form, we would have QL3 = 2 and
hence κL3 = 1 by Lemma 14. Then Lemma 26 would imply 4 |h−L3

. This
contradicts Claim 1. If L3 is not of unit radical form, Lemma 26 would
imply 2 |h−L3

. However, this also contradicts Claim 1.

Claim 4. The strict class number h+
L+

is odd.

Suppose it were even. By Lemma 15 and Claim 3, there would be at
most two non-primary CM-extensions of L+. Hence, one of the Li’s, say L3,
would be primary. By Lemma 14, κL3 = 1 would hold and L3/L+ would be
ramified at some finite prime. These and Lemma 26 would imply that h−L3

should be even. Since L3 is primary, it cannot be of unit radical form. We
got a contradiction to Claim 1.

Claim 5. Each of h−L1
, . . . , h−Lm is odd.

Since h+
L+

is odd, L(
√−1) is the only CM-extension of L+ of unit radical

form by Lemma 15. Hence, either L is not of unit radical form or none of
h−L1

, . . . , h−Lm is of unit radical form. Now Claim 1 implies the desired claim.

Claim 6. Each of L1/L+, . . . , Lm/L+ is ramified at exactly one finite
prime.

Claim 4 implies that each of L1/L+, . . . , Lm/L+ is ramified at some finite
prime. Uniqueness follows from Lemma 17, Claims 4 and 5.

Claim 7. The CM-extensions L1/L+, . . . , Lm/L+ are ramified at distinct
finite primes.

Let χi be the character associated with Li/L+. Denote by f(φ) the con-
ductor of an ideal character φ of L+. (The conductor is understood to be
an ideal, i.e., the “divisor” at infinity is neglected.) For each i = 1, . . . ,m,
set pi to be the finite prime dividing f(χi). (By Claim 6, pi is well defined.)
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Let i and j be an arbitrary pair of indices such that 1 ≤ i < j ≤ m.
Suppose pi = pj .

Choose l with Ll ⊂ LLiLj and l 6= i, j. We have either pi = pl or pi 6= pl.
In the former case, L/L+ would be ramified at a unique finite prime. Hence,
Lemma 17 and Claim 4 would imply that h−L should be odd. Thus, Lemma 24
would imply h−L |h−LLi , which contradicts the choice of L in the theorem.

In the latter case, a contradiction is obtained as follows: Let M = LLi.
(Then M+ = (LjLl)+ should hold.) The extension M/L would be ramified
at pi since M+/L+ and Li/L+ were ramified at pi. Therefore, M/L must
be disjoint from H/L, where H is the 2-class field of L. Hence, we would
get [HM : M ] = [H : L].

On the other hand, M+ is associated with χjχl. Hence, Claim 4 and
genus theory imply that hM+ is odd. (A more precise description of M+ is
as follows: M/M+ is the only quadratic extension of M+ that is unramified
at the finite primes.)

Since the 2-class field of M contains HM , the conclusions of the previous
two paragraphs would imply that [H : L] should divide h−M . Here, the order
of 2 in [H : L] equals the order of 2 in h−L by Claim 4. Hence, the order
of 2 in h−L must be less than or equal to that of h−M . Now, Lemma 18
(or Lemma 24) would imply h−L |h−M , which contradicts the choice of L in
the theorem.

The contradiction proves pi 6= pj . Since i and j are arbitrary, we get the
desired claim.

Claim 8. There are exactly four CM-extensions L, L1, L2 and L3 of L+

in K.

Suppose m ≥ 4. The Choice implies that L is associated with χ1χ2χ3.
Hence, χiχjχ4 is not associated with L for 1 ≤ i < j ≤ 3. However, χiχjχ4

would be associated with a CM-extension of L+. By Claim 6, the conductor
f(χiχjχ4) would be a power of a finite prime. This contradicts Claim 7.

Claim 9. The number of finite primes ramified in L/L+ is 3.

By the Choice, L/L+ is associated with χ1χ2χ3. Hence, Claims 6 and 7
imply the desired claim.

Claim 10. The 2-rank of CL is 2.

This follows from Claim 9 and Lemma 17.

Claim 11. Im(N : CLL1L2L3 → CL) = C2
L.

This follows from Claims 7 and 10. (Recall that L/L+ is associated with
χ1χ2χ3 and use the well known genus theory.)

Claims 4, 9, 10, 6, 5, 7, Choice, Claims 11 and 8 constitute the desired
theorem.
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7. Proofs of main results. Now, we have enough tools for proving
main results.

Proof of Theorem 1. Let k ⊂ K be two CM-fields. As in Theorem 30, let
L be a maximal intermediate field L of K/k such that h−k |h−L . It suffices to
show h−L | 4h−K . If K does not contain a bicyclic biquadratic extension of L,
then h−k | 4h−K follows from Corollary 28. Assume that K contains a bicyclic
biquadratic extension of L. By assertion (iii) of Theorem 30, the 2-rank of
CL is 2. By Lemma 24, we get h−L | 4h−K .

Proof of Corollary 2. This is an easy consequence of Theorem 1. Note
that hk = h−k since k is an imaginary quadratic field.

Proof of Theorem 3. By Lemma 3 of [25], a zero in the specified region is
necessarily simple. By Theorem 1 of [9], a positive simple zero of ζN comes
from a simple zero of ζF for some quadratic subfield F of N . Corollary 2
and determination of class number 1, 2 and 4 in imaginary quadratic fields
[1, 2, 3, 23, 24] gives a list of finitely many imaginary quadratic fields which
can be contained in N . The largest conductor of these imaginary quadratic
fields is 1555. However, it is shown in [18] that Dedekind zeta-functions of
imaginary quadratic fields of conductors ≤ 593000 have no positive zero.
Hence, F must be real.

Remark. Arno’s determination [1] of imaginary quadratic fields of class
number 4 via [5, 6] is used in the above proof. However, transcendental
number theory (estimates on logarithmic forms) is also applicable in our
context. Arno [1] determines all imaginary quadratic fields of class number 4,
among which there are several fields whose class groups are cyclic. On the
other hand, the result of Whitaker [28] uses estimates on logarithmic forms
for effective determination of imaginary quadratic fields that have prescribed
prime divisors of discriminants and class groups isomorphic to (Z/2Z)2.
We verify that the result of [28] is suitable for our purpose if a numerical
constant is made explicit: Let k be an imaginary quadratic subfield of a
CM-field K of odd relative class number. Then Corollary 2 implies that hk
divides 4. By Lemma 25, the complex conjugation of k fixes Ck. Hence, Ck is
isomorphic to (Z/2Z)r with r = 0, 1 or 2. If r = 0 or 1, then k belongs to the
finite list of imaginary quadratic fields of class number 1 or 2, determined
by Baker–Stark [2, 3, 23, 24] via estimates on logarithmic forms. Assume
r = 2. Then the second remark to Lemma 26 (or an obvious refinement of
Corollary 28) implies that K contains an unramified quadratic extension of
k. Or equivalently, there is a decomposition d = d1d2 of the discriminant d
of k into pairwise coprime fundamental discriminants such that K contains
Q(
√
d1,
√
d2 ). Without loss of generality, we assume d1 to be negative. Then

the 2-rank of CQ(
√
d1 ) is smaller than that of Ck and hence is 0 or 1. By
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repeating the argument after application of Lemma 25 to k, we see hQ(
√
d1)

is 1 or 2 so that d1 belongs to the finite list of Baker–Stark. Therefore, the
smallest prime divisor of d is at most 163. Hence, [28] gives an effective
upper bound on d. Replace K with a normal CM-field N .
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