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1. Introduction. Let f be a polynomial in Z[x] in the n variables
x = (x1, . . . , xn), with integer coefficients and of total degree d, say, greater
than 1. For a positive integer q and such a polynomial f , we define the
complete multiple exponential sum

S(f ; q) =
∑

x mod q

eq(f(x)),

where the sum is taken over a complete set of residues for x modulo q and
eq(t) = e2πit/q.

The study of these sums is readily motivated by applications in analytic
number theory and elsewhere. The first important estimates for sums in one
variable appear in the work of Weyl (1916) on uniform distribution. This
led to van der Corput’s method with applications to the zeta function, the
divisor problem and other problems in multiplicative number theory. Mul-
tiple exponential sums first appeared in work on the Epstein zeta function
by Titchmarsh (1934). (Graham and Kolesnik (1991) discuss the history
and recent results.) On the other hand, and of more immediate relevance to
what follows, Hardy and Littlewood (1919) found a new method for tack-
ling problems in additive number theory such as the problems of Waring
and Goldbach. The treatment of the major arcs by this method involves
complete exponential sums. (See, for example, Vaughan (1981).)

As a consequence of his proof of the Weil conjectures, Deligne (1974)
showed that, for a prime p,

|S(f ; p)| ≤ (d− 1)npn/2,

provided that the homogeneous part of f of highest degree is non-singular
modulo p. The applications to the Hardy–Littlewood method require non-
trivial estimates of S(f ; q) for any q. As we will see, such estimates can be
obtained from the case for a prime modulus by relatively elementary means.
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If, in particular, f(x) is a polynomial in one variable x, then very precise
estimates for S(f ; q) are known in terms of invariants associated with the
polynomial f . (See Loxton and Vaughan (1985) and Loh (1997).)

The results for polynomials in several variables are much less precise.
Chubarikov (1976) proved the general estimate

|S(f ; q)| ≤ e7d′n3nν(q)τ(q)n−1qn−1/d′ ,

provided that the content of f is prime to q, where d′ is the maximum
degree of f in any variable, ν(q) is the number of distinct prime divisors of
q and τ(q) is the number of divisors of q. (See also Arkhipov, Karatsuba
and Chubarikov (1987).) The example f(x1, . . . , xn) = axd

′
1 . . . xd

′
n shows

that the dependence on q is best possible. The experience with sums in one
variable suggests that it is the high order singularity at the origin which
leads to such an extremely large sum. At the opposite extreme, Loxton and
Smith (1982) obtain a much smaller bound, namely S(f ; q) � qn/2, which
applies when the projective variety defined by the equations grad f = 0 is
non-singular. The aim of this paper is to obtain bounds which are sensitive
to the geometric properties of f and improve on the general bounds of
Arkhipov, Karatsuba and Chubarikov (1987).

It is easy to see that S(f ; q) has a multiplicative property with respect
to q. That is, if q1 and q2 are relatively prime integers and the integers m1

and m2 are such that m1q1 +m2q2 = 1, then

S(f ; q1q2) = S(m2f ; q1)S(m1f ; q2).

Hence it suffices to examine the exponential sums S(f ; pα) with prime power
modulus. In this paper, we essay an attack on this problem based on the use
of the Newton polyhedron of a polynomial in several variables and illustrate
the accuracy of the bound by an analysis of sums formed from polynomials
of degree 2, where, of course, there are classical evaluations. A future paper
will continue the analysis with explicit and precise estimates for polynomials
of degree 3.

Our results imply estimates of the shape

S(f ; pα)� pnα(1−1/(2e))+dim(grad f)α/(2e),

where e is the maximum order of a singularity of the variety defined by
the equation grad f = 0, dim(grad f) is the dimension of this variety, α
is sufficiently large and the implied constant is independent of α. Extreme
cases as discussed above can be expressed in terms of elementary quantities.

(a) In general,

S(f ; pα)� pnα(1−1/(2d))+dim(grad f)α/(2d),

where d is the total degree of f , dim(grad f) is the dimension of the va-
riety defined by the equations grad f = 0, α is sufficiently large and the



Estimates for exponential sums 279

implied constant is independent of α. (Theorem 1, Corollary 2.) This esti-
mate has the same quality as the general bounds of Arkhipov, Karatsuba
and Chubarikov (1987), but may be better when nd′ is relatively large com-
pared to 2d.

(b) In case the variety defined by the equations grad f = 0 is non-
singular,

S(f ; pα)� pn([(α+1)/2]+δ),

where δ is the p-adic order of a certain discriminant, α is sufficiently large
and the implied constant is independent of α and p. (Theorem 2, Corollary.)
This is a more precise version of the type of estimate obtained in Loxton
and Smith (1982).

We use standard p-adic notation. Thus, throughout, p denotes a ratio-
nal prime and, for x in Q, ordpx denotes the highest power of p dividing
x. (By convention, ordp0 = ∞.) For a vector x = (x1, . . . , xn), we write
ordpx = min1≤j≤n ordpxj . We can embed the p-adic rationals Qp in a com-
plete algebraically closed field Ωp and we continue to write ordp for the
extension of the valuation to Ωp.

2. Simultaneous congruences. Let p be a prime and let f(x) be a
polynomial in Z[x] in the n variables x = (x1, . . . , xn). In this section, we
give an upper bound for the sum

S(f ; pα) =
∑

x mod pα
epα(f(x))

in terms of the quantity

N(grad f ; pα) = |{x mod pα : grad f(x) ≡ 0 mod pα}|,
which counts the number of solutions of the simultaneous congruences
∂f/∂xj ≡ 0 mod pα. The results of this section are adapted from Loxton
and Smith (1982).

Proposition 1. Suppose α > 1 and set θ = [α/2]. Then

|S(f ; pα)| ≤ pn(α−θ)N(grad f ; pθ).

P r o o f. Set γ = α − θ, so that 2γ ≥ α and γ ≥ θ ≥ 1. We rewrite the
sum S(f ; pα) by setting

x = u + pγv,

so that x runs through the residue classes modulo pα as u and v respectively
run through the residue classes modulo pγ and pθ. By a Taylor expansion

f(x) = f(u) + pγ grad f(u) · v mod pα



280 J. H. Loxton

and so

S(f ; pα) =
∑

u mod pγ
epα(f(u))

∑

v mod pθ

epα(pγ grad f(u) · v).

The inner sum vanishes unless all the components of grad f(u) are congruent
to 0 modulo pθ. If this condition is satisfied, then the inner sum is equal to
pnθ because each term is equal to 1. Therefore,

S(f ; pα) = pnθ
∑

epα(f(u)),

where the sum is taken over all u modulo pγ such that grad f(u) ≡ 0 mod pθ.
Since there are pn(γ−θ) points u modulo pγ corresponding to each solution
of the above congruences modulo pθ, we have

|S(f ; pα)| ≤ pnθ+n(γ−θ)N(grad f ; pθ),

as required.

If α is odd, we can obtain a slightly sharper estimate than the one given
by Proposition 1. To this end, let Hf (u) denote the Hessian matrix Hf (u) =
(∂2f/∂xi∂xj(u)) and define

Kf (u) = {v mod p : vHf (u) ≡ 0 mod p}.
Proposition 2. Suppose α = 2θ + 1 with θ ≥ 1. Then

|S(f ; pα)| ≤ pnα/2
∑
|Kf (u)|1/2,

where the sum is taken over all u mod pθ such that grad f(u) ≡ 0 mod pθ

and in addition, in case p is odd , grad f(u) · v ≡ 0 mod pθ+1 for all v in
Kf (u).

P r o o f. From the proof of Proposition 1,

S(f ; pα) = pnθ
∑

epα(f(x)),

where the sum is taken over all x modulo pγ such that grad f(x) ≡ 0 mod pθ

and γ = θ+1. Here, we write x = u+pθv, so that x runs through the residue
classes modulo pγ as u and v respectively run through the residue classes
modulo pθ and p. By a Taylor expansion,

f(x) = f(u) + pθ grad f(u) · v + 1
2p

2θvHf (u)vt mod pα.

Hence,

S(f ; pα) = pnθ
∑

epα(f(u))Gf (u),

where the sum is taken over all u modulo pθ such that grad f(u) ≡ 0 mod pθ

and Gf (u) denotes the Gaussian sum

Gf (u) =
∑

v mod p

ep
(

1
2vHf (u)vt + p−θ grad f(u) · v).
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To estimate Gf (u), consider

|Gf (u)|2 =
∑
v,w

ep
(

1
2vHf (u)vt − 1

2wHf (u)wt + p−θ grad f(u) · (v −w)
)
.

Write v = w + z and carry out the summation over w. This gives

|Gf (u)|2 = pn
∑

zHf (u)≡0 mod p

ep
(

1
2zHf (u)zt + p−θ grad f(u) · z).

We can replace z here by z + v where v is any point in Kf (u), so we have

|Gf (u)|2 = ep
(

1
2vHf (u)vt + p−θ grad f(u) · v)|Gf (u)|2.

Hence, Gf (u) is 0 unless the argument of the exponential function is 0 mod p
for all v in Kf (u). If p is odd, this condition is equivalent to p−θ grad f(u) ·v
≡ 0 mod p for all v in Kf (u) and we have |Gf (u)|2 = pn|Kf (u)| which gives
the required estimate. If p = 2, the condition for Gf (u) to be non-zero does
not simplify, but we still have |Gf (u)|2 ≤ pn|Kf (u)|.

3. Basins of attraction of zeros. Let f = (f1, . . . , fm) be an m-tuple
of polynomials in Zp[x] and let V (f) be the variety defined by the vector
equation f(x) = 0 over Ωp. As usual, the degree of the variety, deg f , is the
product of the total degrees of the polynomials fi and its dimension, dim f ,
is the maximum dimension of an irreducible component of V (f). Note that
the variety V (f) contains a point ξ = (ξ1, . . . , ξn) in Znp if and only if the
congruences f(x) ≡ 0 mod pα are soluble for each α which, in the present
context, is the case of most interest. We write

V0(f) = V (f) ∩ Znp .
We now turn to estimates for the quantity

N(f ; pα) = |{x mod pα : f(x) ≡ 0 mod pα}|,
which counts the number of solutions of the simultaneous congruences
fi(x) ≡ 0 mod pα for 1 ≤ i ≤ m. A solution of these congruences is an
approximate zero of each of the polynomials fi and might be expected to
fall near a point of V0(f). Consequently, for each point ξ in V0(f) and α ≥ 0,
we define

Γξ(α) = {x mod pα : ordpf(x) ≥ α, ordp(x mod pα − ξ)
= max
η in V0(f)

ordp(x mod pα − η)}.
(Here, ordp(x mod pα−ξ) stands for the minimum of ordp(y−ξ) taken over
all y ≡ x mod pα, so that Γξ(α) only depends on ξ mod pα and contains the
complete residue class of x whenever x is “captured” by ξ.) We measure the
size of Γξ(α) by means of

γξ(α) = min{ordp(x mod pα − ξ) : x in Γξ(α)}.
If Γξ(α) is non-empty, it follows that 0 ≤ γξ(α) ≤ α.
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In order to get the most effective results from the geometry of V (f), we
need to lift the polynomials f mod pα in the most appropriate way. To this
end, let d be the maximum of the total degrees of the polynomials fi and
let g run through all m-tuples of polynomials in Zp[x] with g ≡ f mod pα

and deg gi ≤ d. Define the dimension of V (f) at level α by

dimα f = max{dim g : g ≡ f mod pα and deg gi ≤ d}
and call an m-tuple, f (α), say, at which the maximum is attained a canonical
representative for f at level α. If α is sufficiently large, these adjustments
are not needed and we have dimα f = dim f .

Proposition 3. Let f be an m-tuple of polynomials in Zp[x] and let f (α)

be a canonical representative at level α. Suppose that V0(f (α)) is non-empty
and let

%(α) = min{γξ(α) : ξ in V0(f (α))}.
Then

N(f ; pα) ≤ (deg f (α))pn(α−%(α))+(dimα f)%(α).

P r o o f. To simplify the notation in the proof, we assume that f (α) = f .
Let V0(f ; pα) denote the set of integral points x mod pα satisfying the si-
multaneous congruences fi(x) ≡ 0 mod pα. Note first that each point of
V0(f ; pα) lies in some Γξ(α) with ξ on V0(f) and

Γξ(α) ⊆ Bξ(α) = {x mod pα : ordp(x− ξ) ≥ %(α)}
so that the number of distinct x mod pα in Γξ(α) is at most pn(α−%(α)).
If ordp(ξ − η) ≥ %(α), then both Γξ(α) and Γη(α) lie inside Bξ(α), so we
need only count one such ξ in each residue class modulo p%(α). To finish the
proof, we need an estimate for the number of residue classes modulo p%(α)

represented by the points of V0(f).
We can make an integral unimodular linear change of coordinates so that

no coordinate function xj is constant on any component of V (f) of positive
dimension. Since this does not change the parameters in the statement of
the proposition, nor the number of residue classes we seek to count, we
can suppose that V (f) has this property. Pick ξ1, . . . , ξn in Zp and consider
the points of V (f) with xj = ξj for 1 ≤ j ≤ dim f . These form a variety
of dimension 0 and so, by Bezout’s theorem, they comprise a finite set of
cardinality at most deg f . By allowing the ξj to run through the residue
classes modulo p%(α), we pick up all the possible residue classes modulo
p%(α) on V (f), so their number is bounded by (deg f)p(dim f)%(α).

The required estimate for N(f ; pα) follows on combining the results of
the two preceding paragraphs.

After the last proposition, we are interested in locating zeros of poly-
nomial equations by successive approximation. The traditional tool for this
purpose is Hensel’s lemma, one version of which runs as follows.
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Proposition 4. Let f = (f1, . . . , fn) be an n-tuple of polynomials in
Zp[x] and let J(x) denote the n× n Jacobian matrix with entries ∂fi/∂xj.
Set δ(x) = ordp det J(x). Suppose x0 = (x01, . . . , x0n) is a point of Ωnp with
ordpx0j ≥ 0 for each j and ordpf(x0) > 2δ(x0). Then there is a unique point
ξ in Ωnp with f(ξ) = 0 and ordp(ξ − x0) ≥ ordpf(x0)− δ(x0).

P r o o f. Expanding the polynomials f about x0 gives

f(x) = f(x0) + J(x0)(x− x0) + h(x− x0),

where the entries of h are polynomials which have p-adic integer coef-
ficients and vanish together with all their first order derivatives at the
origin. By hypothesis, J(x0) is non-singular, so we can find y0 satisfying
f(x0) + J(x0)y0 = 0. Set x1 = x0 + y0. Then

ordpf(x1) ≥ 2ordpy0 ≥ 2(ordpf(x0)− δ(x0)) > ordpf(x0)

and

ordp(J(x1)− J(x0)) ≥ ordpy0 ≥ ordpf(x0)− δ(x0) > δ(x0).

Thus, x1 has the properties

ordpf(x1) ≥ 2(ordpf(x0)− δ(x0)), δ(x1) = δ(x0),

ordp(x1 − x0) ≥ ordpf(x0)− δ(x0).

By repeating this construction with x1 in place of x0 and so on, we generate a
Cauchy sequence x0,x1,x2, . . . in Ωnp and ξ = lim xk is the desired solution.

Loxton and Vaughan demonstrated that the p-adic Newton polygon leads
to sharper estimates for exponential sums in one variable than Hensel’s
lemma. Atan and Loxton (1986) explored extensions of the technique to
multiple exponential sums. We sketch the idea in order to derive an alter-
native approximation theorem to replace Hensel’s lemma in this case.

The Newton polyhedron of the polynomial f(x) =
∑
as1...snx

s1
1 . . . xsnn

in Zp[x] is the lower convex hull of the points (s1, . . . , sn, ordpas1...sn). The
Newton polyhedron allows us to predict the size of the zeros of f in the
following way.

Proposition 5. Let f be a polynomial in Zp[x]. There is a zero ξ in
Ωp with f(ξ) = 0 and ordpξj = λj for each j if and only if the vector
(λ1, . . . , λn, 1) is normal to a face of the Newton polyhedron of f , or normal
to an edge and between the normals to the adjacent faces.

P r o o f. Suppose that f(ξ) = 0 and write Ts = asξ
s = as1...snξ

s1
1 . . . ξsnn

and Ps = (s1, . . . , sn, ordpas). Since f(ξ) = 0, the minimum, M , of the
numbers ordpTs is attained for at least 2 choices of s, say s = u and
s = v. The corresponding points Pu and Pv lie on the hyperplane
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Π : x1ordpξ1 + . . . + xnordpξn + xn+1 = M which is a support hyper-
plane for the Newton polyhedron and its normal (ξ1, . . . , ξn, 1) is normal to
a face of the polyhedron, or normal to an edge and between the normals to
the adjacent faces.

Conversely, suppose the rational vector ν = (ν1, . . . , νn, 1) is normal to
the edge determined by the endpoints Pu and Pv on the Newton polyhedron
and lies between the normals to the adjacent faces and suppose ordpξj = νj
for each j. By considering the projection on ν of the vector joining the point
Pu to Ps, we see that ordpauξ

u ≤ ordpasξ
s, with equality for s = v. Again,

suppose ξ2, . . . , ξn have ordpξj = νj and write g(x) = f(x, ξ2, . . . , ξn) =∑
cix

i, with ci =
∑
ai,s2,...,snξ

s2
2 . . . ξsnn . Since the terms auξ

u2
2 . . . ξunn and

avξ
v2
2 . . . ξvnn dominate cu1 and cv1 respectively, we can choose ξ2, . . . , ξn so

that ordpcu1 = ordpauξ
u2
2 . . . ξunn and ordpcv1 = ordpavξ

v2
2 . . . ξvnn . It may

be necessary here to make an extension of the residue field in order to find
such ξ2, . . . , ξn and guarantee that the leading terms do not vanish. The
Newton polygon of the polynomial g(x) has a segment of slope −ν1 joining
the points (u1, ordpcu1) and (v1, ordpcv1), so we can find ξ1 with g(ξ1) = 0
and ordpξ1 = ν1. This completes the construction of a p-adic zero ξ with
f(ξ) = 0 and ordpξj = νj for each j.

The next proposition uses the construction to estimate the distance from
an approximate zero of a polynomial to its nearest zero. The statement uses
the usual conventions for monomials s = (s1, . . . , sn) with |s| = s1 + . . .+sn.

Proposition 6. Let f(x) be a polynomial in Zp[x] with degree at most
d and let x0 be a point in Znp . Set

δ = max
s6=0

1
|s|
(

ordpf(x0)− ordp
1
s!
∂ sf

∂xs (x0)
)
.

Then

max{ordp(ξ − x0) : f(ξ) = 0 and ξ is in Ωnp } = δ.

P r o o f. We can take x0 = 0. Write f(x) =
∑
asx

s and suppose

δ = max
s6=0

1
|s|ordp

a0

as
=

1
|u|ordp

a0

au
.

The choice of u means that the plane

ordpa0 − ordpau

u1 + . . .+ un
(x1 + . . .+ xn) + xn+1 = ordpa0

containing the points (0, . . . , 0, ordpa0) and (u1, . . . , un, ordpau) is a support
hyperplane for the Newton polyhedron. Consequently, there is a p-adic zero
ξ with f(ξ) = 0 and ordpξ = δ and there are no zeros η with ordpη > δ.
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The last proposition improves Hensel’s lemma in some respects. In con-
trast to Hensel’s lemma, it yields useful information even when all the first
order derivatives ∂f/∂xj(x0) are zero. A more precise result for polynomi-
als in 2 variables, together with a fuller proof, is given in Atan and Lox-
ton (1986). Unfortunately, the Newton polyhedron technique does not lead
directly to satisfactory estimates for the common zeros of several polynomi-
als. The reasons for this will appear below.

4. A general estimate. Let f = (f1, . . . , fm) be an m-tuple of poly-
nomials in Zp[x]. We define the p-adic content, c(fi), of the polynomial fi
to be the largest power of p dividing all the coefficients of fi and we set
c(f) = min1≤i≤m c(fi).

We also define the slope δfi(x0) of the Newton polyhedron of fi at x0 by

δfi(x0) = max
s6=0

1
|s|
(

ordpfi(x0)− ordp
1
s!
∂sfi
∂xs (x0)

)

and we call the vectors s at which the maximum is attained and |s| is minimal
the critical orders of fi at x0. Set

δf (α) = min{δfi(x0) : fi(x0) ≡ 0 mod pα, 1 ≤ i ≤ m}.
This p-adic slope serves as a convenient substitute for the p-adic discriminant
of f (see below).

Clearly,

δf (α) ≥ α− c(f)
d

,

but local information about the singularities of V (f) leads to stronger results.
For example, if the highest order of a singular point on V (f) is e, we have

δf (α) ≥ α− γ(f)
e

,

where the constant γ(f) can be obtained from the p-adic orders of the deriva-
tives of the fi of order up to e. The non-singular case, e = 1, is done explicitly
in Section 5 below.

Theorem 1. Let f = (f1, . . . , fm) be an m-tuple of polynomials in Zp[x]
with degrees at most d and slope δf (α) and let f (α) be a canonical repre-
sentative at level α. Let dimα f denote the dimension of the variety defined
by the equations f (α) = 0 over Ωp and suppose this variety contains points
defined over Zp. Then

N(f ; pα) ≤
{
pnα if α ≤ δf (α),
dmpn(α−δf (α))+δf (α) dimα f if α > δf (α).

P r o o f. The estimate for α ≤ δf (α) is trivial, so consider the second
case.
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Again, to simplify the notation in the proof, we suppose f (α) = f and
write δf (α) = δ. We require a parameter t which is a p-adic unit and algebraic
of degree m over Qp and which generates the full residue field extension, that
is [Fp[t] : Fp] = m. Set

F (x) = NormQp[t]/Qp(f1(x) + tf2(x) + . . .+ tm−1fm(x)).

Suppose x0 is in Znp . Since t has degree m over Fp, ordpf(x0) ≥ α if and
only if ordpF (x0) ≥ mα.

Write fi(x) = pcigi(x), where g is a polynomial in Zp[x] whose coeffi-
cients are not all zero modulo p. Let c = min ci. Then F (x) = pmcG(x),
where G(x) is in Zp[x] and

G(x) ≡ NormQp[t]/Qp
∑′

gi(x)ti−1 mod p,

where
∑′ denotes the sum taken over those indices i for which ci = c. Again,

because t has degree m over Fp, the polynomial G cannot vanish identically
modulo p. We can apply the same argument to the polynomials fi(x0 + x)
for any x0 in Znp .

In the same way, we can estimate the slope δF of F at x0. Let si be a
critical order of fi for each i. Consider only those i for which the correspond-
ing δfi is equal to δ and, where there is a choice of critical si, take the first
such si in the lexicographical ordering. Suppose s1, say, is the first of these
selected critical orders in the lexicographical ordering. Then the derivative
of order s = ms1 of F potentially gives rise to a critical order of F and the
coefficient does not vanish because of the choice of t and the direction of
differentiation. In fact, the leading term is

NormQp[t]/Qp
∂s1

∂xs1
(f1(x) + tf2(x) + . . .+ tm−1fm(x))

and so δF (x0) = mδ.
We can therefore apply Proposition 3 to the system of polynomials f and

use Proposition 6 for the polynomial F to estimate %(α) ≥ δ and so obtain
the assertion of the theorem.

Corollary 1. Let f = (f1, . . . , fm) be an m-tuple of polynomials in
Zp[x] with degrees at most d. Suppose the variety defined by the equations
f = 0 over Ωp contains points defined over Zp and the highest order of a
singular point on V (f) is e. Then, if α is sufficiently large,

N(f ; pα)� pnα(1−1/e)+(dim f)α/e,

where the implied constant is independent of α.

In fact, since δf (α) ≥ (α − γ(f))/e with a constant γ(f) independent of
α, a more precise estimate valid for sufficiently large α is

N(f ; pα) ≤ dmpnα(1−1/e)+nγ(f)/e+(dimα f)(α−γ(f))/e.
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Corollary 2. Suppose α > 1 and set θ = [α/2]. Let f be a polynomial
in Z[x] with degree at most d and p-adic content c(f). Let g(θ) be a canonical
representation at level θ for the polynomials grad f and suppose the variety
defined by the equations g(θ) = 0 over Ωp has points defined over Zp. Then

|S(f ; pα)| ≤
{
pnα if θ ≤ δgrad f (θ),
dnpn(α−δgrad f (θ))+δgrad f (θ) dimθ(grad f) if θ > δgrad f (θ)

and , if the highest order of a singular point on the variety V (grad f) is e,
then

|S(f ; pα)| � pn(α−θ/e)+dimθ(grad f)θ/e

when α is sufficiently large, with an implied constant independent of α.

The required inequalities follow from Proposition 1. If θ > δgrad f (θ),
we get a completely specified inequality by using the estimates δgrad f (θ) ≥
(θ − c(grad f))/d and c(grad f) ≤ log deg f/log p, namely

|S(f ; pα)| ≤ dn+1pn(α−θ/d)+nc(f)/d+dimθ(grad f)(θ−c(f))/d.

5. Estimation with linear forms. Let f = (f1, . . . , fm) be an m-tuple
of polynomials in Zp[x]. We aim to construct solutions of the equations
f = 0 in Zp by successively refining solutions of the congruences f ≡ 0
mod pα. In the process, we can make integral unimodular transformations
of the variables and of the polynomials, without changing the solutions of the
system. It will often be convenient to transform the system to an equivalent
system with

∑
i c(fi) as large as possible and we refer to this as the normal

form of the system.
If the polynomials f are linear, the bounds can be obtained directly. The

result illustrates the source of the term involving dim f in the estimate of
Theorem 1 and of the discriminant which appears in the work of Loxton
and Smith (1982) and in the estimates below.

Proposition 7. Let f = (f1, . . . , fm) be a vector of linear functions in
Z[x] represented by f = Ax + b, where A is an m × n matrix. Suppose A
has rank r and let δ denote the minimum of the p-adic orders of the r × r
non-singular submatrices of A. Then

N(f ; pα) ≤ pmin(nα,(n−r)α+δ).

P r o o f. The first bound of pnα is trivial and the second arises as follows.
The matrix A is equivalent through integral unimodular transformations to
a matrix AS in the Smith normal form,

AS =
(
A′ 0
0 0

)
,

in which A′ = diag(a1, . . . , ar) is an r × r non-singular diagonal matrix. In
the new coordinates, we write x = (x′,x′′)t, where x′ comprises the first r
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components of x and x′′ the remainder. The congruences Ax ≡ b mod pα

are equivalent to A′x′≡b′ mod pα. Here, each congruence ajx′j≡b′j mod pα

determines x′j mod pα−δj , where δj = ordpaj . Since δ = ordp detA′ =
δ1 +. . .+δr, the number of solutions for x′ modulo pα is at most pδ. For each
of these, there are p(n−r)α choices for x′′ modulo pα, so the total number of
solutions for x modulo pα is at most p(n−r)α+δ.

Corollary. Let p be an odd prime and f(x, y) be a polynomial in Z[x, y]
of degree 2. Let r be the rank of the matrix

Hf =
(
fxx fxy
fxy fyy

)

and suppose r > 0. Define the quantity δ by

δ =
{

ordp(fxxfyy − f2
xy) if r = 2,

ordp(fxx, fxy, fyy) if r = 1.

Then

|S(f ; pα)| ≤ pmin(2α,(2−r/2)α+δ).

P r o o f. In case α = 1, we can evaluate the Gauss sum S(f ; p) directly:
|S(f ; p)| = p if r = 2 and δ = 0, |S(f ; p)| = p3/2 if r = 1 and δ = 0, and we
have at worst the trivial bound |S(f ; p)| ≤ p2 otherwise.

If α is even, the result follows from Proposition 1. Suppose then α =
2θ + 1 > 1 is odd. If dimKf (u) = 0 in Proposition 2, then

|S(f ; pα)| ≤ pαN(fx, fy; pθ) ≤ pα+min(2θ,(2−r)θ+δ)

and this is less than the required bound. If dimKf (u) = 1, then

|S(f ; pα)| ≤ pα+1/2U,

say, where U counts the number of points u modulo pθ which satisfy
grad f(u) ≡ tpθz mod pθ+1, z is a fixed vector orthogonal to Kf (u) and
t is taken modulo p. If u is one solution of this congruence, then u + pθv is
another whenever vHf (u) ≡ sz mod p for some s taken modulo p. Conse-
quently, U = p−2V , where V is the number of points u taken modulo pθ+1

and satisfying the same congruence as before. We can estimate the number
of these points by Proposition 7. Hence,

|S(f ; pα)| ≤ pα+1/2−2V ≤ pα−1/2+min(2(θ+1),(2−r)(θ+1)+δ)

and this gives the result. Finally, if dimKf (u) = 2, then

|S(f ; pα)| ≤ pα+1−2N(fx, fy; pθ+1),

because each solution modulo pθ of the congruences involved in computing
N(fx, fy; pθ+1) corresponds to p2 solutions taken modulo pθ+1. Again, the
result follows.
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In general, we define a p-adic discriminant as follows. For a polynomial
g(x), g̃ denotes the associated homogeneous form in x0, x1, . . . , xn. We as-
sume that the polynomials f̃i and ∂f̃i/∂xj for 1 ≤ i ≤ m and 1 ≤ j ≤ n have
no common zeros. Let Ik denote the ideal generated by the polynomials fi
and the k×k subdeterminants of the Jacobian matrix J(f) = (∂fi/∂xj) and
let Ĩk be the associated homogeneous ideal. The ideals Ĩj form a decreasing

chain Ĩ1 ⊃ Ĩ2 ⊃ . . . By the Hilbert Nullstellensatz,
√
Ĩ1 = (x0, . . . , xn)

and, in particular, I1 contains a non-zero element of Zp. Let δk denote the
minimal p-adic order of the elements of Ik ∩ Zp, provided the intersection
is non-empty, and set δk = 0 otherwise. The rank of the system, denoted by
r(f), is the largest value of k such that the generators of Ĩk have no common
zeros. We call the corresponding value of δk the p-adic discriminant and de-
note it by δ(f). The variety defined by the equations f = 0 is non-singular
exactly when r(f) = n. In that case, the discriminant δ(f) follows Krull’s
definition used in Loxton and Smith (1982).

Theorem 2. Let f = (f1, . . . , fn) be an n-tuple of polynomials in Zp[x]
with rank r(f) = n and p-adic discriminant δ(f). Then

N(f ; pα) ≤



pnα if 0 < α ≤ δ(f),
pn(δ(f)+1) if δ(f) + 1 ≤ α ≤ 2δ(f),
(deg f)pnδ(f) if α > 2δ(f).

P r o o f. For α ≤ δ(f) + 1, trivially N(f ; pα) ≤ pnα.
Suppose δ(f)+1 < α ≤ 2δ(f) and abbreviate δ = δ(f). Let x0 be any solu-

tion of the congruences f(x0) ≡ 0 mod pδ+1 and write ε = ordp detJ(f)(x0).
We can find the required solutions modulo pα by solving the congruence

f(x0 + pδ+1−εx) ≡ f(x0) + pδ+1−εJ(f)(x0)x ≡ 0 mod pα

for x mod pα−δ−1+ε. Here, J(f)(x0) must have rank n and ε ≤ δ, since oth-
erwise the polynomials fi and det J(f) evaluated at x0 all have p-adic order
exceeding δ, contrary to the definition of the discriminant. By Proposition 7,
the number of solutions for x mod pα−δ−1+ε is at most pε and, summing
over all possible choices for x0 mod pδ+1−ε gives N(f ; pα) ≤ pn(δ+1−ε)+ε

≤ pn(δ+1).
Finally, suppose α > 2δ(f) and let V (f) be the variety defined by

the polynomials fi. If N(f ; pα) is non-zero, then Hensel’s lemma (Propo-
sition 4) yields a point of V (f) ∩ Znp and, in the notation of Proposition 3,
%(α) = α−δ(f). The required result then follows from Proposition 3 because
dim f = 0.

Corollary. Let f be a polynomial in Z[x]. Suppose grad f has rank n
and set δ = δ(grad f) and θ = [α/2]. Then
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|S(f ; pα)| ≤



pnα if 1 < α ≤ 2δ + 1,
pn(α−θ+δ+1) if 2δ + 2 ≤ α ≤ 4δ + 1,
(deg f − 1)npn(α−θ+δ) if α > 4δ + 1.

Theorem 2 and its corollary improve the result of Loxton and Smith
(1982). The parameters in that paper are essentially the same since the
discriminant should properly have been defined as it is here.
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