The number of powers of 2 in a representation of large even integers by sums of such powers and of two primes

by

HONGZE LI (Jinan)

1. Main results. The Goldbach conjecture is that every integer not less than 6 is a sum of two odd primes. The conjecture still remains open. Let $E(x)$ denote the number of positive even integers not exceeding x which cannot be written as a sum of two prime numbers. In 1975 Montgomery and Vaughan [9] proved that $E(x) \ll x^{1-\theta}$ for some small computable constant $\theta > 0$. In [4] the author proved that $E(x) \ll x^{0.921}$, and recently [5] he improved that to $E(x) \ll x^{0.914}$.

In 1951 and 1953, Linnik [6, 7] established the following “almost Goldbach” result.

Every large positive even integer N is a sum of two primes p_1, p_2 and a bounded number of powers of 2, i.e.

$$N = p_1 + p_2 + 2^{\nu_1} + \ldots + 2^{\nu_k}. \quad (1.1)$$

Let $r''_k(N)$ denote the number of representations of N in the form (1.1). In [8] Liu, Liu and Wang proved that for any $k \geq 54000$, there exists $N_k > 0$ depending on k only such that if $N \geq N_k$ is an even integer then

$$r''_k(N) \gg N(\log N)^{k-2}. \quad (1.2)$$

In this paper we prove the following result.

Theorem 1. For any integer $k \geq 25000$, there exists $N_k > 0$ depending on k only such that if $N \geq N_k$ is an even integer then

$$r''_k(N) \gg N(\log N)^{k-2}.$$
Let \(r'_k(n) \) denote the number of representations of an odd integer \(n \) in the form
\[
n = p + 2^{\nu_1} + \ldots + 2^{\nu_k}.
\]

The second purpose of this paper is to establish the following result.

Theorem 2. For any \(\varepsilon > 0 \), there exists a constant \(k_0 \) depending on \(\varepsilon \) only such that if \(k \geq k_0 \) and \(N \geq N_k \) then
\[
\sum_{2 \nmid n \leq N} (r'_k(n) - 2(\log_2 N)^k(\log N)^{-1})^2 \leq \varepsilon 2N(\log_2 N)^{2k}(\log N)^{-2}.
\]
In particular, for \(\varepsilon = 0.9893 \), one can take \(k_0 = 12500 \).

In what follows, \(\mathcal{L} \) always stands for \(\log PT \), and \(L(s, \chi) \) denotes the Dirichlet \(L \)-function. \(\delta \) denotes a positive constant which is arbitrarily small but not necessarily the same at each occurrence.

2. Some lemmas. Let \(N \) be a large integer, and set
\[
(2.1) \quad P := N^\theta, \quad T := P^3(\log N)^6, \quad Q := P^{-1}N(\log N)^{-3},
\]
where \(\theta \) is an absolute constant. Let \(\chi \pmod{q}, \chi_0 \pmod{q} \) be a character and a principal character mod \(q \) respectively.

Lemma 1. Let \(\chi \) be a non-principal character mod \(q \). Then for any \(\varepsilon > 0 \) there exists a \(\delta = \delta(\varepsilon) > 0 \) such that
\[
-\Re L'(s, \chi) \leq -\sum_{|1 + it - \rho| \leq \delta} \Re \frac{1}{s - \rho} + \left(\frac{3}{16} + \varepsilon \right) H
\]
uniformly for
\[
1 + \frac{1}{H \log H} \leq \sigma \leq 1 + \frac{\log H}{H}
\]
providing that \(q \) is sufficiently large, where \(H = \log q(|t| + 2) \) and \(s = \sigma + it \).

This is Lemma 2.4 of [3].

For a real number \(\alpha \), set \(\alpha^* = \alpha \mathcal{L}^{-1} \) and let
\[
\rho_j = 1 - \lambda_j^* + i\gamma_j^*, \quad j = 1, 2, \ldots,
\]
denote the non-trivial zeros of \(L(s, \chi) \) with \(|\gamma_j| \leq T\mathcal{L} \), where \(\lambda_j \) are in increasing order.

Lemma 2. Let \(N \) be sufficiently large. Then no function \(L(s, \chi) \) with \(\chi \) primitive mod \(q \leq P \), except for a possible exceptional one only, has a zero in the region
\[
\sigma \geq 1 - \frac{0.239}{\mathcal{L}}, \quad |t| \leq T.
\]
If the exceptional function, denoted by $L(s, \tilde{\chi})$, exists, then $\tilde{\chi}$ must be a real primitive character mod \tilde{q}, $\tilde{q} \leq P$, and $L(s, \tilde{\chi})$ has a real simple zero $\tilde{\beta}$; no other function $L(s, \chi)$ with χ primitive mod $q \leq P$ has a zero in the region
\[\sigma \geq 1 - \frac{0.517}{\mathcal{L}}, \quad |t| \leq T. \]

Proof. If $q_1, q_2 \leq P$, $q_1 \neq q_2$, consider the zeros of $L(s, \chi_{q_1})$ and $L(s, \chi_{q_2})$ for non-principal characters χ_{q_1} and χ_{q_2}. If ϱ_1 is a zero of $L(s, \chi_{q_1})$ and ϱ_2 is a zero of $L(s, \chi_{q_2})$, then as in Lemma 3.7 of [3] and setting $\eta = a\sqrt{N}/\mathcal{L}$, $\sigma = \eta + 1$, note that $T = P^3(\log N)^6$, $\log P^2T = (5/4 + \delta)\mathcal{L}$. Then for any positive constant a we have
\[G(0) - G\left(-\frac{\lambda_1}{a}\right) - G\left(-\frac{\lambda_2}{a}\right) + a\left(\frac{39}{64} + \varepsilon\right) \geq 0 \]
where
\[G(z) = \int_0^{\infty} \exp\left\{-\frac{1}{4}x^2 + zx\right\} dx. \]

Take $a = 1.22$; then $\lambda_1 \leq 0.239$ implies $\lambda_2 > 0.63$. Take $a = 1.26$; then $\lambda_1 \leq 0.411$, implies $\lambda_2 > 0.411$. If $q_1 = q_2$, by Lemma 3.7 and Theorem 1.2 of [3] the lemma follows.

Lemma 3. Suppose χ is a real non-principal character mod $q \leq P$, and ϱ_1 is real. Then $\lambda_2 > 0.8$.

Proof. By Lemma 3.2 of [3] the assertion follows.

By Lemma 4 of [5] we have

Lemma 4. Let χ be a non-principal character mod $q \leq P$, and ϱ_1, ϱ_2, ϱ_3 be the zeros of $L(s, \chi)$. Then
\[\lambda_2 > 0.575, \quad \lambda_3 > 0.618. \]

Lemma 5. Let $\chi \neq \chi_0$ be a character mod $q \leq P$. Let n_0, n_1, n_2 denote the numbers of zeros of $L(s, \chi)$ in the rectangles
\[R_0 : 1 - \mathcal{L}^{-1} \leq \sigma \leq 1 - 0.239\mathcal{L}^{-1}, \quad |t - t_0| \leq 5.8\mathcal{L}^{-1}, \]
\[R_1 : 1 - 5\mathcal{L}^{-1} \leq \sigma \leq 1 - 0.239\mathcal{L}^{-1}, \quad |t - t_1| \leq 23.4\mathcal{L}^{-1}, \]
\[R_2 : 1 - \lambda_+\mathcal{L}^{-1} \leq \sigma \leq 1 - 0.239\mathcal{L}^{-1}, \quad |t - t_2| \leq 23.4\mathcal{L}^{-1}, \]
respectively, where t_0, t_1, t_2 are real numbers satisfying $|t_i| \leq T$, and $5 < \lambda_+ \leq \log \log L$. Then
\[n_0 \leq 3, \quad n_1 \leq 10, \quad n_2 \leq 0.2292(\lambda_+ + 42.9). \]

Proof. It is well known that
\[\frac{\zeta'}{\zeta}(\sigma) - \Re \frac{L'}{L}(s, \chi) \geq 0 \]
where $\sigma = \Re s$.

Representations by sums of powers, 231
We consider the rectangle R_0. Let $\rho = \sigma + it_0$, $\sigma = 1 + 8.4L^{-1}$, and denote by $\rho = 1 - \lambda^* + i\gamma$ the zero of $L(s, \chi)$ in R_0. Hence $0.239 \leq \lambda \leq 1, |\gamma - t_0| \leq 5.8L^{-1}$. So we have

$$ -\Re \frac{1}{s - \rho} = -\mathcal{L} \frac{8.4 + \lambda}{(8.4 + \lambda)^2 + ((\gamma - t_0)\mathcal{L})^2} \leq -\mathcal{L} \frac{9.4}{9.4^2 + 5.8^2}. $$

By Lemma 1,

$$ -\Re \frac{L'}{L}(s, \chi) \leq -\sum_{|1 + it_0 - \rho| \leq \delta} \Re \frac{1}{s - \rho} + 0.18751\mathcal{L}. $$

If $|1 + it_0 - \rho| > \delta$ then $\Re \frac{1}{s - \rho} = O(1)$. So

$$ -\Re \frac{L'}{L}(s, \chi) \leq \mathcal{L} \left(0.18751 - \frac{9.4n_0}{9.4^2 + 5.8^2} \right). $$

Since $-\zeta'(\sigma) \leq \frac{1}{\sigma - 1} + A$, where A is an absolute constant, we have

$$ \frac{9.4n_0}{9.4^2 + 5.8^2} \leq \frac{1}{8.4} + 0.18752, \quad n_0 \leq 3. $$

Now as above, let $\sigma = 1 + 24L^{-1}$. Then $n_1 \leq 10$ and $n_2 \leq 0.2292(\lambda_+ + 42.9)$.

3. The zero density estimate of the Dirichlet L-function. In this section we use the notations of Section 3 of [8]. For $1 \leq j \leq 4$, let h_j denote positive constants satisfying $h_1 < h_2 < h_3, h_2 + h_4 + 3/8 < h_3, 2h_4 + 3/8 < h_1$.

Let

$$ z_j := (P^2T)^{h_j}, \quad \alpha := 1 - \lambda L^{-1}, \quad \lambda \leq \log \log \mathcal{L}, $$

$$ D(\lambda, T) := D := \{ s = \sigma + it : \alpha \leq \sigma \leq 1 - 0.239\mathcal{L}^{-1}, \ |t| \leq T \}. $$

Let $N(\chi, \alpha, T)$ denote the number of zeros of $L(s, \chi)$ in D, and

$$ N^*(\alpha, P, T) = \sum_{q \leq P} \sum_{\chi (\text{mod } q)}^* N(\chi, \alpha, T), $$

where $\sum_{\chi (\text{mod } q)}^*$ indicates that the sum is over primitive characters mod q.

For positive δ_1, δ_3, let

$$ \kappa(s) := s^{-2} \{ (e^{-((1-\delta_1)(\log z_1))s} - e^{-(\log z_1)s})\delta_3(\log z_3) $$

$$ - e^{-(\log z_3)s} - e^{-(1+\delta_3)(\log z_3)s})\delta_1(\log z_1) \}. $$

For a zero $\rho_0 \in D$, let

$$ M(\rho_0) := \sum_{\chi} |\kappa(\rho(\chi) + \rho_0 - 2\alpha)|, $$

$$ D(\lambda_0, T) := D := \{ s = \sigma + it : \alpha_0 \leq \sigma \leq 1 - 0.239\mathcal{L}^{-1}, \ |t| \leq T \}. $$

Finally, let

$$ \kappa(s) := s^{-2} \{ (e^{-((1-\delta_1)(\log z_1))s} - e^{-(\log z_1)s})\delta_3(\log z_3) $$

$$ - e^{-(\log z_3)s} - e^{-(1+\delta_3)(\log z_3)s})\delta_1(\log z_1) \}. $$

For a zero $\rho_0 \in D$, let

$$ M(\rho_0) := \sum_{\chi} |\kappa(\rho(\chi) + \rho_0 - 2\alpha)|, $$

$$ D(\lambda_0, T) := D := \{ s = \sigma + it : \alpha_0 \leq \sigma \leq 1 - 0.239\mathcal{L}^{-1}, \ |t| \leq T \}. $$
where the sum is over the zeros of $L(s, \chi)$ in D. If $2h_4 + 3/8 < (1 - \delta_1)h_1$, then as in (3.17) of [8] we have

\begin{equation}
N^*(\alpha, P, T) \leq \frac{(1 + \delta) \max_{\rho_0} M(\rho_0)}{2(1 - \alpha)(h_2 - h_1)\delta_1\delta_3h_1h_3h_4(\log P^2T)^4} (P^2T)^{2h_3(1 - \alpha)}.
\end{equation}

(i) If $5 < \lambda \leq \log \log \mathcal{L}$, let $\Delta = 23.4\mathcal{L}^{-1}$. Then as in [8], by Lemma 5 we have

$M(\rho_0) \leq 0.2292(\lambda + 42.9)(\log P^2T)^3(1/2) \times \left\{ (\delta_1h_1(2\delta_3 + \delta_5^2)h_3^2 - \delta_3h_3(2\delta_1 - \delta_1^2)h_1^2) + (\pi/23.4)^2(\delta_1h_1 + \delta_3h_3) \right\}.$

Choose $h_1 = 0.58$, $h_2 = 0.669$, $h_3 = 1.08$, $h_4 = 0.0353$, $\delta_1h_1 = \delta_3h_3 = \pi/23.4$. By (3.6) we have

\begin{equation}
N^*(\alpha, P, T) \leq 268.6(P^2T)^{2.16(1 - \alpha)}.
\end{equation}

(ii) If $1 < \lambda \leq 5$, then as in [8], by Lemma 5 ($n_1 \leq 10$) we have

$M(\rho_0) \leq (10/2)(\log P^2T)^3 \times \left\{ (\delta_1h_1(2\delta_3 + \delta_5^2)h_3^2 - \delta_3h_3(2\delta_1 - \delta_1^2)h_1^2) + (\pi/23.4)^2(\delta_1h_1 + \delta_3h_3) \right\}.$

Choose $h_1 = 0.82$, $h_2 = 1.179$, $h_3 = 1.71$, $h_4 = 0.155$, $\delta_1h_1 = \delta_3h_3 = \pi/23.4$.

By (3.6) we have

\begin{equation}
N^*(\alpha, P, T) \leq (104.1/\lambda)(P^2T)^{3.42(1 - \alpha)}.
\end{equation}

(iii) If $0.618 < \lambda \leq 1$, for $a = 6.3$ we have

\[
\left(\frac{1}{a} - \frac{1}{a + 1} - \frac{2(a + 1)}{(a + 1)^2 + 5.8^2} + 0.1876 \right) \times \max \left\{ \frac{a + 1}{5.8^2} + \frac{1}{a + 1}, \frac{a + 0.618}{5.8^2} + \frac{1}{a + 0.618} \right\} \leq 0.014621.
\]

As in [8], by Lemma 5 we have

$M(\rho_0) \leq \{1.5(\delta_1h_1(2\delta_3 + \delta_5^2)h_3^2 - \delta_3h_3(2\delta_1 - \delta_1^2)h_1^2) + 2 \cdot 0.014621 \cdot (\delta_1h_1 + \delta_3h_3)\}(\log P^2T)^3.$

Choose $h_1 = 1.0065$, $h_2 = 1.599$, $h_3 = 2.25$, $h_4 = 0.2759$, $\delta_1 = 0.079$, $\delta_3 = 0.094$. By (3.6) we have

\begin{equation}
N^*(\alpha, P, T) \leq (14.3/\lambda)(P^2T)^{4.5(1 - \alpha)}.
\end{equation}

(iv) If $0.575 < \lambda \leq 0.618$, by Lemma 4 there are at most two zeros satisfying $\gamma = 1 - \beta/\mathcal{L} - i\gamma/\mathcal{L}$, $\beta < 0.618$. As in (v) of [8], we have

\begin{equation}
N^*(\alpha, P, T) \leq \frac{(1 + \delta)\tilde{M}}{2(1 - \alpha)(h_2 - h_1)h_4\log P^2T}(P^2T)^{2h_3(1 - \alpha)}.
\end{equation}
where
\[\tilde{M} := \max_{\chi \mod q} \max_{1 \leq j \leq 2} \frac{1}{\log z_3} \int_{\log z_1} \left| \sum_{l=1}^{j} e^{-(g(l,\chi)-\alpha)x} \right|^2 \, dx, \]
and \(g(l,\chi) \) is a zero of \(L(s,\chi) \) in \(D \). We have
\[
\int_{\log z_1}^{\log z_3} \left| e^{-(g(l,\chi)-\alpha)x} \right|^2 \, dx \leq (h_3 - h_1) \log P^2 T, \\
\frac{1}{2} \int_{\log z_1}^{\log z_3} \left| \sum_{l=1}^{2} e^{-(g(l,\chi)-\alpha)x} \right|^2 \, dx \leq 2(h_3 - h_1) \log P^2 T.
\]

Choose \(h_1 = 0.9, h_2 = 1.4525, h_3 = 2.09, h_4 = 0.2624 \). By (3.10) we have
\[N^*(\alpha, P, T) \leq (8.21/\lambda)(P^2 T)^{4.18(1-\alpha)}. \]

(v) If \(0.411 < \lambda \leq 0.575 \), by Lemma 4 there is at most one zero satisfying \(\varrho = 1 - \beta/L - i\gamma/L, \beta < 0.575 \). As in (v) of [8], we have
\[
(3.11) \quad N^*(\alpha, P, T) \leq \frac{(1 + \delta)(h_3 - h_1)^2}{(h_2 - h_1)h_4}(P^2 T)^{2h_3(1-\alpha)}. \]
Choose \(h_1 = 1.01, h_2 = 1.4074, h_3 = 2.1, h_4 = 0.3174 \). By (3.11) we have
\[N^*(\alpha, P, T) \leq 9.42(P^2 T)^{4.2(1-\alpha)}. \]

In conclusion we have

Lemma 6. If \(N^*(\alpha, P, T) \) and \(\alpha = 1 - \lambda L^{-1} \) are defined by (3.3), (3.1), then
\[N^*(\alpha, P, T) \leq \begin{cases}
2, & \lambda \leq 0.411, \\
9.42(P^2 T)^{4.2(1-\alpha)}, & 0.411 < \lambda \leq 0.575, \\
14.28(P^2 T)^{4.18(1-\alpha)}, & 0.575 < \lambda \leq 0.618, \\
23.14(P^2 T)^{4.5(1-\alpha)}, & 0.618 < \lambda \leq 1, \\
104.1(P^2 T)^{3.42(1-\alpha)}, & 1 < \lambda \leq 5, \\
268.6(P^2 T)^{2.16(1-\alpha)}, & 5 < \lambda \leq \log \log L.
\end{cases} \]

4. The proof of the theorems. By Dirichlet’s lemma on rational approximations, each \(\alpha \in [Q^{-1}, 1 + Q^{-1}] \) may be written in the form
\[
\alpha = a/q + \lambda, \quad |\lambda| \leq (qQ)^{-1},
\]
for some positive integers \(a, q \) with \(1 \leq a \leq q, (a,q) = 1 \) and \(q \leq Q \). We denote by \(I(a,q) \) the set of \(\alpha \) satisfying (4.1), and put
\[
E_1 = \bigcup_{Q \leq P} \bigcup_{\alpha=1}^{q} I(a,q), \quad E_2 = [Q^{-1}, 1 + Q^{-1}] - E_1.
\]
When \(q \leq P \) we call \(I(a, q) \) a major arc. By (2.1), all major arcs are mutually disjoint. Let \(e(\alpha) = \exp(2\pi i \alpha) \) and \(S(\alpha) = \sum_{p \leq N} e(pa) \).

Let \(\sigma(n) \) denote the singular series in the Goldbach problem, i.e.
\[
\sigma(n) := \prod_{p|n} (1 + (p - 1)^{-1}) \prod_{p \nmid n} (1 - (p - 1)^{-2}) \gg 1
\]
for even \(n \). Let
\[
J(n) := \sum_{1 < n_1, n_2 \leq N, n_1 - n_2 = n} (\log n_1 \log n_2)^{-1}.
\]

For \(0 < \theta < 1/30 \), define
\[
(4.2) \quad f(\theta) := \frac{268.6(1 - (6 + \delta)\theta)}{1 - (16.8 + \delta)\theta} \exp \left(-\frac{5 - (84 + \delta)\theta}{(4 + \delta)\theta} \right)
\]
\[
+ \frac{104.1(1 - (6 + \delta)\theta)}{1 - (23.1 + \delta)\theta} \times \left\{ \exp \left(-\frac{1 - (23.1 + \delta)\theta}{(4 + \delta)\theta} \right) - \exp \left(-\frac{5(1 - (23.1 + \delta)\theta)}{(4 + \delta)\theta} \right) \right\}
\]
\[
+ \frac{23.14(1 - (6 + \delta)\theta)}{1 - (28.5 + \delta)\theta} \times \left\{ \exp \left(-\frac{0.618(1 - (28.5 + \delta)\theta)}{(4 + \delta)\theta} \right) - \exp \left(-\frac{1 - (28.5 + \delta)\theta}{(4 + \delta)\theta} \right) \right\}
\]
\[
+ \frac{14.28(1 - (6 + \delta)\theta)}{1 - (26.9 + \delta)\theta} \times \left\{ \exp \left(-\frac{0.575(1 - (26.9 + \delta)\theta)}{(4 + \delta)\theta} \right) - \exp \left(-\frac{0.618(1 - (26.9 + \delta)\theta)}{(4 + \delta)\theta} \right) \right\}
\]
\[
+ \frac{9.42(1 - (6 + \delta)\theta)}{1 - (27 + \delta)\theta} \times \left\{ \exp \left(-\frac{0.411(1 - (27 + \delta)\theta)}{(4 + \delta)\theta} \right) - \exp \left(-\frac{0.575(1 - (27 + \delta)\theta)}{(4 + \delta)\theta} \right) \right\}
\]
\[
+ 2 \left\{ \exp \left(-\frac{0.239(1 - (6 + \delta)\theta)}{(4 + \delta)\theta} \right) - \exp \left(-\frac{0.411(1 - (6 + \delta)\theta)}{(4 + \delta)\theta} \right) \right\}
\]
and
\[
(4.3) \quad F(\theta) := \frac{5.094 \pi (1 + \delta)}{\sqrt{6}(1 - (6 + \delta)\theta)} f(\theta) + \frac{5.094 \pi^2 (1 + \delta)}{4\sqrt{6}(1 - (6 + \delta)\theta)^2} f^2(\theta).
\]
Theorem 3. Let \(n \) with \(|n| \leq N^2 \) be a non-zero integer, and \(P, Q \) satisfy (2.1). If \(\theta < 1/30 \), then for even \(n \) we have
\[
\int_{E_1} |S(\alpha)|^2 e(n\alpha) d\alpha = \sigma(n)J(n) + R,
\]
where
\[
|R| \leq |n|N(\phi(|n|)(\log N)^2)^{-1}\{F(\theta) + O(\tilde{\tau}(n, \tilde{\tau}))/\phi^2(\tilde{\tau})\},
\]
with the \(O \) term occurring only when there exists \(\tilde{\beta} \) in Lemma 2.

The proof of Theorem 3 is the same as in [8], but we use our Lemmas 1–4, Lemma 6 and the fact that \(\prod_{p \geq 5} (1 + 1/(p - 1)^2) \leq 1.132 \) (see page 6 of [1]) so we can replace 5.205 by 5.094.

For the proof of Theorems 1 and 2, as in Lemma 20 in Section 7 of [8], we define
\[
\Theta := \Theta(\eta) := \frac{1}{\log 2} \frac{\eta \csc^2(\pi/8) \log(\log 2 \eta \csc^2(\pi/8))}{\eta \csc^2(\pi/8)},
\]
\[
H(k) := \min_{9 \leq E \leq L} \left\{ 1.7811 \left(1 - \frac{1}{E \csc^2(\pi/8)} \right)^{2k} \log E + 2.3270 \frac{1 + \log E}{E} \right\},
\]
where \(L = \log_2 N \).

Choose \(\theta = 1/98 \) and \(\eta = 1/7758 \), so \(\Theta(\eta) < \theta \). When \(k \geq 12500 \), choose \(E = 460 \) one has \(H(k) < 0.03989 \), for \(c_8 < 2.1967 \), \(c_9 < 17.2435 \) one has \(c_9(1 - \eta)^{2k - 2} < 0.6873 \), \((c_8 + \delta)F(\theta) < 0.26202 \) and \((c_9 + \delta)F(\theta) + H(k) \)
\(c_9(1 - \eta)^{2k - 2} < 0.9893 \). As in Section 7 of [8], Theorems 1 and 2 can be proved in the same way as Theorems 1 and 2 in [8].

References

Department of Mathematics
Shandong University
Jinan Shandong 250100
P.R. China
E-mail: lihz@sdu.edu.cn

Received on 12.2.1999
and in revised form on 28.9.1999 (3537)