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1. Introduction. The properties of euclidean lattices with respect to
tensor product have been studied in a series of papers by Kitaoka ([K, Chap-
ter 7], [K1]). A rather natural problem which was investigated there, among
others, was the determination of the short vectors in the tensor product
L ⊗M of two euclidean lattices L and M . It was shown for instance that
up to dimension 43 these short vectors are split, as one might hope.

The present paper deals with a similar question for tensor products of
hermitian lattices over imaginary quadratic fields or quaternion division
algebras. The main motivation for this work is in connection with modular
lattices, as defined by Quebbemann ([Q]), that is to say, even lattices that
are similar to their dual. In [B-N] it is shown how tensor product over the
ring of integers in an imaginary quadratic field can be used to shift from one
level to another (the level of a modular lattice L is the square of the rate
of the similarity mapping L∗ to L), and above all a construction of an 80-
dimensional extremal unimodular lattice from a 20-dimensional 7-modular
one by tensoring is given. It is thus of some interest to know a priori how
short vectors behave under tensor product.

In Section 2 we give the basic definitions and properties concerning her-
mitian lattices that are needed in the sequel. We establish in Section 3 a split-
ness criterion for minimal vectors (Corollary 3.4) based on a general lower
bound (Proposition 3.2). Finally, Section 4 is devoted to examples; among
others, we give an alternate proof of the extremality of Bachoc–Nebe’s 80-
dimensional lattice, and we give a new construction of the Barnes–Wall
lattices.

2. Basic definitions

2.1. Imaginary quadratic fields. Let d be a square-free positive integer,
K = Q(

√−d) and OK the ring of integers in K. The complex conjugation,
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which induces the non-trivial element in Gal(K/Q), is denoted by −. De-
note by (V, h) an m-dimensional K-vector space V , endowed with a positive
definite hermitian form h; an OK-submodule L of V is called an OK-lattice
if it is finitely generated and contains a K-basis of V .

Since h is positive definite, the “norm” function x 7→ h(x, x) admits a
minimum on such a lattice L, denoted by Nh(L), which is attained on a
finite set Sh(L).

One defines the hermitian dual of L as

(1) L# = {y ∈ V | h(y, L) ⊂ OK}.
Given twoOK-lattices M ⊂ L in (V, h), it is well known (Invariant Factor

Theorem) that there exists a basis {ei} of V and fractional ideals ai, bi in
K such that bi ⊂ ai and

(2) L = a1e1 ⊕ . . .⊕ amem, M = b1e1 ⊕ . . .⊕ bmem.

This enables us to define the generalized index of M in L as the ideal

(3) χ(L,M) =
∏

i

a−1
i bi.

In the more general case of two OK-lattices L and M in (V, h) (with no
inclusion), one gets a well defined generalized index setting

(4) χ(L,M) = χ(L,P )χ(M,P )−1,

where P is any OK-sublattice of L ∩M (for instance P = L ∩M).
The discriminant of L is defined as δL = χ(L#, L). The following propo-

sition is rather well known (see [H, Proposition 2.3]).

Proposition 2.1.1. We have:

(1) δL = det(h(ei, ej))
∏m
i=1 aiai.

(2) NK/Q(χ(L,M)) = δMδ
−1
L .

Clearly, from the above proposition, δL is a principal ideal ofK admitting
a unique non-negative generator in Q which we denote by dL.

An OK-lattice of rank m can of course be considered as a Z-lattice of
rank 2m, by setting

x · y = TrK/Q(h(x, y)).

With that convention, the norm x · x of a vector x is twice its hermitian
norm h(x, x). The dual L∗ of L with respect to that inner product is linked
to L# by

(5) L∗ = D−1
K/QL

#,

where DK/Q denotes the different of K/Q, whence the relation

(6) detL = |dK |m(dL)2,
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in which dK denotes the discriminant of K/Q. Let us finally define the invari-
ant γh(L) = Nh(L)/d1/m

L , which is related to the usual Hermite number γ(L)
by γh(L) = (

√
dK/2)γ(L), and the constant γh,m = sup{γh(L) | L ⊂ V }.

2.2. Quaternion fields. Much of the above definitions can be extended
to the case of a quaternion field H over Q. As before, the conjugation in H
is denoted by −; TrH/Q (resp. tr) denotes the trace form of H/Q (resp. the
reduced trace of H/Q), NH/Q (resp. nr) denotes the norm of H/Q (resp. the
reduced norm of H/Q). We now fix a maximal order M in H.

Let (V, h) denote an m-dimensional left vector space over H endowed
with a positive definite hermitian form h. By a left M-lattice in V , we mean
a finitely generated left M-module in V containing an H-basis of V .

Definition (1) for the hermitian dual still holds, with OK replaced by M.
Next, any M-lattice L can be written as a direct sum

(7) L = a1e1 ⊕ . . .⊕ amem,

where ai are left M-ideals in H (the only property of M which is needed for
this property to hold is heredity , which is fulfilled since M is maximal, see
[R, Theorem 2.44]).

In the non-commutative case, the definition of the index χ(L,M) has to
be slightly modified. First we assume that M ⊂ L, and that the quotient
L/M is finite. The M-module L/M is thus of finite length and admits a
composition series

L/M = L1 ⊃ . . . ⊃ Lr
in which each composition factor Li/Li+1 is isomorphic to M/Mi, where Mi

is a maximal left M-ideal. By the Jordan–Hölder theorem, the set {Mi} is
uniquely determined up to isomorphism by L/M , thus we get a well defined
index setting

χ(L,M) =
∏

nr(Mi).

In the general case, we set

χ(L,M) = χ(L,L ∩M)χ(M,L ∩M)−1 = χ(L,P )χ(M,P )−1,

for any M-sublattice P of L ∩M . The following lemma suggests an appro-
priate definition of the discriminant of L:

Lemma 2.2.1. Let L = a1e1 ⊕ . . . ⊕ amem be an M-lattice in a left
hermitian space (V, h). Then

χ(L#, L) = nr(h(ei, ej))
m∏

i=1

nr(ai)2 = d2Z,

where d is a positive element in Q.
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P r o o f. Let {e#
i } be the dual basis of {ei} (i.e. h(e#

i , ej) = δij). The
hermitian dual L# of L satisfies L# = a−1

1 e#
1 ⊕ . . . ⊕ a−1

n e#
n . It suffices to

establish the formula

χ(L#, L) = nr(h(ei, ej))
m∏

i=1

nr(ai)2,

after localizing at an arbitrary prime p. Since Mp is (left) principal for any p,
this reduces to a standard calculation, just as in the usual case, i.e. lattices
over Dedekind rings (cf. for instance [Se, chapitre III]).

For the second equality of the lemma, we only need to check that
nr(h(ei, ej)) is a square. Since h is positive definite, there exists a ma-
trix P ∈ Mm(H) and a diagonal matrix D with rational positive entries
d1, . . . , dm such that

(h(ei, ej)) = tPDP.

Let E be a splitting field of H, i.e. E ⊗Q H 'M2(E). By the definition of
the reduced norm, we have

nr(h(ei, ej)) = det(1⊗ tP ) det(1⊗D) det(1⊗ P ),

where all the determinants are calculated in E⊗QMm(H) 'M2m(E). It is
then easily checked that t(1⊗ P ) = 1 ⊗ tP , whence nr(tP ) = nrP = nrP ,
since nrP ∈ Q. Consequently, nr(h(ei, ej)) = (nrP

∏m
i=1 di)

2.

We thus define the discriminant δL of L as
√
χ(L#, L), and denote by

dL its unique positive generator in Q. With that convention, we immediately
obtain:

Proposition 2.2.2. χ(L,M) = (δM)(δL)−1.

As before, we make L into an ordinary 4m-dimensional Z-lattice, setting
x · y = tr(h(x, y)). Thus x · x = 2h(x, x) and the norm of L is twice its
hermitian norm Nh(L). The dual L∗ of L with respect to this inner product
is linked to Λ# by

(8) L∗ = D−1
H/QL

#,

where DH/Q denotes the different of H/Q. This yields the formula

(9) detL = dmH(dL)4,

in which dH = NH/Q(DH/Q) is the discriminant of H/Q with respect to the
reduced trace.

As before we define γh(L) = Nh(L)/d1/m
L , which is now related to γ(L)

by γh(L) = (d1/4
H /2)γ(L), and we set γh,m = sup{γh(L) | L ⊂ V }.
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3. Tensor product of hermitian lattices. In the (commutative) case
of imaginary quadratic fields, we define the tensor product (V1⊗KV2, h1⊗h2)
of two hermitian spaces (V1, h1) and (V2, h2) in the usual way, setting

h1 ⊗ h2(x1 ⊗ x2, y1 ⊗ y2) = h1(x1, y1)h2(x2, y2)

for split elements, which is easily seen to extend to a well defined hermitian
form on the underlying space V1⊗KV2. Notice, for instance taking orthogonal
bases, that h1 ⊗ h2 is positive definite if h1 and h2 are.

In the quaternionic case, we cannot define the “tensor product” of two
hermitian forms. We can nevertheless overcome this difficulty in the fol-
lowing way: let (V1, h1) be a right H-vector space endowed with a right
sesquilinear form h1, i.e.

h1(xα+ yβ, z) = h1(x, z)α+ h1(y, z)β,

h1(x, yα+ zβ) = αh1(x, y) + βh1(x, z)

(e.g. V1 = H viewed as a right H-module and h1(x, y) = yx). Alternatively,
let (V2, h2) be a left H-vector space endowed with a left sesquilinear form
h2, i.e.

h2(αx+ βy, z) = αh2(x, z) + βh2(y, z),

h2(x, αy + βz) = h2(x, y)α+ h2(x, z)β

(e.g. V2 = H viewed as a left H-module and h2(x, y) = xy).
The tensor product V1 ⊗H V2 is then well defined (see [Bou, chap. II,

§3]). Although there is no well defined sesquilinear form h1⊗h2 on V1⊗H V2

satisfying h1 ⊗ h2(x ⊗ y, z ⊗ t) = h1(x, z)h2(y, t) (conditions of the type
h1 ⊗ h2(x ⊗ y, za ⊗ t) = h1 ⊗ h2(x ⊗ y, z ⊗ at) cannot be satisfied unless
H is commutative), we get nevertheless a well defined Q-bilinear form f on
V1 ⊗H V2 by taking the trace of the above formula:

f(x⊗ y, z ⊗ t) := tr(h1(x, z)h2(y, t)).

Moreover, if h1 and h2 are hermitian then f is symmetric, and it is positive
definite if h1 and h2 are. One can also define the hermitian norm of an
element ω =

∑r
i=1 xi ⊗ yi in V1 ⊗H V2 by

h(ω, ω) :=
∑

i

h1(xi, xi)h2(yi, yi) + tr
∑

i<j

h1(xi, xj)h2(yi, yj),

which is well defined and linked to f by f(ω, ω) = 2h(ω, ω).
We try from now on to state the results for the quadratic and the quater-

nionic cases in a uniform way, setting K for an imaginary quadratic field or
a quaternion field, and OK for a maximal order in K (of course unique in
the quadratic case).

Our basic task is, given two OK-lattices L and M , to determine the
minimal norm of L⊗OKM , and the set Sh(L⊗OKM) on which it is attained.
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We introduce some more notation, setting

δkL := min{δM |M free OK-sublattice of L, rankOK M = k},
and dkL for its positive generator. We first prove the following lemma:

Lemma 3.1. Let ω =
∑r
i=1 xi ⊗ yi be a vector in L⊗OK M , and assume

that r is the minimal length of such a decomposition for ω (we call r the rank
of ω). Then the xi (resp. yi) generate a submodule of rank r of L (resp. M ).
Incidentally , r ≤ min{rankL, rankM}.

P r o o f. To handle simultaneously the quadratic and quaternionic cases,
we have to assume that L and M are respectively right and left OK-modules.
Let t be the rank of the (right) OK-module L̃ generated by x1, . . . , xr. Using
(2) or (7), one can write

L̃ = e1a1 ⊕ . . .⊕ etat,
where ai are (right) fractional ideals of K. Set xi =

∑t
j=1 ejai,j , ai,j ∈ aj .

If t < r, we obtain ω =
∑t
j=1 ej ⊗ (

∑r
i=1 ai,jyi), which contradicts the

minimality of r.

Proposition 3.2. Let ω be a minimal vector in L ⊗OK M of rank r.
Then its hermitian norm h(ω, ω) satisfies

h(ω, ω) ≥ r(drL)1/r(drM)1/r.

The proof is similar to Kitaoka’s proof for tensor product over Z [K,
Chapter 7], and is based on the following lemma:

Lemma 3.3. Let A and B be two positive definite hermitian matrices
in Mr(K), where K is either an imaginary quadratic field or a quaternion
field.

(1) If K is an imaginary quadratic field , then

TrAB ≥ r(detA)1/r(detB)1/r.

(2) If K is a quaternion field , then

tr(TrAB) ≥ 2r(nrA)1/(2r)(nrB)1/(2r).

P r o o f. In the quadratic imaginary case, this is a straightforward adap-
tation of the well known analogous statement for positive definite symmetric
matrices (see [K, Lemma 7.1.3]). The quaternionic case reduces to the pre-
vious case in the following way: one can find an imaginary quadratic field
E which is a splitting field for K. Then

(10) tr(TrMr(K)/K AB) = TrM2r(E)/E((1⊗A)(1⊗B)),

where 1 ⊗ A and 1 ⊗ B denote the images of A and B in M2r(E), and tr
denotes the reduced trace of K/Q. It is easily checked that 1⊗A is hermitian,
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resp. positive definite hermitian, if A already is, so that we can apply the
first part of the lemma to (10) and obtain

TrM2r (E)/E((1⊗A)(1⊗B)) ≥ 2r(det(1⊗A))1/(2r)(det(1⊗B))1/(2r)

= 2r(nrA)1/(2r)(nrB)1/(2r).

Proof of 3.2. Setting A = (h(xi, xj))1≤i,j≤r, B = (h(yi, yj))1≤i,j≤r, we
see that h(ω, ω) =

∑
i,j h(xi, xj)h(yi, yj) = TrAB ≥ r(detA)1/r(detB)1/r

in the imaginary quadratic case, and h(ω, ω) = 1
2f(ω, ω) = tr(TrAB) ≥

r(nrA)1/(2r)(nrB)1/(2r) in the quaternionic case. In both cases, the right-
hand side of the inequality is equal to r(dL̃)1/r(d

M̃
)1/r, where L̃ (resp. M̃),

denotes the submodule generated by the xi (resp. yi), whence the conclusion
upon taking lower bounds.

Corollary 3.4. Set rK = sup{r > 1 | γ2
h,r/r < 1}. If rankL ≤ rK ,

then
Sh(L⊗OK M) = {x⊗ y | x ∈ Sh(L), y ∈ Sh(M)},

for any positive definite hermitian lattice M .

P r o o f. Since h(ω, ω) is naturally bounded above by Nh(L)Nh(M), the
inequality of Proposition 3.2 implies

γh(L̃)γh(M̃) =
Nh(L̃)
(dL̃)1/r

· Nh(M̃)
(d
M̃

)1/r
≥ r,

whence γ2
h,r ≥ r, which, from the definition of rK , implies that r = 1,

completing the proof.

Example. Using the known values of γn, for n = 1, . . . , 8, and the upper
bound γn ≤ (4/π)Γ (1 + n/2)2/n for n ≥ 9, one can check that rQ(

√−3) ≥ 4.

4. Examples

4.1. K = Q(i). Let Λ24 be the Leech lattice, viewed as a hermitian
Z[i]-lattice. Denote by M0 the Hurwitz order in Q2,∞, which, together with
the inner product x·y = tr(xy) (reduced trace), is well known to be isometric
to D4 (see for instance [M, p. 225]). As Z[i] embeds in M0 (explicitly M0 =
Z[i] ⊕ Z[i]ω, where ω = (−1 + i+ j + k)/2), any M0-lattice of rank m can
be viewed as a Z[i]-lattice of rank 2m, with hermitian form

h =
(

1 −1+i
2−1−i

2 1

)
⊗ Im.

Set P = (1 + i)M0 = M0(1 + i). As a Z[i]-lattice it satisfies P# = 1−i
2 P.

Proposition 4.1.1. P⊗Z[i]Λ24 is an extremal 48-dimensional 2-modular
lattice.
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P r o o f. We have Λ#
24 = 2iΛ∗24 = 2iΛ24, and P# = 1−i

2 P, so that

(P⊗ Λ24)∗ =
1
2i

(P⊗ Λ24)# =
1
2i

P# ⊗ Λ#
24 =

1− i
2

P⊗ Λ24,

whence the 2-modularity. We have to check that Nh(P ⊗ Λ24) ≥ 8, that
is, Nh(P ⊗ Λ24) ≥ 4. Any minimal vector of P ⊗ Λ24 is of the shape ω =∑r
i=1 xi⊗yi, with r ≤ 2. Since Nh(Λ24) = Nh(P) = 2, we are done with the

split case r = 1. In the case r = 2, we have, from Proposition 3.2,

h(ω, ω) ≥ 2(d2(P))1/2(d2(Λ24))1/2 = 2
√

2(d2(Λ24))1/2.

So we only need to check that d2(Λ24) ≥ 2, which is clear since

2
(d2(Λ24))1/2

≤ γ4 =
√

2.

Remark. I owe to the referee the remark that in [B], a construction,
due to H. G. Quebbemann, of an extremal 2-modular lattice in dimension
48 is mentioned (see Theorem 6.7 of [B] and its proof), which turns out to
be equivalent to ours.

4.2. K = Q(
√−7). In [ATLAS, p. 39], a hermitian unimodular 20-

dimensional lattice L20 over OK = Z[α] (α = (1 +
√−7)/2), with (hermi-

tian) minimal norm 4 is explicitly given. As a Z-lattice, L20 is thus 7-modular
of norm 8 (extremal). From this, C. Bachoc and G. Nebe constructed in
[B-N] a 40-dimensional 3-modular lattice L40, and an 80-dimensional uni-
modular L80, and showed that they are both extremal, i.e. of norm 8. Their
construction is as follows: they first notice that the lattices A2

2 (orthogonal
sum of two copies of A2) and E8 admit a hermitian structure over OK , with
the following hermitian Gram matrices:

a2
2 =

(
1 2√−7
−2√−7 1

)
and e8 =




1 2√−7
−α√−7 0

−2√−7 1 0 −α√−7
α√−7 0 1 −2√−7

0 α√−7
2√−7 1


 .

Then they define

L40 := A2
2 ⊗OK L20 and L80 := E8 ⊗OK L20.

Theorem 4.2.1 (Bachoc & Nebe). L80 (resp. L40) is unimodular (resp.
3-modular) of minimum 8.

P r o o f. For the assertion concerning modularity, we refer to [B-N] (the
proof is similar to that of Proposition 4.1.1 above). So we only have to show
that Nh(L40) and Nh(L80) are > 3, which by Proposition 3.2, amounts to
estimating dr(L20) for r ≤ 4.
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Lemma 4.2.2. We have:

(1) d2(L20) = 8.
(2) d3(L20) = 8.

P r o o f. (1) Let M be a (free) OK-lattice of rank 2. Taking a vector x
with minimal hermitian norm h(x, x) as first element of an OK-basis {x, y}
of M , which is possible since ClK = 1, we see that

dM = h(x, x)h(y − p(y), y − p(y)),

where p denotes the orthogonal projection onto Kx. Set p(y) = βx, with
β ∈ K. Since OK is euclidean with respect to the norm, with euclidean
minimum 4/7, we can assume, replacing y by y + ux if necessary, with a
suitable algebraic integer u of OK , that ββ ≤ 4/7. Consequently,

dM ≥ h(x, x)
(
h(y, y)− 4

7h(x, x)
) ≥ 3

7h(x, x)h(y, y),

so that

d2(L20) ≥ 3
7Nh(L20)2 > 6.

Then, if M is a 2-dimensional OK-section of L20 with dM ≤ 8, it admits a
basis {x, y} satisfying

16 ≤ h(x, x)h(y, y) ≤ 56/3 < 19,

whence h(x, x) = h(y, y) = 4, and dM = 16−NK/Q(h(x, y)). Finally, we can-
not have dM = 7, since it would imply h(x, y) = 3, whence h(x− y, x− y)
= 2, which contradicts Nh(L20) = 4. Thus d2(L20) = 8, and the above
discussion shows that any minimal section M2 admits an hermitian Gram
matrix of the form

(∗)
(

4 2α
2α 4

)
.

(2) Let M3 be a minimal 3-dimensional section of L20, and suppose that
d3(L20) ≤ 8. We claim that M3 contains a minimal 2-dimensional minimal
section M2. In fact, the well known relation

dM =
dr(M)

dn−r(M#)
,

valid for any n-dimensional OK-lattice M and any r ≤ n, together with the
density inequality

Nh(M#
3 )

(d(M#
3 ))1/3

≤
√

7
2
γ6 =

√
7

2

(
64
3

)1/6

,

leads to

d2(M3) ≤ 2
√

7
(

64
3

)1/6

< 9,



124 R. Coulangeon

whence d2(M3) = 8 and M3 contains a section M2. Writing

M3 = M2 +OKx,
and denoting by p(x) the orthogonal projection of x onto the subspace KM2,
and q(x) its projection onto the orthogonal complement of KM2, we have

(∗∗) dM3 = dM2h(q(x), q(x)) = 8(h(x, x)− h(p(x), p(x))).

Moreover, p(x) ∈M#
2 , and up to isometry, M3 depends only on h(x, x) and

on the class of p(x) in M#
2 /M2. Thus we have to select representatives for

these classes. Let {e1, e2} be a basis of M2 with Gram matrix of type (∗).
It is readily checked that

M#
2 = OK α4 e1 ⊕OK α4 e2,

whence
M#

2 /M2 ' OK/(2α)×OK/(2α).

Thus, if we set f1 = α
4 e1 and f2 = α

4 e2, then the elements ε1f1 + ε2f2, as
εi ranges over the set {0, α, α2,−2, α, 1,−1,−α}, provide a set of represen-
tatives of M#

2 /M2. The hermitian norms of these elements are summarized
in the following array in which the rows (resp. columns) correspond to the
coordinate ε1 (resp. ε2).

0 α α2 −2 α 1 −1 −α
0 0 1 2 2 1 1/2 1/2 1
α 1 5/2 3/2 1 5/2 5/2 1/2 3/2
α2 2 3/2 3/2 3 5 3 2 1
−2 2 1 3 5 9/2 2 3 3/2
α 1 5/2 5 9/2 3/4 3/4 9/4 13/4
1 1/2 5/2 3 2 3/4 5/4 3/4 9/4
−1 1/2 1/2 2 3 9/4 3/4 5/4 3/4
−α 1 3/2 1 3/2 13/4 9/4 3/4 3/4

Using (∗∗), we see that if h(p(x), p(x)) ∈ Z, then h(q(x, x)) is a positive
integer so that dM3 ≥ 8. If h(p(x), p(x)) 6∈ Z but h(p(x), p(x)) ≤ 3, then
again dM3 = 8(h(x, x)− h(p(x), p(x))) ≥ 8.

So the only remaining case is p(x) ≡ ±(αf1−αf2) modM2, which could
a priori lead to dM3 = 8(4− 13/4) < 8. This would imply that αf1 − αf2 is
the projection onto KM2 of a vector x of hermitian norm 4. But then the
discriminant of the 2-dimensional OK-lattice spanned by x and e1 would be
h(x, x)h(e1, e1)−NK/Q(h(x, e1)) = 5, which is impossible since d2(L20) = 8.
This completes the proof that d3(L20) ≥ 8. Further, this actually is an
equality, since L20 contains a section of discriminant 8 ([B-N]) (the inequality
is, however, sufficient for our purpose).
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We are now able to prove Theorem 4.2.1. We first deal with L40: any
minimal vector ω admits a decomposition of rank r ≤ 2, and in the split case
r = 1, we have h(ω, ω) ≥ Nh(A2

2)Nh(L20) = 4. If r = 2, then Proposition 3.2
together with Lemma 4.2.2 implies that

h(ω, ω) ≥ 2(d2
A2

)1/2(d2(L20))1/2 = 2
√

3/7
√

8 > 3.

Consequently, Nh(L40) = 4 and L40 is extremal.
In the case of L80, the same type of argument shows that any vector

with a decomposition of rank r = 1, 2, 3 has hermitian norm > 3: we need
for this, in addition to Lemma 4.2.2, to know the actual value of dr(E8) for
r = 1, 2, 3, namely δh,r(E8) = 1, 3/7, 1/7 respectively, as one easily checks.
Finally, we have to deal with the rank 4 case, which will be done by a direct
computation, since d4(L20) is not known. Let {b1, . . . , b4} be an OK-basis
of E8, corresponding to a Gram matrix of the shape e8. Any rank 4 element
ω of L80 = E8 ⊗OK L20 can be written in the form ω =

∑4
i=1 bi ⊗ xi, where

xi ∈ L20, i = 1, . . . , 4. Then

h(ω, ω) =
4∑

i=1

h(xi, xi)+TrK/Q

(
2√−7

h(x1, x2)
)
−TrK/Q

(
α√−7

h(x1, x3)
)

− TrK/Q

(
α√−7

h(x2, x4)
)
− TrK/Q

(
2√−7

h(x3, x4)
)

=
4∑

i=1

h(xi, xi) + TrK/Q

(
α√−7

h(x1, αx2 − x3)
)

− TrK/Q

(
α√−7

h(αx3 + x2, x4)
)
.

The last two terms on the right-hand side can be bounded above, namely∣∣∣∣TrK/Q

(
α√−7

h(x1, αx2 − x3)
)∣∣∣∣ ≤ h(x1, x1) +

2
7
h(αx2 − x3, αx2 − x3)

−Nh

(
OKx1 ⊕OK α√−7

(αx2 − x3)
)

≤ h(x1, x1) +
4
7
h(x2, x2) +

2
7
h(x3, x3)

− 2
7

TrK/Q(αh(x2, x3))− 8
7
,

and similarly∣∣∣∣TrK/Q

(
α√−7

h(αx3 + x2, x4)
)∣∣∣∣ ≤ h(x4, x4) +

2
7
h(αx3 + x2, αx3 + x2)

−Nh

(
OKx4 ⊕OK α√−7

(αx3 + x2)
)



126 R. Coulangeon

≤ h(x4, x4) +
4
7
h(x3, x3) +

2
7
h(x2, x2)

+
2
7

TrK/Q(αh(x3, x2))− 8
7
.

From this it follows at once that

h(ω, ω) ≥ 1
7
h(x2, x2) +

1
7
h(x3, x3) +

16
7
≥ 24

7
> 3,

whence the conclusion.

Remark. It can be checked easily that the arguments above would ap-
ply similarly to yield an extremal 36-dimensional 3-modular lattice (resp.
an extremal 72-dimensional unimodular lattice) by tensoring over OK a
9-dimensional (hermitian) unimodular OK-lattice of (hermitian) minimum
4 with D4 (resp. E8), as before. Unfortunately, it has been shown by Schie-
mann, using Kneser’s neighbouring algorithm [Sc], that such a 9-dimensional
unimodular OK-lattice, which would be extremal 18-dimensional 7-modular
as a Z-lattice, does not exist.

4.3. Barnes–Wall lattices. By a recursive application of tensor product,
we construct two families of lattices, one of which can be identified a poste-
riori with the Barnes–Wall lattices.

Let H = Q2,∞. We consider M0 and P as defined in Subsection 4.1.
Viewed as Z[i]-hermitian lattices, they are endowed with the hermitian form
h0, the matrix of which in the Z[i]-basis {1, ω = (−1 + i+ j + k)/2} of M0 is

(
1 −1+i

2−1−i
2 1

)
.

As left (resp. right) M0-lattices they are endowed with the hermitian form
hl(x, y) = x · y (resp. hr(x, y) = y · x). This will be implicit, depending
on the context, in the following. Next in the orthogonal direct sum of two
copies of M0 we consider the submodule {(x, y) | x ≡ ymod P}, which is
isometric to E8 as a Z-lattice (see [M, chapitre IV, §8]). In order to define
the Barnes–Wall series we need the following lemma:

Lemma 4.3.1. (1) Let (M,h) be a left Z[i]-lattice. Then P ⊗Z[i] M is
canonically a left M0-lattice for a suitable hermitian form over M0.

(2) Let (N,h) be a left M0-lattice. Then E8 ⊗M0 N is canonically a
Z[i]-lattice for a suitable hermitian form over Z[i].

P r o o f. (1) Under the identification M0 = Z[i]⊕Z[i]ω, we get a structure
of (M0,Z[i])-bimodule (left multiplication by M0, right multiplication by
Z[i]), and consequently a well defined left-M0-module structure on the tensor
product P⊗Z[i]M . It remains to prove that the inner product TrQ(i)/Q(h0⊗h)
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comes from an hermitian form h̃ over M0 on P⊗Z[i] M , i.e.

TrQ(i)/Q(h0 ⊗ h) = tr(h̃).

From [St, addendum to trace lemma 2.6], it amounts to checking that

TrQ(i)/Q(h0(αx1, y1)h(x2, y2)) = TrQ(i)/Q(h0(x1, αy1)h(x2, y2)),

α ∈M0, xi ∈ P, yi ∈M,

which is satisfied since

TrQ(i)/Q(h0(x1, y1)h(x2, y2)) = tr(x1y1h(x2, y2)),

by definition of h0.
(2) As before we see that E8 is a (Z[i],M0)-bimodule, and thus E8⊗M0N

is a Z[i]-module by left multiplication, and we just have to check that

tr(hr(αx1, y1)h(x2, y2)) = tr(hr(x1, αy1)h(x2, y2)),

α ∈ Z[i], xi ∈ E8, yi ∈ N,
which is obviously fulfilled.

We now define two infinite series: L2 = M0 and, for k ≥ 1,

L2k+1 = E8 ⊗M0 L2k, L2k+2 = P⊗Z[i] L2k+1

and similarly M1 = Λ24 viewed as a M0-lattice, and, for k ≥ 1,

M2k+1 = E8 ⊗M0 M2k, M2k = P⊗Z[i] M2k−1.

Proposition 4.3.2. (1) Ln is a 2n-dimensional lattice with minimal
norm 2bn/2c, unimodular if n is odd , 2-modular if n is even.

(2) Mn is a 12 · 2n-dimensional lattice with minimal norm 2bn/2c+2,
unimodular if n is odd , 2-modular if n is even.

P r o o f. We only give the proof of the first assertion (the second is simi-
lar). Using the results of Section 2, one easily checks that L∗n = Ln for n odd
and (1 + i)L∗n = Ln for n even, whence the modularity. Then we can com-
pute the minimal norm recursively, using the results of Section 3. Assuming
first that N(L2k) = 2k, let us prove that N(E8 ⊗M0 L2k) = N(L2k) = 2k.
Since rankM0 E8 = 2, the rank of vectors in E8 ⊗M0 L2k is at most 2. Since
Nh(E8) · Nh(L2k) = 2k−1, the hermitian norm of split vectors is at least
2k−1. For non-split vectors, we only need to check, using Proposition 3.2,
that

2d2(E8)1/2d2(L2k)1/2 ≥ 2k−1.

Since d2(E8) = dE8 = 1/2 from (9), it amounts to proving that

d2(L2k) ≥ 22k−3 = 1
2Nh(L2k)2.
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Now M0 is (right and left) euclidean, with euclidean minimum 1/2, and a
similar argument to the one we used in the proof of Lemma 4.2.2 gives the
desired result.

If we now assume that N(L2k+1) = 2k, we prove in the same way that
N(P ⊗Z[i] L2k+1) = 2k+1; this is clear for split vectors, and for non-split
ones we just have to check that d2(L2k+1)2 ≥ 22k−3 = 1

2Nh(L2k+1)2, which
is again clear since Z[i] has euclidean minimum 1/2.

Remark. One can prove that Ln is isometric to the Barnes–Wall lattice
BWn for any n. This amounts to an elementary (but tedious) identification,
using E. S. Barnes and G. E. Wall’s original paper [B-W]. As pointed out
by the referee, the recursive construction of BWn is well known, and Propo-
sition 4.3.2 is just a reformulation of the so-called construction E (see [C-S,
Chapter 8]).

4.4. Concluding remarks. We conclude with examples which illustrate
the fact that tensoring often fails to give dense lattices. This is related to the
following lemma, which is the “hermitian” version of a result by R. Steinberg
(see [M-H, Chapter 2, Theorem 9.6]):

Lemma 4.4.1. Let L be an m-dimensional hermitian OK-lattice, where
K is either an imaginary quadratic field or a quaternion field over Q.

(1) L# ⊗OK L ' HomOK (L,L).
(2) The hermitian norm of L# ⊗OK L is at most m.

P r o o f. (1) First recall that if (L, h) is a left hermitian lattice, then (L, h)
is canonically a right hermitian lattice, where L = L as an additive group,
and the right module structure is defined by l · α = αl, l ∈ L, α ∈ OK .
So the tensor product L# ⊗L is well defined, even in the non-commutative
case. The isomorphism is thus given by

L# ⊗OK L ' HomOK (L,L), x⊗ y 7→ z 7→ h(z, x)y.

(2) Under the above isomorphism, the identity element in HomOK (L,L)
corresponds to

∑m
i=1 e

#
i ⊗ei, where {ei} is any basis of L, and {e#

i } its dual
basis, and its hermitian norm is easily checked to be m.

Example 1. It is shown in [H, Section 6], that there is only one irre-
ducible unimodular 3-dimensional hermitian lattice L over Z[(1 +

√−7)/2],
with hermitian norm 2. So, from the previous lemma, L ⊗Z[(1+

√−7)/2] L
has hermitian norm at most 3, and at least 3 from Proposition 3.2. Let
ω =

∑3
i=1 xi ⊗ yi be a minimal vector. The equality h(ω, ω) = 3 implies

that all inequalities in Proposition 3.2, for r = 3, are in fact equalities. In
other words, {xi} is a basis of L, and there is a unitary automorphism σ of L
such that yi = σ(x#

i ), where {x#
i } denotes the dual basis of {xi}. Moreover,

one easily checks that the map which to any minimal vector
∑3
i=1 xi⊗σx#

i
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associates the unitary automorphism σ is a well defined bijection between
Sh(L ⊗ L) and the group Auth(L) of unitary automorphisms of L. As a
Z-lattice, L⊗ L is thus a non-extremal (norm 6) 7-modular 18-dimensional
lattice. This is the lattice denoted by [±(L2(7) £2√−7 L2(7)) · 2]18 in [N-P,
p. 44], and the number of minimal vectors which is given there is in accor-
dance with |Auth(L)| = 336 as mentioned in [H].

Example 2. Let L1 and L2 be two hermitian unimodular lattices of rank
3 over an (essentially unique) maximal order M in the quaternion field Q3,∞,
of minimal hermitian norm 2 (it is known that at least one such lattice exists,
namely the Coxeter–Todd lattice K12, see for instance [B, Theorem 6.6]).
The same argument as above leads to the following alternative: either L1

and L2 are isometric as hermitian lattices, whence L1 ⊗M L2 has hermitian
norm 3 (the minimal vectors being in one-to-one correspondence with the
hermitian isometries from L1 onto L2), or they are not, whence L1 ⊗M L2

has hermitian norm 4, and, as a Z-lattice, is an extremal 3-modular 36-
dimensional lattice. Unfortunately, one can check (see the proof of Theo-
rem 6.6 in [B]) that up to isometry there is only one hermitian unimodular
lattice of rank 3 over M.

Remark. For the same reason, the construction Λ24 ⊗M K12, where
Λ24 is the Leech lattice, fails to give an extremal unimodular 72-dimensional
lattice. So the classification in low dimensions tends to confirm the widely
held opinion that extremal lattices of level respectively 1, 3, 7 and dimension
72, 36, 18 do not exist.
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