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1. Introduction

1.1. The 3x + 1 problem. The 3x+1 problem is known under different
names. It is also often called Collatz’s problem, Ulam’s problem, Syracuse
problem and by some other names. The problem can be stated as follows.

Consider the following simple transformation of positive integers:

(1) f(x) =
{

(3x+ 1)/2 if x is odd,
x/2 if x is even.

Consider further its iteration g defined recursively as

(2) g(a, 0) = a, g(a, k + 1) = f(g(a, k)),

i.e. g(a, k) = f(f(. . . f(a) . . .)) where f is applied k times. Finally, define a
relation Syr between positive integers a and b by

(3) Syr(a, b) ⇔ ∃m g(a,m) = b.

We say that a number m such that g(a,m) = b realizes Syr(a, b), which
clearly means that m successive applications of f transform a into b.

It can be verified, by hand for very small values of a and by com-
puter for relatively small values of a, that Syr(a, 1) holds and hence the
sequence of iterated values a, f(a), f(f(a)), . . . eventually becomes peri-
odic: . . . , 1, 2, 1, 2, 1, 2, . . . The problem is to prove that this is in fact true
for all a.

The literature devoted to this deceptively simply stated problem is very
vast; the reader can consult [6] for an introduction to this field and [7],
[8] and [19] for the recent state of the art. It should be noticed that the
simulation of this computation by very small computing systems has been
devised: see, for instance, [14] and a more recent paper [10].
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1.2. The language of binomial expressions. In the first half of the XX cen-
tury the process of formalization of mathematics reached some culminating
point thanks to Gödel [3] who showed that many mathematical statements
can be expressed by arithmetical formulas, i.e. by formulas of the form

(4) Q1 x1 Q2 x2 . . . Qk xkG(x1, x2, . . . , xk)

where the Q’s are universal or existential quantifiers, the variables x1, . . . , xk
range over the set of natural numbers, and G is a quantifier-free formula
constructed, according to conventional rules, from x1, . . . , xk and particular
natural numbers by the arithmetical operations of addition, subtraction and
multiplication, the relation of equality and the logical operations AND, OR
and NOT.

About forty years later, Davis–Matiyasevich–Putnam–Robinson estab-
lished the negative answer to Hilbert’s tenth problem, by proving that if all
the universal quantifiers in (4) are bounded (which is often the case) then
they can be replaced by extra existential quantifiers, which together with
other simplifications leads to purely existential formulas of the form

(5) ∃x1 ∃x2 . . . ∃xm P (x1, . . . , xm) = 0

where x1, . . . , xm range over the set of natural numbers and P (x1, . . . , xm)
is a polynomial with integer coefficients (see, for example, [1] or [13] where
the Goldbach conjecture and the Riemann hypothesis are expressed as the
undecidability of particular Diophantine equations).

It is interesting to note that the binomial coefficients played the key role
at the intermediate steps in transformation of (4) into (5) starting from the
pioneer work [2] and finishing with modern techniques presented in [13]. But
what could be the reason to allow binomial coefficients in final arithmetical
formulas now that we know thanks to (5) that the binomial coefficients can
be eventually eliminated?

At least two different answers to this question can be given.
First, an arithmetical formula with binomial coefficients can be much

shorter than an equivalent arithmetical formula containing only operations
of addition, subtraction and multiplication.

Second, when congruence with fixed modulus is used as the predicate
symbol instead of the equality relation (as in Theorem 1 below), the exis-
tential quantifiers can, under some conditions, be replaced by summation
(as in Corollary 3 below). In its turn, recently we witness a spectacular
progress in computer search of closed forms for sums of products of bino-
mial coefficients (see [15, 18] for accounts on this approach and for examples
of non-trivial results obtained this way). This use of computers has the fol-
lowing nice feature: even if it took several CPU hours to find a closed form,
the verification of the identity found can be feasible for a human being,
which opens new ways to attacking old problems.
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That is why it is so interesting to translate mathematical problems, when
possible, to the language of binomial coefficients. This language turned out
to have surprisingly great expressive power. For example, recently the sec-
ond author [12] (see also [17]) was able to restate in this way the famous
Four Colour Conjecture. In [4] Fermat’s last theorem was translated into the
language of binomial expressions. Earlier examples are the Mann–Shanks
[9] criterion of primality in terms of divisibility of several binomial coef-
ficients and the second author’s criteria [11] of primality, twin primality,
Mersenne and Fermat numbers primality expressed in terms of divisibility
or non-divisibility of a single binomial coefficient at the expense of using
exponentiation and division.

In Section 2.4 we present 3 restatements of the 3x+ 1 problem by arith-
metical formulas with binomial coefficients.

2. Modelling the 3x+ 1 problem

2.1. Preliminary tools. Let a, b be natural numbers (by which we under-
stand non-negative integers). Their binary representations will respectively
be written as

∑m
i=0 αi2

i with αi ∈ {0, 1}, and
∑m
i=0 βi2

i with βi ∈ {0, 1}.
It is clear that by padding with initial zeros, it may be assumed that the
above summations run over the same range for both a and b.

Define now the following relation between a and b:

(6) a � b ⇔ ∀i αi ≤ βi,
which is independent of the value of m used for the binary representation of
both a and b. The relation a � b is read: “b masks a” or “a is masked by b”.

As an example, take
c 1 0 0 1 1 0 0 1

b 1 0 0 1 0 0 0 1

a 1 0 0 0 1 0 0 1

Here a � c, b � c but a 6� b.
It turned out that the masking relation can be easily expressed via bi-

nomial coefficients:

Lemma 1. For any natural numbers a and b we have

(7) a � b ⇔
(
b

a

)
≡ 1 (mod 2).

P r o o f. The lemma follows immediately from a theorem due to Kummer
[5] (for modern presentation see, for example, [16]). For completeness, a proof
of Kummer’s theorem is given in the appendix.
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Another relation, very useful in the sequel, is defined as follows:

(8) a ⊥ b ⇔ ∀i αiβi = 0 ⇔
∑

i

αiβi = 0.

The relation of orthogonality a ⊥ b can be expressed by means of the
masking relation (and hence by binomial coefficients as well):

Lemma 2. For any natural numbers a and b, a ⊥ b if and only if a � a+b.

P r o o f. Consider the occurrence of the first carry, if any, when adding a
and b.

In its turn, it is easy to express by means of ⊥ the property of being a
power of 2:

Lemma 3. For any positive number v, there is a number k such that
v = 2k if and only if v ⊥ v − 1.

In order to avoid subtractions in formulas, we shall work with numbers
which are powers of 2 minus 1.

Lemma 4. Let w+1 = 2k for some k. A natural number u is of the form∑m
i=0(4w + 4)i for some m if and only if u � (4w + 4)u+ 1.

P r o o f. The binary notation of a number u of the required form looks
like

(9) 1 0 . . . 0︸ ︷︷ ︸
k+1

1 0 . . . 0︸ ︷︷ ︸
k+1

1 . . . 1 0 . . . 0︸ ︷︷ ︸
k+1

1

and is completely characterized by the following properties:

• the binary digits of u in positions 21, 22, . . . , 2k+1 are 0;
• every (i+ k + 2)nd digit is less than or equal to the ith digit.

Multiplication by 4w + 4 corresponds to shifting to k + 2 digits so the
number (4w + 4)u + 1 also has zeros in positions 21, 22, . . . , 2k+1 and
thus the condition u � (4w + 4)u+ 1 is equivalent to the two above stated
characteristic properties.

2.2. Representations of finite sequences. Consider a finite sequence of
natural numbers

(10) X = 〈x1, . . . , xm〉.
Let w + 1 = 2k be a power of 2 so high that

(11) xi < 4w + 4, i = 1, . . . ,m.
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We shall say that the number

(12) Q =
m∑

i=1

xi(4w + 4)i−1

w-represents the sequence (10) or is the w-representation of the sequence
(10). Thanks to condition (11), the binary notation of Q is constituted by
the binary notations of x1, . . . , xm padded, if necessary, with leading zeros
to the length k + 2.

Here is an example: the binary notation of the number which 31-repres-
ents the sequence 〈18, 9, 14, 7〉 is

(13) 0000111︸ ︷︷ ︸
7

0001110︸ ︷︷ ︸
14

0001001︸ ︷︷ ︸
9

0010010︸ ︷︷ ︸
18

.

We see that the three numbers, Q, w, and m, uniquely determine the
original sequence (10). Namely, in order to restore the sequence, it is suffi-
cient to cut the binary notation of Q into m blocks of length k + 2.

We shall say that the number (12) strongly w-represents the sequence
(10) or is the strong w-representation of (10) if the following condition
(stronger than (11)) is satisfied:

(14) xi < 2w + 2, i = 1, . . . ,m.

We could express via binomial coefficients the relation “Q is a strong
w-representation of a sequence”. However, having in mind our final goal,
the 3x+ 1 problem, we proceed to another representation of sequences.

Define four functions π, %, σ, τ on the natural numbers in the following
way: if x = 2z + y with y ∈ {0, 1}, then

π(x) = 1− y, %(x) = y,

σ(x) = (1− y)z, τ(x) = yz.

The functions π and % determine the parity of their arguments, and the
values of σ(x) and τ(x) are equal either to bx/2c or to 0 depending on the
parity of x. Accordingly, for every x,

(15) x = 2σ(x) + 2τ(x) + %(x).

Moreover, it is easy to check that, according to (1), the value of f(x) also
can be expressed as a linear combination of the same numbers:

(16) f(x) = σ(x) + 3τ(x) + 2%(x).

We shall use the following notation: if ϕ is a function from N into N then

(17) ϕ(〈x1, . . . , xm〉) = 〈ϕ(x1), . . . , ϕ(xm)〉.
Let Q be the number strongly w-representing some sequence (10). Let P ,

R, S, and T be the numbers representing the sequences π(X), %(X), σ(X),
τ(X) respectively.
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Continuing our example (13), we found the following binary representa-
tions:

Q 0000111 0001110 0001001 0010010
P 0000000 0000001 0000000 0000001
R 0000001 0000000 0000001 0000000
S 0000000 0000111 0000000 0001001
T 0000011 0000000 0000100 0000000

The numbers P and R indicate the positions of even and odd elements
in the sequence (10) respectively. Together with the numbers S and T , this
gives full information about the values of all elements in the sequence (10).
We shall say that the four numbers P , R, S, and T form the detailed w-
representation of (10).

According to (15), the number Q can be reconstructed as Q = 2S +
2T +R. What is important is the fact that from the detailed representation
of the sequence (10) we can also easily construct a number F which is the
w-representation of the sequence f(X). Namely, it follows from (16) that

(18) F = S + 3T + 2R.

Note that F need not be a strong representation, however, the condition
(14) implies that f(xi) < 4w + 4, as required by the definition of a w-
representation.

Let w + 1 be a power of 2. Suppose that we are given four numbers p,
r, s, and t. We are now going to state a condition which is necessary and
sufficient for these numbers to form the detailed w-representation of some
sequence (10).

First of all, p and r should be orthogonal:

(19) p ⊥ r.
Second, the number p + r should be of the form (9), i.e., according to

Lemma 4 it should satisfy

(20) p+ r � (4w + 4)(p+ r) + 1.

Now it remains to impose conditions which would restrict the positions
at which the binary digits of s and t could be equal to 1, namely,

(21) s � wp, t � wr
(note that the binary notation of w looks like 1 . . . 1).

Summing up, we get

Lemma 5. Let w + 1 be a power of 2. Then four numbers p, r, s, and t
form the detailed w-representation of some sequence if and only if they sat-
isfy conditions (19), (20), and (21).
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2.3. Representation of the Syr relation. Without loss of generality we
can restrict ourselves to even initial numbers, i.e., the 3x+1 problem can be
stated as ∀a Syr(2a, 1) and as ∀aSyr(2a, 2). Suppose now that some positive
integer m realizes Syr(2a, b) for given a and b. This means that the equation

(22) f(〈2a, x1, . . . , xm−1〉) = 〈x1, . . . , xm−1, b〉
has a solution

(23) xi = g(2a, i), i = 1, . . . ,m− 1.

On the other hand, it is easy to see from the definitions (2) and (17) that
every solution of (22) has the form (23) and, moreover, f(xm−1) = b.

If w + 1 is a power of 2 so high that

(24) 2a < 2w + 2

and numbers p, r, s, and t form the detailed w-representation of some se-
quence 〈x1, . . . , xm−1〉 then it is easy to see that the numbers

(4w + 4)p+ 1, (4w + 4)r, (4w + 4)s+ a, (4w + 4)t

form the detailed representation of the sequence 〈2a, x1, . . . , xm−1〉 which is
the argument of f in (22). Thus, according to (18), the number

3((4w + 4)t+ a) + 2(4w + 4)r + (4w + 4)s

w-represents the sequence from the left-hand side in (22).
On the other hand, it is easy to check that if, in addition,

(25) b ≤ w,
then the sequence from the right-hand side of (22) is w-represented by the
number 2(s+ t) + r + (4w + 4)m−1b. Thus we can rewrite (22) as

(26) 2(s+ t) + r + (4w + 4)m−1b

= 3((4w + 4)t+ a) + 2(4w + 4)r + (4w + 4)s.

According to Lemma 3, the condition that w + 1 is a power of 2 can be
written as

(27) w + 1 ⊥ w.
To eliminate the exponentiation which occurs in (26) it is sufficient to

note that

(28) (4w + 4)m−1 = (4w + 3)(p+ r) + 1.

We can now sum up our argument in

Lemma 6. Syr(2a, b) holds if and only if there are natural numbers w, p,
r, s and t such that
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a ≤ w,(29)

b ≤ w,(30)

w ⊥ w + 1,(31)

p ⊥ r,(32)

p+ r � 4(w + 1)(p+ r) + 1,(33)

s � pw,(34)

t � rw,(35)

(36) 2s+ 2t+ r + b((4w + 3)(p+ r) + 1)

= 3((4w + 4)t+ a) + 2(4w + 4)r + (4w + 4)s.

Using Lemmas 1–3, we can translate the above formulas into the lan-
guage of binomial coefficients and obtain:

Theorem 1. For any positive natural numbers a and b, Syr(2a, b) holds
if and only if there are natural numbers w, p, r, s and t such that a ≤ w,
b ≤ w and(

2w + 1
w

)(
p+ r

p

)(
4(w + 1)(p+ r) + 1

p+ r

)(
pw

s

)(
rw

t

)

×
(

2s+ 2t+ r + b((4w + 3)(p+ r) + 1)
3((4w + 4)t+ a) + 2(4w + 4)r + (4w + 4)s

)

×
(

3((4w + 4)t+ a) + 2(4w + 4)r + (4w + 4)s
2s+ 2t+ r + b((4w + 3)(p+ r) + 1)

)
≡ 1 (mod 2).

Remark 1. We assume that
(
m
n

)
= 0 unless 0 ≤ n ≤ m and use this

assumption when translating the equality (36).

Remark 2. Thanks to our special choice of w, conditions (29) and (30)
can be written as

(37) a � w, b � w
and hence can be replaced in the statement of the theorem by two extra
binomial coefficients. Another way to get rid of these inequalities would be
to replace w everywhere by w + a+ b.

2.4. Restatements of the 3x+ 1 problem. We can obtain restatements of
the 3x + 1 problem from Theorem 1 by substituting either b = 1 or b = 2.
In the former case we get

Corollary 1. The 3x + 1 conjecture is true if and only if for every
positive integer a there are natural numbers w, p, r, s and t such that a ≤ w
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and
(

2w + 1
w

)(
p+ r

p

)(
4(w + 1)(p+ r) + 1

p+ r

)(
wp

s

)(
wr

t

)

×
( 2s+ 2t+ r + (4w + 3)(p+ r) + 1

3((4w + 4)t+ a) + 2(4w + 4)r + (4w + 4)s

)

×
(3((4w + 4)t+ a) + 2(4w + 4)r + (4w + 4)s

2s+ 2t+ r + (4w + 3)(p+ r) + 1

)
≡ 1 (mod 2).

Substituting b = 2, we can further reduce the number of variables and
binomial coefficients. Namely, in this case the equality (36) allows us to give
an explicit expression of r in terms of the other variables:

(38) r = 2t+ 2(4w + 3)p+ 2− 3((4w + 4)t+ a)− (4w + 2)s.

Substituting this value of r into other conditions we get

Corollary 2. The 3x + 1 conjecture is true if and only if for every
positive integer number a there are natural numbers w, p, s and t such that
a ≤ w and
(

2w + 1
w

)(
wp

s

)

×
(
p+ 2t+ 2(4w + 3)p+ 2− 3((4w + 4)t+ a)− (4w + 2)s

p

)

×
(4(w + 1)(p+ 2t+ 2(4w + 3)p+ 2− 3((4w + 4)t+ a)− (4w + 2)s)+1

p+ 2t+ 2(4w + 3)p+ 2− 3((4w + 4)t+ a)− (4w + 2)s

)

×
(
w(2t+ 2(4w + 3)p+ 2− 3((4w + 4)t+ a)− (4w + 2)s)

t

)
≡ 1 (mod 2).

Note that if we fix the values of a, b, w and m satisfying (29)–(31), then
there is at most one way to assign values to p, r, s and t satisfying (28)
and (32)–(36). In order to avoid exponentiation, we would rather fix the
value of v = p+ r which, according to (28), uniquely determines m; we then
eliminate p by substituting v − r for it. Now we can replace quantification
over r, s and t by summation over the same variables:

Corollary 3. The 3x + 1 conjecture is true if and only if for every
positive integer a there are natural numbers w and v such that a ≤ w and
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(
2w + 1
w

)(
4(w + 1)v + 1

v

) ∞∑
r=0

∞∑
s=0

∞∑
t=0

(
v

r

)

×
(
w(v − r)

s

)(
wr

t

)

×
(

2s+ 2t+ r + (4w + 3)v + 1
3((4w + 4)t+ a) + 2(4w + 4)r + (4w + 4)s

)

×
(

3((4w + 4)t+ a) + 2(4w + 4)r + (4w + 4)s
2s+ 2t+ r + (4w + 3)v + 1

)
≡ 1 (mod 2).

Remark 3. The triple sum, formally defined as infinite, is in fact finite
thanks to “natural bounds”: if r > v, s > w(v − r) or t > wr, then the
corresponding binomial coefficient is zero.

Remark 4. Besides the above mentioned natural upper bounds for vari-
ables there is another important property which gives hope for successful
application of the summation technique from [15, 18], namely, the summa-
tion variables r, s and t enter only linearly.
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Appendix: Kummer’s Theorem

Theorem (Kummer [5]). If p is a prime number , then its exponent in
the canonical expansion of the binomial coefficient

(
a+b
a

)
into prime factors

is equal to the number of carries required when adding the numbers a and b
represented in base p.

To prove this, note that the identity

(39)
(
a+ b

a

)
=

(a+ b)!
a! b!

implies that

(40) vp

((
a+ b

a

))
= vp((a+ b)!)− vp(a!)− vp(b!),

where vp(k) is the exponent of p in the prime factorization of k. It is not
difficult to see that

(41) vp(k!) =
⌊
k

p

⌋
+
⌊
k

p2

⌋
+ . . . ,
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because among the numbers 1, . . . , k, there are exactly bk/pc numbers di-
visible by p, exactly bk/p2c numbers divisible by p2, and so on. Thus,

(42) vp

((
a+ b

a

))
=
∑

l≥1

(⌊
a+ b

pl

⌋
−
⌊
a

pl

⌋
−
⌊
b

pl

⌋)
.

Now it suffices to note that in this sum, the lth summand is either 1 or 0,
depending on whether or not there is a carry from the (l − 1)th digit.
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