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Pure and mixed exponential sums

by

Todd Cochrane (Manhattan, KS) and Zhiyong Zheng (Guangzhou)

1. Introduction. In this paper we evaluate and estimate pure and mixed
exponential sums of the type

(1.1) S(f, pm) =
pm∑
x=1

epm(f(x)), S(χ, f, pm) =
pm∑
x=1
p-x

χ(x)epm(f(x)),

where pm is a prime power with m ≥ 2, χ is a multiplicative character
(mod pm), epm(·) is the additive character,

epm(x) = e(x/pm) = e2πix/pm ,

and f is a polynomial with integer coefficients. Let d = d(f) denote the
ordinary degree of f and dp(f) denote the degree of f read (mod p). We
focus our attention on mixed exponential sums in this section and take up
a discussion of pure exponential sums in Section 2.

If m = 1 it is a well known consequence of the work of Weil [21] on the
Riemann Hypothesis for curves over a finite field (see e.g. Schmidt [18]) that
if dp(f) ≥ 1, then for any multiplicative character χ (mod p),

(1.2) |S(χ, f, p)| ≤ dp(f)p1/2.

(We note that when p | dp(f) the upper bound in (1.2) is trivial.)
For values of m ≥ 2 it has been conjectured by authors such as E. Bom-

bieri, M. C. Liu, and W. M. Schmidt that an upper bound analogous to
the upper bound (2.3) of Hua for pure exponential sums may be available.
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Bombieri, in communication with the second author, has stated his con-
jecture as follows: For any f(X) ∈ Z[X] of degree d with dp(f) ≥ 1 we
have

(1.3) |S(χ, f, pm)| � max{pm/2, pm(1−1/d)}.
We establish here that this upper bound does in fact hold for all but a very
exceptional class of polynomials f and characters χ. For this exceptional
class one needs exponent m(1−1/(d+ 1)); see Example 9.2. In Corollary 1.1
we establish a uniform upper bound with the exponent m(1−1/(d+ 1)). In
many cases, as our main theorem, Theorem 1.1, makes it plain, we obtain
an even better upper bound than (1.3).

To state our main theorem, let ordp(x) denote the normal exponent
valuation on the p-adic field. In particular, for x 6= 0 ∈ Z, pordp(x) ‖x. For
convenience, we set ordp(0) =∞. For any nonzero polynomial f = f(X) =
a0 + a1X + . . .+ adX

d ∈ Z[X] we define

(1.4) ordp(f) := min
0≤i≤d

{ordp(ai)}.
Suppose now that p is an odd prime. Throughout this paper the letter

a denotes a fixed primitive root (mod p) chosen so that a > 0 and

(1.5) ap−1 = 1 + rp with p - r.
In particular a is a primitive root (mod pm) for any exponent m. Let χ be a
multiplicative character (mod pm) and let c = c(χ, a) be the unique integer
with 0 < c ≤ pm−1(p− 1) and

(1.6) χ(ak) = e

(
ck

pm−1(p− 1)

)

for every integer k. Thus for instance, if χ = χ0, the principal character, then
c = pm−1(p−1) and if χ is the quadratic character, then c = pm−1(p−1)/2.
A character χ is primitive if and only if p - c.

For any polynomial f over Z we define

(1.7) t = t(f) := ordp(f ′(X)), t1 = t1(f) := ordp(rXf ′(X) + c),

where f ′ = f ′(X) denotes the derivative of f(X). If p > dp(f) ≥ 1 then
t = t1 = 0. Also, since p - r it is plain that t1 = min{t, ordp(c)} ≤ m − 1.
We define the set of critical points associated with the sum S(χ, f, pm) to
be the set

(1.8) A = A(χ, f, p) := {α1, . . . , αD}
of nonzero residues (mod p) satisfying the congruence

(1.9) p−t1(rxf ′(x) + c) ≡ 0 (mod p).

It is easy to check that this congruence does not depend on the choice of
the primitive root a. Strictly speaking, A is a set of points in the finite field
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Fp, but at times it will be convenient for us to regard A as a specific set
of integer representatives for the points in this set. To keep our notation
simple, for any integer α, we shall simply write α ∈ A if the residue class of
α (mod p) is in A. For any α ∈ A let ν = να denote the multiplicity of α
as a zero of the congruence (1.9). Since the polynomial in (1.9) is nonzero
(mod p) we have

∑
α∈A να ≤ d.

Write

S(χ, f, pm) =
p−1∑
α=1

Sα,

where for any integer α with p -α,

(1.10) Sα = Sα(χ, f, pm) :=
pm∑
x=1

x≡α (mod p)

χ(x)epm(f(x)).

Theorem 1.1. Let p be an odd prime, f be any polynomial over Z and
t, t1 be as defined in (1.7). Suppose that m ≥ t1 + 2. Then for any integer α
with p -α we have:

(i) If α 6∈ A, then Sα(χ, f, pm) = 0.
(ii) If α is a critical point of multiplicity ν ≥ 1 then t = t1 and

(1.11) |Sα(χ, f, pm)| ≤ νpt/(ν+1)pm(1−1/(ν+1)).

(iii) If α is a critical point of multiplicity one then

Sα(χ, f, pm) =
{
χ(α∗)epm(f(α∗))p(m+t)/2 if m− t is even,
χ(α∗)epm(f(α∗))χ2(Aα)Gpp(m+t−1)/2 if m− t is odd ,

where α∗ is the unique lifting of α to a solution of the congruence

p−t(Rxf ′(x) + c) ≡ 0 (mod p[(m−t+1)/2]),

and
Aα ≡ 2αp−t(f ′(α) + αf ′′(α)) (mod p).

In particular , we have equality in (1.11).

Here Gp is the classical Gauss sum,

Gp :=
p−1∑
x=0

ep(x2) =
p−1∑
x=1

χ2(x)ep(x)(1.12)

=
{√

p if p ≡ 1 (mod 4),
i
√
p if p ≡ 3 (mod 4),

χ2 is the quadratic character (mod p), and R is the p-adic integer

R := p−1 log(1 + rp) = p−1
∞∑

i=1

(−1)i+1(rp)i

i
≡ r (mod p).
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It follows immediately that under the hypotheses of the theorem

(1.13) |S(χ, f, pm)| ≤
(∑

α∈A
να

)
pt/(M+1)pm(1−1/(M+1)),

where M is the maximum multiplicity of the critical points. Also, if all of the
critical points are of multiplicity one then we obtain an explicit formula for
the sum S(χ, f, pm). The proof of Theorem 1.1 is given in Sections 6 and 7,
and the case p = 2 is dealt with in Section 8. Our strategy for estimating the
mixed exponential sum Sα is to “untwist” the sum and express it explicitly
in terms of a pure exponential sum (see Proposition 6.1). In order to estimate
the resulting pure exponential sum we prove a conjecture of Chalk regarding
a local type upper bound on pure exponential sums. This will be discussed
in Section 2. The proof is “elementary” and self-contained aside from an
appeal to the upper bound of Weil, (2.2), for pure exponential sums.

Remarks. 1. The proof we give here actually yields a result more akin to
the Riemann Hypothesis. If m ≥ t1+2 and α is a critical point of multiplicity
ν then we find that Sα(χ, f, pm) can be expressed as a sum z1 + . . .+ zk of
complex numbers zj of moduli pwj/2, 1 ≤ j ≤ k, where the weights wj are
nonnegative integers satisfying

wj
2
≤ m

(
1− 1

ν + 1

)
+

t

ν + 1
.

If t = 0 then k ≤ ν and so the upper bound in (1.11) is an immediate
consequence. Moreover, we see that the exponent in (1.11) as well as in
(1.13) can be replaced by the greatest half integer less than or equal to it.
For values of t ≥ 1 we have k ≤ 3ν. This implies a slightly weaker upper
bound than (1.11).

2. If t > ordp(c) then t1 = ordp(c) and there are no critical points. Thus,
if t > ordp(c) and t1 ≤ m − 2, then S(χ, f, pm) = 0. In particular, if χ is
a primitive character (so that ordp(c) = 0), m ≥ 2 and t is any positive
integer then S(χ, f, pm) = 0.

3. If t1 = m− 1 one can have a situation where α 6∈ A and yet Sα 6= 0;
consider for example the Heilbronn sum

(1.14)
p2∑
x=1

χ0(x)ep2(xp) = p

p−1∑
x=1

ep2(xp),

which has no associated critical points and yet is nonzero in general. Here
t1 = t = 1. It is still desirable to find a good upper bound when t1 = m− 1.
Heath-Brown [9] has taken a step in this direction for the particular case of
the Heilbronn sum.

4. Theorem 1.1 holds identically for rational functions defined over Z.
The proof follows the same line of argument given here but the details will
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be provided in [4]. If we take f(X) = aX + bX−1, and χ = χ0 then the
formula in Theorem 1.1(iii) is just the classical formula of Salié [17] for the
Kloosterman sum. Our method also extends easily to mixed exponential
sums in several variables.

If dp(f) ≥ 1 then pt ≤ dp(f) ≤ d(f) and so we obtain as an immediate
consequence of (1.13), Theorem 8.1 (for the case p = 2), and (1.2) (for the
case m = 1) the following uniform upper bound for S(χ, f, pm).

Corollary 1.1. Let f be a polynomial over Z of degree d ≥ 1. Then for
any prime p with dp(f) ≥ 1, any positive integer m ≥ 2, and any multiplica-
tive character χ (mod pm), we have

(1.15) |S(χ, f, pm)| ≤ 2d1+1/(M+1)pm(1−1/(M+1)),

where M is the maximum multiplicity of the critical points associated with
the sum. In particular , since M ≤ d we have uniformly for any m ≥ 1,

(1.16) |S(χ, f, pm)| ≤ 4dpm(1−1/(d+1)).

(The upper bound in (1.15) is trivial when t1 = m − 1, the case when
Theorem 1.1 does not apply.) To see that the exponent on the right-hand
side of (1.16) is best possible as a uniform upper bound, one only needs to
consider special cases where there is a single critical point of multiplicity d.
We do so in Example 9.2. In general, even when there is a critical point of
multiplicity d, a sharper upper bound than (1.16) is available by applying our
result for pure exponential sums, Theorem 2.1, directly to the untwisted sum
given in Proposition 6.1. It is quite possible that the constant 4d in (1.16)
can be replaced with an absolute constant, analogous to what Stechkin [20]
has been able to establish for pure exponential sums.

If χ is any character with ordp(c) > t then the critical points are just
the solutions of the congruence p−tf ′(x) ≡ 0 (mod p), and so M < d and∑
α∈A να ≤ d − 1. Thus for any χ with ordp(c) ≥ m/2, such as χ0, the

quadratic character (p 6= 2), a cubic character (3 | (p − 1)), etc., and any
polynomial f with dp(f) ≥ 1 we have the uniform upper bound

(1.17) |S(χ, f, pm)| ≤ 6(d− 1)pm(1−1/d) for (m, d) 6= (1, 1),

the desired analogue of Hua’s theorem. We need only note that when t ≥
m/2 then the upper bound in (1.17) is trivial.

In closing we mention that sums of the type

S(χ, f, q) =
q∑

x=1

χ(x)eq(f(x)),

where q is an arbitrary modulus can be evaluated or estimated using The-
orem 1.1 together with the following multiplicative property of exponential
sums. Suppose that q = pe11 . . . pekk , and that χ is a multiplicative character
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(mod q) given by χ = χ1 . . . χk where for 1 ≤ i ≤ k, χi is a multiplicative
character (mod peii ). Set qi = q/peii , 1 ≤ i ≤ k, and let a1, . . . , ak be integers
such that

∑
i aiqi = 1. Then for any polynomial f over Z we have

S(χ, f, q) =
k∏

i=1

S(χi, aif, p
ei
i ).

It follows from (1.16) that for any q with dp(f) ≥ 1 for all primes p | q,
we have

(1.18) |S(χ, f, q)| ≤ (4d)ω(q)q1−1/(d+1),

where ω(q) is the number of distinct prime factors of q. One can also state
the analogue of (1.17).

2. Pure exponential sums. There are many known results on the
estimation of pure exponential sums of the type

(2.1) S(f, pm) =
pm∑
x=1

epm(f(x)),

where f is a polynomial over Z of degree d. If m = 1, p is odd and dp(f) ≥ 1
then by the work of Weil [21] (see also Bombieri [1]), we have

(2.2) |S(f, p)| ≤ (dp(f)− 1)p1/2.

For m ≥ 2, Hua [10]–[12] showed that if dp(f) ≥ 1 then

(2.3) |S(f, pm)| ≤ d3pm(1−1/d).

On the other hand, it was already known from the work of Hardy and
Littlewood [7], [8] that if d |m, p - a and p > d ≥ 2 then

(2.4) S(aXd, pm) = pm(1−1/d),

and thus as a uniform upper bound the exponent in Hua’s bound is best
possible. We generalize the example of Hardy and Littlewood in Exam-
ple 9.1, and show in particular that the constraint p > d is not needed.
Chen [3], Chalk [2], Ding [5], [6], Loh [13], Nechaev [16] and Stechkin [20]
have made further improvements in the constant on the right-hand side of
(2.3). Stechkin [20] showed that the value d3 can actually be replaced with
an absolute constant, although he did not indicate how large it must be.

In order to improve on Hua’s estimate, two different approaches have
been taken. Smith [19], Loxton and Smith [14], and Loxton and Vaughan
[15] considered the factorization of f ′(x) over the complex plane and in the
latter paper it was shown that

(2.5) |S(f, pm)| ≤ (d− 1)p(δ+τ)/(e+1)pm(1−1/(e+1)),
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where e is the maximum multiplicity of any of the complex zeros of f ′, τ = 0
if d < p, τ = 1 if d ≥ p, and δ = ordp(D(f ′)), where D(f ′) is the different
of f ′.

The result of Loxton and Vaughan may be considered a global type of
result. Chalk [2] proceeded in a different manner considering local informa-
tion instead, and it is this type of result that we have found essential for the
proof of Theorem 1.1. Let A = A(f, p) be the set of zeros of the congruence

(2.6) p−tf ′(x) ≡ 0 (mod p),

where t = ordp(f ′), and for α ∈ A let ν = να denote its multiplicity. Again,
we call A the set of critical points associated with the sum S(f, pm). Chalk
[2] established that if A is empty and m ≥ 2t + 2 then S(f, pm) = 0, and
that if A is nonempty then for m ≥ 2,

(2.7) |S(f, pm)| ≤ d
(∑

α∈A
να

)
pt/(M+1)pm(1−1/(M+1)),

where M is the maximum multiplicity of the critical points. He suggested
that one may be able to obtain the upper bound in (2.7) with the constant d
on the right-hand side eliminated altogether, thus making the upper bound
depend purely on local information. Ding [5] reduced the value d to

√
d,

and then in [6] succeeded in eliminating the value d altogether under the
assumption m ≥ t+2. Loh [13], independently, also succeeded in eliminating
the value d under the assumption m ≥ t+ 2.

In this paper, we prove a more precise version of the local type upper
bound suggested by Chalk and obtain an explicit formula for S(f, pm) in
the case where all of the critical points are of multiplicity one. Write

S(f, pm) =
p−1∑
α=0

Sα,

where for any integer α,

(2.8) Sα = Sα(f, pm) :=
pm∑
x=1

x≡α (mod p)

epm(f(x)).

Theorem 2.1. Let p be an odd prime and f be a nonconstant polynomial
defined over Z. If m ≥ t+ 2 then for any integer α we have:

(i) If α 6∈ A then Sα(f, pm) = 0.
(ii) If α is a critical point of multiplicity ν then

(2.9) |Sα(f, pm)| ≤ νpt/(ν+1)pm(1−1/(ν+1)).
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(iii) If α is a critical point of multiplicity one then

Sα(f, pm) =
{
epm(f(α∗))p(m+t)/2 if m− t is even,
χ2(Aα)epm(f(α∗))Gpp(m+t−1)/2 if m− t is odd ,

where α∗ is the unique lifting of α to a solution of the congruence p−tf ′(x) ≡
0 (mod p[(m−t+1)/2]), and Aα ≡ 2p−tf ′′(α∗) (mod p). In particular , we
have equality in (2.9).

(iv) If p = 2, then for m ≥ t + 3, if α 6∈ A then Sα = 0, and if α ∈ A
then

(2.10) |Sα(f, 2m)| ≤ ν2t/(ν+1)2m(1−1/(ν+1)),

with equality if ν = 1.

In particular, under the hypotheses of the theorem we have

(2.11) |S(f, pm)| ≤
(∑

α∈A
να

)
pt/(M+1)pm(1−1/(M+1)),

where M is the maximum multiplicity of the critical points. If dp(f) ≥ 1
then pt ≤ d, M ≤ d− 1 and

∑
α∈A να ≤ d− 1 and so we deduce easily from

(2.11) and Weil’s bound (for the case m = 1) the following uniform upper
bound.

Corollary 2.1. Let f be a polynomial over Z of degree d ≥ 1. Then for
any prime p with dp(f) ≥ 1 and any m ≥ 1 we have

(2.12) |S(f, pm)| ≤ 3(d− 1)pm(1−1/d).

With a little more work we can replace the constant 3(d−1) on the right
side of (2.12) with d, for odd p. Remarks 1 and 4 following Theorem 1.1 hold
for Theorem 2.1 as well. (We remark that this paper was completed before
the authors became aware of the work of Loh [13] and Ding [6] and so there
is a certain amount of repetition in the results stated in Theorem 2.1. We
feel it is important to keep all of the details for our proof of Theorem 2.1
here because they are used in our proof of Theorem 1.1.)

3. Preliminary lemmas. Let p be a prime, f = f(X) be a polynomial
over Z of degree d ≥ 1 and α be any integer. Then f admits a Taylor series
expansion about α given by

f(X) =
d∑

i=0

ai(X − α)i,

where ai = f (i)(α)/i! ∈ Z, 0 ≤ i ≤ d. Clearly,

(3.1) ordp(f) = min
0≤i≤d

{ordp(ai)}.
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Let t = t(f) = ordp(f ′), and suppose that α is a zero of the critical point
congruence

(3.2) p−tf ′(x) ≡ 0 (mod p),

of multiplicity ν. Now f ′ has a Taylor expansion

f ′(X) =
d∑

i=1

iai(X − α)i−1,

and so by (3.1) we have t = min1≤i≤d{ordp(iai)}. Reading the polynomial

p−tf ′(X) =
d∑

i=1

p−tiai(X − α)i−1,

over the finite field Fp, it follows that

(3.3) ordp(iai)

{≥ t+ 1 if 1 ≤ i ≤ ν,
= t if i = ν + 1,
≥ t if i > ν + 1,

and consequently for i ≥ 1,

(3.4) ordp(aipi) = ordp(iai)+ i−ordp(i) ≥
{
t+ 2 if p is odd or ν > 1,
t+ 1 if p = 2, ν = 1.

Define

σ := ordp(f(pY + α)− f(α)), g(Y ) := p−σ(f(pY + α)− f(α)),

τ := ordp(g′(Y )), g1(Y ) := p−τg′(Y ).

Lemma 3.1. For any prime p and zero α of (3.2) of multiplicity ν we
have:

σ ≥
{
t+ 2 if p is odd or ν > 1,
t+ 1 if p = 2 and ν = 1.

(i)

σ ≤ ν + 1 + t− τ.(ii)

dp(g) ≤
{
σ − t+ ordp(dp(g)) ≤ ν + 1 + ordp(dp(g)),
σ ≤ ν + 1 + t− τ.(iii)

dp(g1) ≤ σ + τ − t− 1 ≤ ν.(iv)

pτ | dp(g).(v)

Parts of this lemma can be found in the works of Hua [12], Chalk [2],
Ding [5], and Stechkin [20].

P r o o f. From the Taylor expansion for f we have

f(pY + α)− f(α) =
d∑

i=1

aip
iY i,



258 T. Cochrane and Z. Y. Zheng

and thus (i) follows from (3.4). Now

g(Y ) =
d∑

i=1

aip
i−σY i,

and so for the term i = dp(g) we must have

σ = ordp(aipi) = ordp(iai) + i− ordp(i).

It follows from (3.3) that

i = σ + ordp(i)− ordp(iai) ≤ σ + ordp(i)− t,
from which the first inequality in (iii) follows. The second inequality follows
immediately from (ii). Also, by the definition of g1 we have

g1(Y ) =
d∑

i=1

aiip
i−σ−τY i−1.

We see upon examining the i = ν + 1 coefficient and using (3.3) that (ii)
is obtained, and upon examining the i = dp(g1) + 1 coefficient and using
(3.3) that (iv) is obtained. The second inequality in (iv) follows immediately
from (ii). Finally, to obtain (v) suppose that i = dp(g) and that the coeffi-
cient of Xi in g is Ai. Then p -Ai. On the other hand, we have pτ | iAi. Thus
pτ | i.

Lemma 3.2. Let p be a prime, f be a polynomial over Z with t = ordp(f ′),
and let t1 be any integer with 0 ≤ t1 ≤ t. If p is odd and m ≥ t1 + 2, or
p = 2 and m ≥ t1 + 3, or p = 2, t1 = 0 and m = 2, then for any integers
z, y we have

f(y + pm−t1−1z) ≡ f(y) + f ′(y)pm−t1−1z (mod pm).

P r o o f. The polynomial f admits a Taylor expansion about y,

f(X) =
d∑

i=0

ai(X − y)i,

with integer coefficients ai, 0 ≤ i ≤ d. For any integer z,

f(y + pm−t1−1z) =
d∑

i=0

ai(pm−t1−1z)i.

Now, since ordp(f ′) = t it follows that ordp(iai) ≥ t for i ≥ 1. Thus for any
i ≥ 1,

ordp(aip(m−t1−1)i) ≥ i(m− t1 − 1) + t− ordp(i)(3.5)

≥ i(m− t1 − 1) + t1 − ordp(i),
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and for i ≥ 2 the quantity on the right side is ≥ m if and only if

m ≥ t1 +
i+ ordp(i)
i− 1

.

It is easy to check that the latter inequality holds for all i ≥ 2 if p is odd
and m ≥ t1 + 2 or if p = 2 and m ≥ t1 + 3. If p = 2, m = 2 and t1 = 0 then
we return to (3.5) and replace the right side with i(m− t1−1) = i to obtain
the result.

4. Proof of Theorem 2.1. We begin by deriving a recursion formula
for complete exponential sums of the type

S(f, pm) =
pm∑
x=1

epm(f(x)).

Let p be any prime and f be a nonconstant polynomial over Z. As defined
earlier, let t = ordp(f ′), A denote the set of solutions of the congruence
p−tf ′(x) ≡ 0 (mod p) and write

S(f, pm) =
p−1∑
α=0

Sα with Sα = Sα(f, pm) =
pm∑
x=1

x≡α (mod p)

epm(f(x)).

Suppose that m ≥ t + 2. Write x = pm−1−tz + y with y running from 1 to
pm−1−t and z running from 1 to pt+1, and consequently x running through
a complete set of residues (mod pm). Under the hypotheses of Lemma 3.2,
with t1 = t, we have

Sα =
∑

y≡α (mod p)

∑
z

epm(f(pm−t−1z + y))

=
∑

y≡α (mod p)

∑
z

epm(f(y) + f ′(y)zpm−t−1)

=
∑

y≡α (mod p)

epm(f(y))
pt+1∑
z=1

ept+1(zf ′(y))

= pt+1
∑

y≡α (mod p)
pt+1|f ′(y)

epm(f(y)).

We see in particular that Sα = 0 unless α ∈ A, proving Theorem 2.1(i) and
the first part of Theorem 2.1(iv).
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If α ∈ A and chosen so that 0 ≤ α < p then we can proceed by writing

Sα = pt+1
pm−2−t∑
s=1

epm(f(α+ sp))

= pt+1epm(f(α))
pm−2−t∑
s=1

epm(f(α+ sp)− f(α))

= pσ−1epm(f(α))
pm−σ∑
s=1

epm−σ (gα(s)),

where

(4.1) σ := ordp(f(pY + α)− f(α)), gα(Y ) := p−σ(f(pY + α)− f(α)),

and the latter sum is taken to be pm−σ if m ≤ σ. Thus we obtain

Proposition 4.1 (The Recursion Relationship). Suppose that p is an
odd prime and m ≥ t + 2, or p = 2 and m ≥ t + 3, or p = 2, t = 0 and
m = 2. Then:

(i) If α 6∈ A then Sα = 0.
(ii) If α ∈ A and 0 ≤ α < p then

(4.2) Sα(f, pm) = epm(f(α))pσ−1S(gα, pm−σ),

where

(4.3) S(gα, pm−σ) =





pm−σ∑
s=1

epm−σ (gα(s)) if m ≥ σ,

pm−σ if m < σ.

The stage is now set for proving Theorem 2.1(ii) by induction on m. We
defer the proof of part (iii) to Section 5, but we shall assume here that it
has already been proven so that we may assume ν ≥ 2 in the course of the
proof. The precise statement that we shall prove here is the following:

Let p be an odd prime, f be a nonconstant polynomial over Z and let
d1 = dp(p−tf ′). Then

(A) If m = 1 and dp(f) ≥ 1 then

(4.4) |S(f, p)| ≤ (dp(f)− 1)p1/2.

(B) If m ≥ t+ 2 then

(4.5) |S(f, pm)| ≤ d1p
t/(d1+1)pm(1−1/(d1+1)).

(C) If m ≥ t+ 2 and α is a critical point of multiplicity ν then

(4.6) |Sα(f, pm)| ≤ νpt/(ν+1)pm(1−1/(ν+1)).
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P r o o f. When m = 1 this is just the result of Weil. Suppose now that
m ≥ t+ 2 and that the result is true for all smaller values of m. Let α be a
critical point of multiplicity ν with 0 ≤ α < p, and let σ, gα be as defined
in (4.1) and τ , g1 be defined by

τ = ordp(g′α(Y )), g1(Y ) = p−τg′α(Y ).

We consider four cases: σ ≥ m, σ = m − 1, m − 1 − τ ≤ σ ≤ m − 2
and σ ≤ m − 2 − τ . A trivial estimate will suffice for the first and third
cases, Weil’s upper bound will handle the second case and the induction
assumption will take care of the last case.

Case (i). Suppose that σ ≥ m. Then by (4.2) and (4.3),

|Sα| ≤ pm−1 = p(m−ν−1)/(ν+1)pm(1−1/(ν+1)) ≤ pt/(ν+1)pm(1−1/(ν+1)),

the last inequality following from Lemma 3.1(ii).

Case (ii). Suppose that σ = m − 1. We start by noting that by the
inequality σ ≤ ν + t+ 1− τ of Lemma 3.1(ii) we have trivially

|Sα| ≤ pm−1 ≤ νpt/(ν+1)pm(1−1/(ν+1)),

unless τ = 0 and p > νν+1, and so we may assume that p > νν+1.
Let dp = dp(gα). We note that since f is nonconstant, dp(gα) ≥ 1. By

Lemma 3.1(iii) we have

(4.7) dp ≤ ν + 1 + ordp(dp).

Suppose that ordp(dp) ≥ 1. If dp = p then by (4.7), p ≤ ν + 2, contradicting
our assumptions that p > νν+1 and ν ≥ 2. Otherwise dp ≥ 2p and thus since
ordp(dp) ≤ dp/2 we see by (4.7) that

p ≤ 1
2dp ≤ dp − ordp(dp) ≤ ν + 1,

again contradicting our assumptions.
Thus we must have ordp(dp) = 0 and so by (4.7), dp ≤ ν + 1. It follows

from (4.2) and the upper bound of Weil, (4.4), that

|Sα| = pσ−1|S(gα, p)| ≤ (dp − 1)pσ−1/2

≤ νp1/(ν+1)−1/2p(σ−ν−1)/(ν+1)pm(1−1/(ν+1)),

and so by Lemma 3.1(ii) we obtain (4.6).

Case (iii). Suppose that m− 1− τ ≤ σ ≤ m− 2. In particular, we must
have τ ≥ 1. Then we have the trivial estimate

|Sα| ≤ pm−1 = p(m−ν−1)/(ν+1)pm(1−1/(ν+1))(4.8)

≤ p1/(ν+1)p(σ+τ−ν−1)/(ν+1)pm(1−1/(ν+1))

≤ p1/(ν+1)pt/(ν+1)pm(1−1/(ν+1)),
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the latter inequality following from Lemma 3.1(ii). Now, by Lemma 3.1(v),
pτ | dp(gα). Since τ ≥ 1 and dp(gα) ≥ 1, it follows from Lemma 3.1(iii) that

p− 1 ≤ pτ − τ ≤ dp(gα)− ordp(dp(gα)) ≤ ν + 1.

Thus for ν ≥ 2 we have p1/(ν+1) ≤ (ν + 2)1/(ν+1) ≤ ν and so (4.6) follows
from (4.8).

Case (iv). Suppose finally that σ ≤ m−2− τ . In this case we can apply
the induction assumption to the sum S(gα, pm−σ) and deduce from (4.2)
and (4.5) that

|Sα| = pσ−1|S(gα, pm−σ)| ≤ d2p
σ−1pτ/(d2+1)p(m−σ)(1−1/(d2+1)),

where d2 = dp(p−τg′α). Now from Lemma 3.1(iv) we have d2 ≤ ν and thus
since m− σ − τ > 0 we obtain

|Sα| ≤ νpσ−1pτ/(ν+1)p(m−σ)(1−1/(ν+1)) ≤ νp(τ+σ−ν−1)/(ν+1)pm(1−1/(ν+1)),

and thus (4.6) follows from Lemma 3.1(ii).
Having established (4.6) in every case, we can easily deduce the inequality

in (4.5):

|S(f, pm)| ≤
∑

α∈A
|Sα(f, pm)| ≤

∑

α∈A
ναp

t/(να+1)pm(1−1/(να+1))

≤
(∑

α∈A
να

)
pt/(d1+1)pm(1−1/(d1+1)) ≤ d1p

t/(d1+1)pm(1−1/(d1+1)),

where d1 = dp(p−tf ′). This completes the proof of Theorem 2.1(ii) for
ν ≥ 2.

We now turn to part (iv) of Theorem 2.1. When p = 2 we shall prove by
induction on m that for any nonconstant polynomial f over Z, if m ≥ t+ 3,
then with d1 := dp(p−tf ′), we have

(A)

(4.9) |S(f, 2m)| ≤ d12t/(d1+1)2m(1−1/(d1+1)).

(B) For any critical point α of multiplicity ν,

(4.10) |Sα(f, 2m)| ≤ ν2t/(ν+1)2m(1−1/(ν+1)).

Indeed, as we just observed for the case of odd p, the upper bound in (4.9)
is an immediate consequence of (4.10) and so we may restrict our attention
to (4.10). The case ν = 1 is treated in Section 5 (see (5.3)). If ν ≥ 2 then
the upper bound in (4.10) is trivial for m ≤ 2ν+ t+2. Thus we may assume
that m > 2ν + t + 2, ν ≥ 2, and that (4.9) and (4.10) are valid for all
smaller values of m. By the inequality σ ≤ ν + t+ 1− τ of Lemma 3.1(ii) it
follows that m− σ ≥ τ + 3. Thus we can apply the recursion relationship of
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Proposition 4.1 and obtain, as in Case (iv) above,

|Sα| = 2σ−1|S(gα, 2m−σ)| ≤ d22σ−12τ/(ν+1)2(m−σ)(1−1/(ν+1))

≤ ν2t/(ν+1)2m(1−1/(ν+1)),

which establishes (4.10).

5. Evaluation of pure exponential sums. Let p be an odd prime,
and f be a polynomial over Z with t = ordp(f ′). Suppose first that m − t
is even and that m − t ≥ 2. Write x = p(m−t)/2z + y with y running from
1 to p(m−t)/2 and z running from 1 to p(m+t)/2. Then with Sα as defined in
(2.8), we have

Sα =
∑

y≡α (mod p)

epm(f(y))
p(m+t)/2∑
z=1

epm(p(m−t)/2f ′(y)z)

= pt
∑

y≡α (mod p)

epm(f(y))
p(m−t)/2∑
z=1

ep(m−t)/2(p−tf ′(y)z),

and thus we obtain

(5.1) Sα = p(m+t)/2
∑

y≡α (mod p)
p−tf ′(y)≡0 (mod p(m−t)/2)

epm(f(y)),

where, in the sum, y runs from 1 to p(m−t)/2.
If α is a critical point of multiplicity one then it has a unique lifting to

a solution of the congruence p−tf ′(y) ≡ 0 (mod p(m−t)/2). This establishes
the first identity in Theorem 2.1(iii).

Suppose next thatm−t is odd and thatm−t ≥ 3. Let x = p(m−t+1)/2z+y
with y running from 1 to p(m−t+1)/2 and z running from 1 to p(m+t−1)/2.
Then proceeding as above we obtain

Sα = pt
∑

y≡α (mod p)

epm(f(y))
p(m−t−1)/2∑

z=1

ep(m−t−1)/2(p−tf ′(y)z),

and thus

(5.2) Sα = p(m+t−1)/2
∑

y≡α (mod p)
p−tf ′(y)≡0 (mod p(m−t−1)/2)

epm(f(y)),

where, in the sum, y runs from 1 to p(m−t+1)/2.
Suppose now that α is a critical point of multiplicity one and let α∗

be the unique lifting of α to a solution of the congruence p−tf ′(y) ≡ 0
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(mod p(m−t+1)/2). Then pm | f ′(α∗)p(m−t−1)/2, and so we obtain

Sα = p(m+t−1)/2
p−1∑
u=0

epm(f(α∗ + p(m−t−1)/2u))

= p(m+t−1)/2
p−1∑
u=0

epm

(
f(α∗) + f ′(α∗)p(m−t−1)/2u+

f ′′(α∗)
2

pm−t−1u2
)

= p(m+t−1)/2epm(f(α∗))
p−1∑
u=0

ep(p−t2−1f ′′(α∗)u2).

The second identity in Theorem 2.1(iii) follows from the standard for-
mula for quadratic Gauss sums.

Finally, we consider the prime p = 2. Let α be a critical point of multi-
plicity one. Suppose first that m− t ≥ 3 and that m− t is even. Then letting
x = 2(m−t+2)/2z + y with z running from 1 to 2(m+t−2)/2 and y running
from 1 to 2(m−t+2)/2 we obtain

Sα = 2(m+t−2)/2
∑

y≡α (mod 2)
2−tf ′(y)≡0 (mod 2(m−t−2)/2)

e2m(f(y)) = 2(m+t−2)/2Tα,

say. Now, since α admits a unique lifting to a solution α∗ of the congruence
2−tf ′(y) ≡ 0 (mod 2(m−t−2)/2) we can write y = α∗ + k2(m−t−2)/2 with
k = 0, 1, 2, 3 and obtain

Tα = e2m(f(α∗))
3∑

k=0

e8(Ak2 + 2Bk),

for some integers A,B with A odd. Since the value of Ak2 + 2Bk (mod 8)
is invariant if k is replaced with k + 4, the latter sum is just half the value
of a complete Gauss sum (mod 8), which is well known to be of modulus 4.
Thus we obtain

(5.3) |Sα(f, 2m)| = 2(m+t)/2.

If m− t is odd and m− t ≥ 3 then writing x = 2(m−t+1)/2z + y with y
running from 1 to 2(m−t+1)/2 and z running from 1 to 2(m+t−1)/2, we obtain

Sα(f, 2m) = 2(m+t−1)/2(e2m(f(α∗)) + e2m(f(α∗ + 2(m−t−1)/2)))

= 2(m+t−1)/2e2m(f(α∗))(1 + e4(B)),

for some odd integer B, where α∗ is the unique lifting of α to a solution of
the congruence p−tf ′(y) ≡ 0 (mod 2(m−t+1)/2). Thus we again obtain (5.3).
The equality in (5.3) establishes (2.10) for the case ν = 1.
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6. Proof of Theorem 1.1. Let p be an odd prime, m ≥ 2 a positive
integer, f a polynomial over Z, χ a multiplicative character (mod pm) with
c = c(χ, a) as defined in (1.6), and t, t1 be as defined in (1.7),

t := ordp(f ′(X)), t1 := ordp(rXf ′(X) + c).

Let A be the set of critical points associated with the sum S(χ, f, pm), that
is, the nonzero (mod p) solutions of the congruence

(6.1) p−t1(rxf ′(x) + c) ≡ 0 (mod p).

We note that t1 = min{t, ordp(c)} and that if t1 < t then A is empty.
Suppose that m ≥ t1 + 2. Write k = jpm−t1−2(p− 1) + l, with j running

from 0 to pt1+1−1, l running from 0 to pm−t1−2(p−1)−1, and consequently
k running from 0 to pm−1(p−1)−1. Let α be an integer of the type α = alα

with 0 ≤ lα < p− 1. Then we have

Sα = Sα(χ, f, pm) :=
pm∑

x≡α (mod p)

χ(x)epm(f(x))

=
pm−1(p−1)−1∑

k≡lα (mod p−1)

χ(ak)epm(f(ak))

=
pm−t1−2(p−1)−1∑

l=0
l≡lα (mod p−1)

pt1+1−1∑

j=0

e

(
c(jpm−t1−2(p− 1) + l)

pm−1(p− 1)

)
e

(
f(ak)
pm

)
.

Now for any choice of j and l we see from (1.5) that

ak ≡ al(1 + rp)p
m−t1−2j ≡ al(1 + jrpm−t1−1) (mod pm−t1),

and thus since m ≥ t1 + 2, it follows from Lemma 3.2 and the fact that
pt | f ′(X) that

f(ak) ≡ f(al + aljrpm−t1−1) ≡ f(al) + f ′(al)aljrpm−t1−1 (mod pm).

We obtain

Sα =
pm−t1−2(p−1)−1∑

l=0
l≡lα (mod p−1)

e

(
cl

pm−1(p− 1)
+
f(al)
pm

)
(6.2)

×
pt1+1−1∑

j=0

e

(
cj

p
+
f ′(al)aljr

p

)

= pt1+1
pm−t1−2(p−1)−1∑

l≡lα (mod p−1)
c+rf ′(al)al≡0 (mod pt1+1)

e

(
cl

pm−1(p− 1)
+
f(al)
pm

)
.
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Thus Sα = 0 unless α ∈ A in which case we must have t = t1 and we can
proceed by writing l = lα + (p− 1)y with y running from 0 to pm−t−2 − 1,
to obtain

Sα = pt+1
pm−t−2−1∑

y=0

e

(
c(lα + (p− 1)y)
pm−1(p− 1)

+
f(α(1 + rp)y)

pm

)
(6.3)

= pt+1χ(α)epm(f(α))
pm−t−2−1∑

y=0

epm(F1(y)),

where

(6.4) F1(y) = f(α(1 + rp)y)− f(α) + pcy.

Our next step is to make a change of variables in order to transform
the function F1(y) into a polynomial that we can deal with. Let log(1 + pu)
denote the p-adic logarithm

log(1 + pu) =
∞∑

i=1

(−1)i+1(pu)i

i
,

and set

(6.5) R := p−1 log(1 + pr) = r − r2p

2
+
r3p2

3
− . . .

We note that log(1 + pu) is a p-adic integer for any u ∈ Zp, and that R is a
p-adic unit (since p - r) with R ≡ r (mod p). Set

(6.6) y =
1
Rp

log(1 + pu),

and note that as u runs through a complete set of residues modulo any
given power of p, so does y (in Zp). This is most readily seen from the
inverse relationship

(6.7) (1 + rp)y = ey log(1+rp) = eyRp = 1 + pu.

Thus if

y1 =
1
Rp

log(1 + pu1), y2 =
1
Rp

log(1 + pu2), y1 ≡ y2 (mod pk)

then
ey1Rp ≡ ey2Rp (mod pk+1)

and consequently u1 ≡ u2 (mod pk). In order to deal with the resulting
exponential sum in the variable u we extend the domain of the additive
character epm(·) to the ring of p-adic integers Zp by setting, for any x ∈ Zp,
(6.8) epm(x) := epm(x̃),

where x̃ is the residue class of x in Zp/(pm) ' Z/(pm).
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Set F2(u) = F1(y), and let f have Taylor expansion about α given by

f(X) =
d∑

i=0

ai(X − α)i,

with rational integer coefficients ai, 0 ≤ i ≤ d. Then for any u ∈ Zp we have

F2(u) = f(α(1 + pu))− f(α) + cR−1 log(1 + pu)(6.9)

=
d∑

i=1

aiα
ipiui + cR−1

∞∑

i=1

(−1)i+1(pu)i

i

=
d∑

i=1

(Riaiαi + (−1)i+1c)
pi

Ri
ui +

c

R

∞∑

i=d+1

(−1)i+1pi

i
ui.

Define
G(X) := p−t(RXf ′(X) + c),

and let G(X) have Taylor expansion about α,

G(X) =
d∑

i=0

bi(X − α)i,

with p-adic integer coefficients bi, 0 ≤ i ≤ d. Then we have

ptG(X) = R(X − α)
d∑

i=0

aii(X − α)i−1 +Rα

d∑

i=0

aii(X − α)i−1 + c

= Radd(X − α)d +R

d−1∑

i=1

(aii+ αai+1(i+ 1))(X − α)i

+Rαa1 + c,

and so we see that b0 = p−t(Rαa1 +c), bd = p−tRadd and for 1 ≤ i ≤ d−1,

(6.10) bi = p−tR(iai + α(i+ 1)ai+1).

It follows that for 1 ≤ i ≤ d,

(6.11) ai = (−1)i+1(Riαi)−1
( i−1∑

j=0

(−1)jptbjαj − c
)
.

Thus by (6.9) and (6.11) we obtain

F2(u) =
d∑

i=1

(−1)i+1
( i−1∑

j=0

(−1)jbjαj
)pi+t
Ri

ui(6.12)

+
c

R

∞∑

i=d+1

(−1)i+1pi

i
ui.
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Let F2(U) be the formal power series over Zp obtained by replacing u with
the indeterminate symbol U in (6.9) or (6.12) and let Fα(U) be a polynomial
with rational integer coefficients chosen so that in Zp[[U ]],

(6.13) Fα(U) ≡ F2(U) (mod pm+t+d),

that is, the corresponding coefficients are congruent (mod pm+t+d). Since the
coefficients of F2(U) are all eventually zero (mod pm+t+d) such a polynomial
Fα(U) exists. The absolute degree of Fα(U) is of no particular concern since
we are only interested in local information regarding Fα(U). We have taken a
larger modulus in (6.13) than necessary in order to preserve the multiplicity
of p dividing certain coefficients of F2(U) and thus make the statement of
Lemma 6.1 below more transparent.

Now, since α is a critical point, we know p | b0 and pt | c. Thus for any
integer u it follows from (6.12) that pt+2 |F2(u) (in Zp) and consequently
pt+2 |F1(y) for any integer y. Thus from (6.3) we obtain

Sα = p−1χ(α)epm(f(α))
pm∑
y=1

epm(F1(y))(6.14)

= p−1χ(α)epm(f(α))
pm∑
u=1

epm(F2(u))

= χ(α)epm(f(α))
pm−1∑
u=1

epm(Fα(u)).

We have established

Proposition 6.1 (Untwisting a mixed exponential sum). Suppose that
p is an odd prime, f is a polynomial over Z, χ is a multiplicative character
(mod pm) and that m ≥ t1 + 2. Let A be the set of critical points associated
with the sum S(χ, f, pm) and suppose that representatives have been chosen
so that for any α ∈ A, α = alα with 0 ≤ lα < p− 1. Then

S(χ, f, pm) =
∑

α∈A
χ(α)epm(f(α))S(Fα, pm−1),

where Fα is as defined in (6.13).

We now proceed to prove Theorem 1.1(ii) for the case where ν ≥ 2. The
case ν = 1 is treated in Section 7. Let

σ := ordp(Fα(U)), gα(U) := p−σFα(U),

τ := ordp(g′α(U)), g1(U) := p−τg′α(U).
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Lemma 6.1 We have the same relationships as in Lemma 3.1:

σ ≥ t+ 2.(i)

σ ≤ ν + 1 + t− τ.(ii)

dp(gα) ≤ σ − t+ ordp(dp(gα)) ≤ ν + 1 + ordp(dp(gα)).(iii)

dp(g1) ≤ σ + τ − t− 1 ≤ ν.(iv)

pτ | dp(gα).(v)

P r o o f. Part (i) follows immediately from (6.12) and our observations
above that p | b0 and pt | c. From (6.12) we also obtain

F ′2(U) = ptR−1
d∑

i=1

(−1)i+1
( i−1∑

j=0

(−1)jbjαj
)
piU i−1(6.15)

+ cR−1
∞∑

i=d+1

(−1)i+1piU i.

Since α is a critical point of multiplicity ν ≥ 1 we have p | bi for i < ν,
and p - bν . By definition, pσ+τ divides every coefficient of F ′2(U) and thus
examining the i = ν+ 1 coefficient in (6.15) we obtain (ii). Some care needs
to be taken when ν = d. In this case we must have pt ‖ c for otherwise
the critical point congruence is just p−txf ′(x) ≡ 0 (mod p) and so the
multiplicity of α is at most d − 1. Part (iii) comes from the fact that pσ is
the maximum power of p dividing the i = dp(gα) coefficient in (6.12) and
part (iv) from the fact that pσ+τ is the maximum power of p dividing the
i = dp(g1) + 1 coefficient in (6.15). Part (v) follows as in Lemma 3.1.

We can now complete the proof of Theorem 1.1(ii) by considering the
same four cases as in the proof of Theorem 2.1(ii): σ ≥ m, σ = m − 1,
m − 1 − τ ≤ σ ≤ m − 2 and σ ≤ m − 2 − τ . In each case we establish the
inequality

(6.16) |Sα| ≤ νpt/(ν+1)pm(1−1/(ν+1)).

The trivial estimate |Sα| ≤ pm−1 suffices for the first and third cases iden-
tically as before under the assumption that ν ≥ 2. For the other two cases
we use (6.14), which can be written as

(6.17) |Sα| = pσ−1|S(gα, pm−σ)|.
In the second case, an application of Weil’s bound to the sum S(gα, p) holds
identically as before for ν ≥ 2. In the fourth case, instead of using an induc-
tion assumption as we did in the proof of Theorem 2.1(ii), we simply apply
the result of Theorem 2.1(ii), specifically (2.11), and the proof follows as
before: Letting d2 = dp(g1) we obtain from (6.17) and (2.11),

|Sα| ≤ d2p
σ−1pτ/(d2+1)p(m−σ)(1−1/(d2+1)).
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Now by Lemma 6.1(iv) we have d2 ≤ ν and thus since m − σ − τ > 0 we
obtain

|Sα| ≤ νpσ−1p
τ
ν+1 p(m−σ)(1− 1

ν+1 ) = νp
τ+σ−ν−1

ν+1 pm(1− 1
ν+1 ).

The inequality in (6.16) now follows from Lemma 6.1(ii). This completes the
proof of Theorem 1.1(ii) for ν ≥ 2. In the next section we take care of the
case ν = 1 and establish part (iii) of the theorem.

7. Evaluation of mixed exponential sums. Having established Pro-
position 6.1 one can attempt to evaluate a mixed exponential sum by un-
twisting the sum first and then applying either the recursion relationship of
Proposition 4.1 or Theorem 2.1(iii) to the resulting pure exponential sum.
A more direct approach is to proceed as follows. Suppose first that m− t is
even and that m− t ≥ 2. Let r, R be as defined earlier, ap−1 = 1 + rp with
p - r, R = p−1 log(1 + rp), and define % by

(7.1) ap
(m−t)/2−1(p−1) = 1 + %p(m−t)/2.

Then it is easy to see that

(7.2) % ≡ r (mod p) and % ≡ R (mod p(m−t)/2).

Write k = jp(m−t)/2−1(p − 1) + l, with j running from 0 to p(m+t)/2 − 1, l
running from 0 to p(m−t)/2−1(p− 1) − 1, and consequently k running from
0 to pm−1(p− 1)− 1. Then we have

S(χ, f, pm)

=
pm−1(p−1)−1∑

k=0

χ(ak)epm(f(ak))

=
p(m−t)/2−1(p−1)−1∑

l=0

p(m+t)/2−1∑

j=0

e

(
c(jp(m−t)/2−1(p− 1) + l)

pm−1(p− 1)

)
e

(
f(ak)
pm

)
.

Now for any choice of j and l we have

ak ≡ al(1 + %p(m−t)/2)j ≡ al(1 + j%p(m−t)/2) (mod pm−t),

and thus since pt | f ′(X),

f(ak) ≡ f(al + alj%p(m−t)/2) ≡ f(al) + f ′(al)alj%p(m−t)/2 (mod pm).

It follows that



Exponential sums 271

S(χ, f, pm)

=
∑

l

e

(
cl

pm−1(p− 1)
+
f(al)
pm

) p(m+t)/2−1∑

j=0

e

(
cj

p(m+t)/2
+
f ′(al)alj%
p(m+t)/2

)

= p(m+t)/2
p(m−t)/2−1(p−1)−1∑

l=0
c+f ′(al)al%≡0 (mod p(m+t)/2)

e

(
cl

pm−1(p− 1)
+
f(al)
pm

)
.

Thus

(7.3) S(χ, f, pm) = p(m+t)/2
∑

α∈A∗
χ(α)epm(f(α)),

where A∗ is a set of integer representatives for the set of reduced residues
(mod p(m−t)/2) satisfying the congruence

(7.4) p−t(Rxf ′(x) + c) ≡ 0 (mod p(m−t)/2).

We note that for α ∈ A∗ the value of χ(α)epm(α) does not depend on the
choice of the integer representative for α, and thus the sum in (7.3) is well
defined. If α is a critical point of multiplicity one then it admits a unique
lifting to a solution of the congruence (7.4). This establishes the first formula
in Theorem 1.1(iii).

Suppose now that m − t is odd and that m − t ≥ 3. This time let % be
defined by the equation

(7.5) ap
(m−t−1)/2(p−1) = 1 + %p(m−t+1)/2.

Then

(7.6) % ≡ R (mod p(m−t+1)/2).

For l running from 0 to p(m−t−1)/2(p − 1) − 1 and j running from 0 to
p(m+t−1)/2 − 1, writing k = jp(m−t−1)/2(p− 1) + l and observing that

ak ≡ al(1 + %p(m−t+1)/2)j ≡ al(1 + j%p(m−t+1)/2) (mod pm−t+1),

and consequently (since pt | f ′(X)),

(7.7) f(ak) ≡ f(al) + f ′(al)al%jp(m−t+1)/2 (mod pm),

we obtain

S(χ, f, pm) =
p(m−t−1)/2(p−1)−1∑

l=0

e

(
cl

pm−1(p− 1)
+
f(al)
pm

)
(7.8)

×
p(m+t−1)/2−1∑

j=0

e

(
cj

p(m+t−1)/2
+
f ′(al)alj%
p(m+t−1)/2

)
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= p(m+t−1)/2
p(m−t−1)/2(p−1)−1∑

l=0
c+f ′(al)al%≡0 (mod p(m+t−1)/2)

e

(
cl

pm−1(p− 1)
+
f(al)
pm

)
.

Again we see that if α 6∈ A then Sα = 0. If α ∈ A then

(7.9) Sα = p(m+t−1)/2
p(m−t−1)/2(p−1)−1∑

l=0
al≡α (mod p)

e

(
cl

pm−1(p− 1)
+
f(al)
pm

)
.

Suppose now that α is a critical point of multiplicity one. Then α admits
a unique lifting to a solution of the congruence

(7.10) p−t(Rxf ′(x) + c) ≡ 0 (mod p(m−t+1)/2).

To keep our notation simple we suppose that α is a solution of (7.10) and
that

α ≡ alα (mod pm) with 0 ≤ lα < pm−1(p− 1)− 1.

Let s be defined by

(7.11) ap
(m−t−3)/2(p−1) = 1 + sp(m−t−1)/2.

Noting that in the sum in (7.9), l is allowed to run through any complete
set of residues (mod p(m−t−1)/2(p− 1)) (subject to the constraint al ≡ α
(mod p)), we can write l = lα + p(m−t−3)/2(p − 1)u with u running from 0
to p− 1. Then

al ≡ α(1 + sp(m−t−1)/2)u

≡ α
(

1 + usp(m−t−1)/2 +
(
u

2

)
s2pm−t−1

)
(mod pm−t),

and thus since pt | f ′(X) and m− t ≥ 3 it follows in the same manner as in
the proof of Lemma 3.2 that

f(al) ≡ f(α) + f ′(α)α
(
usp(m−t−1)/2 +

(
u

2

)
s2pm−t−1

)

+ 2f ′′(α)α2u2s2pm−t−1 (mod pm),

where 2 denotes the multiplicative inverse of 2 (mod pm). Thus

Sα = χ(α)epm(f(α))p(m+t−1)/2(7.12)

×
p−1∑
u=0

e

(
cp(m−t−3)/2(p− 1)u

pm−1(p− 1)
+
f ′(α)αusp(m−t−1)/2

pm

+
f ′(α)α

(
u
2

)
s2pm−t−1 + 2f ′′(α)α2u2s2pm−1

pm

)
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= χ(α)epm(f(α))p(m+t−1)/2
p−1∑
u=0

ep(Aαu2 +Bαu),

where

Aα = p−t(2f ′′(α)α2s2 + 2f ′(α)αs2),(7.13)

Bα =
c+ f ′(α)αs
p(m−t−1)/2

− 2f ′(α)αs2.(7.14)

Now, by definition of %, (7.5), and s, (7.11), we have

% = s+ 2(p− 1)s2p(m−t−1)/2 + p−1
(
p

3

)
s3pm−t−1 + . . . ,

and thus from (7.14) we get

Bα ≡ c+ f ′(α)α%
p(m−t−1)/2

(mod p).

Now by (7.6) and our assumption that α satisfies (7.10) we obtain

Bα ≡ c+Rαf ′(α)
p(m−t−1)/2

≡ 0 (mod p).

The second formula of Theorem 1.1(iii) now follows from (7.12) and the
standard formula for a quadratic Gauss sum.

8. Mixed exponential sums with p = 2. The prime p = 2 requires
special attention because there is no primitive root (mod 2m) for m ≥ 3. For
m ≥ 3 the reduced residues (mod 2m) are of the form {±5k : 0 ≤ k ≤ 2m−1},
and a multiplicative character χ (mod 2m) is determined by the relations

(8.1) χ(5) = e2m−2(c), χ(−1) = (−1)κ

for some integer c with 1 ≤ c ≤ 2m−2 and κ = 0 or 1. Let f be a polynomial
with integer coefficients and d2(f) ≥ 1, and set

t = ord2(f ′), t1 = ord2(Xf ′(X) + c).

The critical point congruence associated with the sum S(χ, f, 2m) is just
2−t1(xf ′(x)+c) ≡ 0 (mod 2). The only allowable critical point is the residue
class 1 and it is a critical point if and only if t = t1 and f ′(1) ≡ c (mod 2t+1).

Theorem 8.1. Suppose that m ≥ t1 + 3, f is a polynomial over Z and
χ is a multiplicative character (mod 2m) satisfying (8.1). Then:

(i) If 1 is not a critical point then S(χ, f, 2m) = 0.
(ii) If 1 is a critical point of multiplicity ν ≥ 1 then t = t1 and

(8.2) |S(χ, f, 2m)| ≤ 2ν2t/(ν+1)2m(1−1/(ν+1)).
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P r o o f. Let k = j2m−t1−3 + l with j running from 1 to 2t1+1, and l
running from 1 to 2m−t1−3. Now

5k ≡ 5l(1 + 22)j2
m−t1−3 ≡ 5l(1 + 2m−t1−1j) (mod 2m−t1),

and so by Lemma 3.2 and the fact that 2t | f ′(X) we obtain, if m− t1 ≥ 3,

f(5k) ≡ f(5l) + f ′(5l)5lj2m−t1−1 (mod 2m).

A similar relationship holds for f(−5k). Thus for m− t1 ≥ 3 we obtain

(8.3) S(χ, f, 2m) = 2t+1T1 + χ(−1)2t+1T2,

where

(8.4) T1 =
2m−t1−3∑

c+f ′(5l)5l≡0 (mod 2t1+1)

e

(
cl

2m−2 +
f(5l)
2m

)

and

T2 =
2m−t1−3∑

c−f ′(−5l)5l≡0 (mod 2t1+1)

e

(
cl

2m−2 +
f(−5l)

2m

)
.

In particular, if 1 is not a critical point then S(χ, f, 2m) = 0, proving part
(i) of the theorem.

Suppose now that 1 is a critical point of multiplicity ν. In particular,
t = t1. We note first that the upper bound in (8.2) is trivial if m−t ≤ 3(ν+1)
and thus we may assume that m− t ≥ 3ν + 4 ≥ 7.

We focus our attention on estimating T1, the estimate for T2 being anal-
ogous. We can write

(8.5) T1 = e2m(f(1))
2m−t−3∑

l=1

e2m(F1(l)),

where

(8.6) F1(l) := 4cl + f(5l)− f(1).

Let log(1 + 4u) be the 2-adic logarithm and R the 2-adic unit

R :=
1
4

log 5 =
∞∑

i=1

(−1)i+14i−1

i
.

Set

l =
1

4R
log(1 + 4u).

Then 5l = e4Rl = 1 + 4u, and as u runs through a complete set of residues
modulo any given power of 2, so does l in Z2. Set F2(u) = F1(y) and

G(X) := 2−t(RXf ′(X) + c),
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say f(X) =
∑d
i=0 ai(X − 1)i, G(X) =

∑d
i=0 bi(X − 1)i. Then we have the

same relations as in (6.10) and (6.11), and we obtain

(8.7) F2(u) =
d∑

i=1

(−1)i+1
( i−1∑

j=0

(−1)jbj
)22i+t

Ri
ui +

c

R

∞∑

i=d+1

(−1)i+14i

i
ui.

Let σ, τ , gα and g1 be as defined in Section 6 (right before Lemma 6.1).
Then the analogue of Lemma 6.1 we obtain here is

σ ≥ t+ 3,(8.8)

σ ≤ 2ν + t+ 2− τ,(8.9)

d2(g1) ≤ (σ + τ − t)/2− 1 ≤ ν.(8.10)

It follows from (8.9) and our assumption that m− t ≥ 3ν + 4 that m− σ ≥
τ + 3. Then by (8.5), Theorem 2.1(iv) and (8.10) we obtain

2t+1|T1| = 2t+1
∣∣∣

2m−t−3∑
u=1

e2m(F2(u))
∣∣∣ = 2σ−2|S(gα, 2m−σ)|

≤ 2σ−2d22τ/(d2+1)2(m−σ)(1−1/(d2+1)),

where d2 = d2(g1). Thus by (8.10) and (8.9) we have

2t+1|T1| ≤ ν2σ−22τ/(ν+1)2(m−σ)(1−1/(ν+1))

= ν2(σ−2ν−2+τ)/(ν+1)2m(1−1/(ν+1))

≤ ν2t/(ν+1)2m(1−1/(ν+1)).

The same upper bound holds for |T2| and so by (8.3) we obtain the inequality
in (8.2).

9. Extremal examples

Example 9.1. In this example we give a class of polynomials for which
the exponent m(1 − 1/d) in the upper bound for pure exponential sums is
sharp. Let d ≥ 2 be a positive integer, p a prime, a an integer with p - a and
h(X) be any polynomial over Z. Set δ = ordp(d). Suppose that either p is
odd or that p = 2 and d 6= 2, 4. Then for any m with d |m we have

(9.1) S(aXd + pδ+1Xdh(X), pm) = pm(1−1/d).

For the case p = 2 and d = 2 or 4 we note that

S(X2, 22) = 2(1 + i), S(X4, 24) = 23(1 + e(1/16)).

P r o o f. Suppose that p is odd. The proof is by induction on m starting
with m = d. Let f(X) = aXd + pδ+1Xdh(X) and t = t(f) := ordp(f ′).
Then it is easy to see that t = δ and so the critical point congruence is just

p−tf ′(x) ≡ a1x
d−1 ≡ 0 (mod p),
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where a1 = p−δda. Thus there is a single critical point, α = 0, of multiplicity
d−1, and so it follows from the recursion relationship (4.2) that if m ≥ δ+2
then

S(f, pm) = pσ−1S(g, pm−σ),
where σ = ordp(f(pY )) = d and

g(Y ) = p−σf(pY ) = aY d + pδ+1Y dh(pY ).

Now when m = d, we have m−σ = 0 and so S(f, pm) = pd−1 = pd(1−1/d)

provided that d ≥ δ+2. Since p is odd and d ≥ 2 the latter condition always
holds. If m > d and d |m then we observe that the polynomial g is of the
same type as f and so by the induction assumption we have

S(f, pm) = pd−1S(g, pm−d) = pd−1p(m−d)(1−1/d) = pm(1−1/d).

When p = 2 the same argument works only this time we need d ≥ δ+3 in
order to apply the recursion relationship. This condition holds unless d = 2
or 4.

Example 9.2. In this example we show that the exponentm(1−1/(d+1))
in the upper bound for mixed exponential sums is best possible. Let d ≥ 1
be a fixed positive integer, L the least common multiple of the integers from
1 to d, and define f(X) ∈ Z[X] by

f(X) =
d∑

i=1

(−1)iL
i

(X − 1)i.

Let p be a prime with p > d + 2, m a positive integer with d + 1 |m, and
χ be any multiplicative character (mod pm) such that c = c(χ, a) ≡ RL
(mod pm−1), where R is as defined in (6.5). There are p− 1 such characters
χ, all of them primitive. Then

(9.2) S(χ, f, pm) = pm(1−1/(d+1)).

P r o o f. We have

G(X) := RXf ′(X) + c ≡ c
(
X

d∑

i=1

(−1)i(X − 1)i−1 + 1
)

(9.3)

≡ c(1−X)d (mod pm−1),

and so there is a single critical point α = 1 of multiplicity d. From (6.9) we
see that for 1 ≤ i ≤ d the coefficient of U i in F2(U) is

(R(−1)iL+ (−1)i+1c)pi(Ri)−1 ≡ 0 (mod pm).

Thus

F2(U) ≡ L
∞∑

i=d+1

(−1)i+1pi

i
U i (mod pm).
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Since p > d+ 2 we see that σ := ordp(Fα(U)) = d+ 1, and that

gα(U) := p−σFα(U) ≡ (−1)dL(d+ 1)Ud+1 + pUd+1hα(U) (mod pm−d−1),

for some polynomial hα(U) with integer coefficients. Here, d+ 1 is the in-
verse of d + 1 (mod pm). We observe that gα(U) is a polynomial of the
type considered in Example 9.1, and thus from Proposition 6.1 and (9.1) we
obtain, if d+ 1 |m,

S(χ, f, pm) = χ(1)epm(f(1))pd
pm−d−1∑
u=0

epm−d−1(gα(u))

= pdp(m−d−1)(1−1/(d+1)) = pm(1−1/(d+1)).
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