A characterization of some additive arithmetical functions, III

 $\mathbf{b}\mathbf{y}$

JEAN-LOUP MAUCLAIRE (Paris)

I. Introduction. In 1946, P. Erdős [2] proved that if a real-valued additive arithmetical function f satisfies the condition: $f(n + 1) - f(n) \to 0$, $n \to \infty$, then there exists a constant C such that $f(n) = C \log n$ for all n in \mathbb{N}^* . Later, I. Kátai [3, 4] was led to conjecture that it was possible to determine additive arithmetical functions f and g satisfying the condition: there exist a real number l, a, c in \mathbb{N}^* , and integers b, d such that $f(an + b) - g(cn + d) \to l$, $n \to \infty$. This problem has been treated essentially by analytic methods ([1], [7]). In this article, we shall provide, in an elementary way, a characterization of real-valued additive arithmetical functions f and g satisfying the condition:

(H) there exist a and b in \mathbb{N}^* with (a, b) = 1 and a finite set Ω such that (1) $\lim_{n \to \infty} \min_{\omega \in \Omega} |f(an+b) - g(n) - \omega| = 0.$

II. Results. We have the following result:

THEOREM. Let f and g be real-valued additive arithmetical functions satisfying the condition (H). Then there exists a constant C such that the set of values of the sequences $g(n) - C \log n$, n in \mathbb{N}^* , and $f(n) - C \log n$, (n, a) = 1, is finite.

Acknowledgments. The author thanks the referee who provided a real simplification of the proof given in the first version of this article, and some nice cosmetical modifications to the original text.

III. Proof of the Theorem. We shall always assume that $f(p^k) = 0$ for all primes p dividing a and all k, since a change of these values does not affect the assumption of the Theorem.

1991 Mathematics Subject Classification: Primary 11N64.

[229]

The proof relies essentially on the following result which can be obtained elementarily:

THEOREM A. Let f and g be real-valued additive arithmetical functions satisfying the condition: there exist a and b in \mathbb{N}^* with (a,b) = 1 such that f(an + b) - g(n) = O(1). Then there exists a constant C such that $g(n) - C \log n$ and $f(n) - C \log n$ remain bounded.

Proof. For an announcement of this result, see [6], and for a proof, [5]. \blacksquare

ASSERTION 1. Let f and g satisfy the hypothesis (H). Then there exist a constant C and bounded additive arithmetical functions g' and f' such that $f(n) = C \log n + f'(n), g(n) = C \log n + g'(n).$

Proof. By our hypothesis, there exists a finite set Ω such that

$$\lim_{n \to \infty} \min_{\omega \in \Omega} |f(an+b) - g(n) - \omega| = 0.$$

This gives us that f(an+b) - g(n) is bounded, and Assertion 1 is an immediate consequence of Theorem A.

We only have to prove

PROPOSITION. Let f and g be bounded real-valued additive arithmetical functions satisfying the condition (H). Then the set of values of f(n) and g(n) is finite.

To prove this, we introduce the functions $f_p(n) = f(p^k)$ if $p^k \parallel n$ for each prime p, and similarly g_p . Let V_p denote the set of values of the function $f_p(an + b) - g_p(n)$. The next assertion is trivial:

ASSERTION 2. An additive function h(n) is bounded if and only if

(2)
$$\sum_{p} \max_{k} |h(p^{k})| < \infty.$$

MAIN LEMMA. Let $q \ge 2$ and v be any element of the set $\sum_{p \le q} V_p$. Then v is a limit point of f(an + b) - g(n).

Proof. We have $v = \sum_{p \le q} v_p$ with $v_p = f_p(an_p + b) - g_p(n_p)$. For every n we have

$$f(an + b) - g(n) = \sum_{p} (f_p(an + b) - g_p(n))$$

We want to find infinitely many values of n for which this is in $(v - \varepsilon, v + \varepsilon)$. To achieve this, it is sufficient that

(3)
$$f_p(an+b) - g_p(n) = f_p(an_p+b) - g_p(n_p)$$

for all $p \leq q$, and

(4)
$$\sum_{p>q} |f_p(an+b) - g_p(n)| < \varepsilon.$$

For (3), it is sufficient that n contains p with the same exponent as n_p , and an + b with the same exponent as $an_p + b$. Both are satisfied if

(5)
$$n \equiv n_p \pmod{p^{k_p+1}},$$

where k_p is the exponent of p in $n_p(an_p + b)$.

To treat (4), we first select a Q so that

$$\sum_{p>Q} \max_k |f(p^k)| + \max_k |g(p^k)| < \varepsilon$$

(Assertion 2). Then the contribution of primes p > Q in (4) is $\langle \varepsilon$. Thus (4) will hold if we achieve that

(6)
$$f_p(an+b) - g_p(n) = 0$$

for all $q . To do this, it is sufficient that <math>p \nmid n(an + b)$. Since this excludes two residue classes for $p \nmid a$ and one for $p \mid a$, we can find b_p such that the assumption

(7)
$$n \equiv b_p \pmod{p}$$

guarantees (6).

Hence every *n* that satisfies the congruence (5) for all $p \leq q$ and (7) for all $q also satisfies <math>|f(an + b) - g(n) - v| < \varepsilon$. There are infinitely many such numbers, and consequently *v* is a limit point.

End of proof of the Proposition. We know that the sumset $\sum_{p \leq q} V_p$ is contained in Ω for all q; so the cardinalities of these sets are bounded. This means that each V_p is finite, and with a finite number of exceptions $|V_p| = 1$.

Write

$$F_p = \{0, f(p), f(p^2), \ldots\}, \quad G_p = \{0, g(p), g(p^2), \ldots\}$$

The property that f and g have only a finite number of values is equivalent to saying that F_p and G_p are always finite and are equal to $\{0\}$ except for finitely many primes. For most primes this will follow from the lemma below.

LEMMA. For $p \nmid 2ab$ we have $V_p = F_p \cup (-G_p)$.

Proof. If $p \nmid b$, then we cannot have both $p \mid n$ and $p \mid an + b$, thus $V_p \subset F_p \cup (-G_p)$ follows. To show the other inclusion, for a given $k \geq 1$ take an n such that $p^k \parallel n$; then $p \nmid an + b$ and so

$$f_p(an+b) - g_p(n) = -g_p(n) = -g(p^k).$$

Similarly, as $p \nmid a$ we can find an n with $p^k \parallel an + b$ and we infer $f(p^k) \in V_p$. Finally, since p > 2 we can find an n with $p \nmid n(an + b)$ to show $0 \in V_p$.

For $p \mid 2ab$ a complete description of V_p would split into several subcases, but for our aims the following weaker assumption suffices.

LEMMA. If V_p is finite, so are F_p and G_p .

Proof. Write $p^r \parallel b$. By considering $n = p^k$ we see that $f(p^r) - g(p^k) \in V_p$ for k > r, thus $g(p^k) \in -V_p + f(p^r)$ and G_p is finite. If $p \mid a$, then $F_p = \{0\}$ by assumption. If $p \nmid a$, then we can find n such

that $p^k \parallel an + b$ and we obtain $f(p^k) - g(p^r) \in V_p$, $f(p^k) \in V_p + g(p^r)$.

These lemmas show that F_p , G_p are always finite, and they are $\{0\}$ whenever $p \nmid 2ab$ and $|V_p| = 1$, hence for all but finitely many p. This concludes the proof of the Theorem.

References

- [1] P. D. T. A. Elliott, The value distribution of differences of additive arithmetic functions, J. Number Theory 32 (1989), 339-370.
- [2]P. Erdős, On the distribution function of additive functions, Ann. of Math. 47 (1946), 1-20.
- [3] I. Kátai, Some results and problems in the theory of additive functions, Acta Sci. Math. (Szeged) 30 (1969), 305–311.
- -, On number theoretical functions, in: Number Theory (Colloq., János Bolyai Math. [4]Soc., Debrecen, 1968), North-Holland, Amsterdam, 1970, 133–137.
- [5] J. L. Mauclaire, Contributions à la théorie des fonctions additives, thèse, Publ. Math. Orsay 215, 1977.
- —, Sur la régularité des fonctions additives, Sém. Delange-Pisot-Poitou (15^{ième} [6]année, 1973/1974), fasc. 1, exp. no. 23, 1975.
- N. M. Timofeev, Integral limit theorems for sums of additive functions with shifted [7]arguments, Izv. Math. 59 (1995), 401-426.

Institut de Mathématiques U.M.R. 7586 du C.N.R.S. Case 247 4 Place Jussieu 75252 Paris Cedex 05, France E-mail: mauclai@ccr.jussieu.fr

> Received on 5.1.1998 and in revised form on 11.12.1998

(3320)