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A classical theorem of Mahler [4] states that every continuous function
f from the p-adic ring Z,, to its quotient field Q, (or to any finite extension
of Q,) can be uniquely expressed in the form

oo
f(z) = Cn <x>7
() 7;) "
where the sequence ¢,, tends to 0 as n — o0o. The purpose of this paper is to
extend Mahler’s theorem to continuous functions from any compact subset
S of a local field K to K. Here by a local field we mean the fraction field of
a complete discrete valuation ring R whose residue field k = R/7R is finite.

Our theorem implies, in particular, that every continuous function from
S to K can be uniformly approximated by polynomials. This generalization
of Weierstrass’s approximation theorem was first proved in the case K = Q,
by Dieudonné [3]. Mahler [4] made explicit Dieudonné’s result in the case
S = Z, by giving a canonical polynomial interpolation series for the contin-
uous functions from Z, to Q,. Amice [1] later extended Mahler’s theorem
to continuous functions on certain “very well-distributed” subsets S of a
local field K. The present work provides canonical polynomial interpolation
series for all S and K, and thus constitutes a best possible generalization of
Mahler’s result in this context.

The main ingredient in our work is a generalization of the binomial
polynomials (¥) introduced by the first author [2]. Their construction is
as follows. Given a subset S C K, fix a m-ordering A of S, which is a
sequence ag, a1, ... in which a,, € S is chosen to minimize the valuation of
(an —ap) -+ (ap — an—1). It is a fundamental lemma [2, Theorem 1] that the
generalized factorial

nly=(an—ag) - (an — an-1)
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generates the same ideal for any choice of A. The nth generalized binomial
polynomial is then defined as

(), -

by construction, (i) 4 maps S into R for all n > 0. The usual binomial
polynomials are of course recovered upon setting A to be the p-ordering
0,1,2,... of the ring R = Z,,.

Mabhler’s theorem implies that the ordinary binomial polynomials {(fb)}
form a Z,-basis for the ring Int(Z,, Z,) of polynomials over Q, mapping Z,
into Zj,. This fundamental property of the usual binomial polynomials was
first pointed out (with Z in place of Z,,) by Pélya [5]. On the other hand, in [2]
it was shown that, analogously, the generalized binomial polynomials { (2 ) A}
form an R-basis for the ring Int(.S, R) of polynomials over K mapping S into
R. These results are what led us to conjecture, and subsequently prove, our

extension of Mahler’s theorem.

Our main result is

THEOREM 1. Given any continuous map f : S — K, there exists a unique
sequence {cp}o2 in K such that

= x
1) fa) =Y (7

n=0 n A
for all x € S. Moreover, ¢, — 0 as n — 00, so the series converges uni-
formly.

Note that the ¢, for a given f may be computed recursively from the
values of f at the a;, by the formula

@) o=t -S|

=0

or directly (see [2, Theorem 6]) by the formula

n
3 Cp = ( an—aj> flay).
(3) > 1;[ )

We begin by proving Theorem 1 first for a special class of m-orderings.
Given a m-ordering A = {a;} and a nonnegative integer n, we say that a,
is old (mod7™) if a,, = a; (mod 7™) for some j < n; otherwise, we say ay,
is new (mod ™). A m-ordering A = {a;} is proper if, for all k and m, ay, is
chosen to be a new element (mod 7) only when it is not possible to choose
ar, to be old. Thus, for example, the p-ordering 0,1, p, p?> + 1, 2p is proper,
whereas the p-ordering 0, 1, p, 2p, p*> + 1 is not.
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If A is proper, we have the following weak analogue of Lucas’s theorem
for the generalized binomials (2) N

LEMMA 1. Assume A = {a;} is proper and that a, is new (mod 7™).
Let z,y € S, and suppose x =y (mod ©™). Then

(2),= ), tream

Proof If x # a; (mod 7™) for all ¢ < n, we have

n—1
x —aj; x
<y> :() Hiy ]E<> (mod 7),
n), n), -t x—aj n),
7=0
since y — a; and x — a; have the same valuation and the same final nonzero
m-adic digit.
On the other hand, suppose = a; (mod 7™) for some i < n. The fact
that a new element a,, was chosen for the proper m-ordering A, instead of x,

which would have been old modulo 7™, means that (x — ag) -+ (x — an—1)
has strictly higher valuation than (a, — ag)- - (a, — a,—1). Hence we have

<2>A =0 (mod 7).

Applying the same argument with y in place of x, we find

(), 2) o min

and this completes the proof. m
From Lemma 1 we obtain

COROLLARY 1. Assume the w-ordering A is proper, and let T be the set
of n such that a, is new (mod ™). If h:S — k is a function such that
h(z) = h(y) whenever x =y (mod ©™), then there exists a unique function
g: T — k such that

ha) =" g(n) <x> (mod 7)  for all x € S.

neT A

Proof. There are |k|I”! functions of each kind, and each h is represented
by at most one g, since g can be recovered from h using the formula

(1) 9(0) = ha) — 3 g(n) <n>

neTl
n<t

Thus every h is represented by exactly one g. m



194 M. Bhargava and K. S. Kedlaya

We may now give a proof of Theorem 1 in the case when A is proper.

Proof of Theorem 1 for a proper m-ordering A. Since S and its image
under the continuous map f are both compact, each is contained in 7R
for some m, and a suitable rescaling allows us to assume that S and f(S)
are both contained in R. If f admits a representation as in (1), then, as
noted before, the ¢, may be recovered from the values of f at the a; using
(2) or (3). Hence the sequence {c,,} is unique if it exists. (Note that for this
part of the argument we did not need that A is proper or that ¢,, — 0.)

To prove existence of the desired null sequence under the assumption
that A is proper, it suffices to exhibit a sequence ¢, with finitely many
nonzero terms such that

=3 e @A (mod ),

n=0

since we can then apply the same reasoning to [ flz)—=> cn (Z) A] /7, and
SO on.

Let h be the composite of f with the projection of R onto k. Since h is
continuous, the preimage of each element of k is a closed-open subset of S.
It follows that h satisfies the condition of Corollary 1 for some m, in which
case setting ¢, = g(n) (mod m) for n € T and ¢, = 0 otherwise furnishes
the desired sequence. =

We may now deduce Theorem 1 for arbitrary m-orderings using a change-
of-basis argument. In fact, we prove something even stronger.

THEOREM 2. Let {P;}2, be any R-basis of the ring Int(S, R). Then for
each continuous map f : S — K, there exists a unique sequence {c,} in K
with ¢, — 0 as n — oo such that

() f(x) =) cnPul2)
n=0

forall x € S.

Note that the hypothesis of Theorem 2 is essentially the weakest possible,
since the truth of the conclusion for given polynomials {P;} implies that
they form (when appropriately scaled) an R-basis of Int(S, R). However, we
must settle for a slightly weaker uniqueness statement in Theorem 2 than
we had in Theorem 1; for as we shall see, if the polynomials P; are not
generalized binomial polynomials, and the condition ¢,, — 0 is relaxed, then
the representation (5) may not remain unique!

Proof (of Theorem 2). For A a proper m-ordering of S, we have already
shown that there exists a unique sequence b,,, such that
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) @)= 0u(s).

for all x € S, and that b,, — 0 as n — o0o. Since both the P; and the
binomial polynomials form R-bases of Int(.S, R), there exist transformations
T = (tymn) and U = (up,y) over R such that

<;)A - gtmnPn(x) and P, (z) = i Ui (;)A;

m=0

in particular, these summations each contain only finitely many nonzero
terms. More precisely, there exist integers N(m) and M (n) such that t,,, =
0 for all n > N(m) and uy,, = 0 for all m > M(n).

Define ¢, by the formula

oo
m=0

the series converges for every n since t,,, € R and b,, — 0. Moreover, for any
nonnegative integer 4, there exists M such that 7* divides b,, for m > M,
and there exists N such that t1, = --- = ty, = 0 for n > N. Hence 7*
divides ¢, for n > N, and so ¢, — 0.

To demonstrate that

(7) Z cnPo(r) = f(2),
n=0

it suffices to verify that the two sides of the equality agree modulo 7* for
all nonnegative integers ¢. With notation as in the preceding paragraph, we
have

m=0n=0
On the other hand,
o) N 0o
D enPu(@) =Y Pu(r) > bntimn
n=0 n=0 m=0

= Z Z bimtmnPr(x) (mod 7ri),

n=0m=0

and the desired congruence follows.
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To show uniqueness, suppose that in addition to (5) we have
(8) f@) =) ¢ Pulx)

n=0

for some sequence {c],} with ¢,, — 0. Define the sequence {0/} by

o0

/ /

b, = g CpUrm -
n=0

Then the same argument as before (with the transformation U in place of

T) shows that the series
Z /L( )1
n

converges uniformly to f(x) on S. By Theorem 1, it follows that b,, = b}, for
all n, and upon reapplying T', we obtain ¢, = ¢}, for all n. This completes
the proof of Theorem 2. m

As noted above, Theorem 2 includes the condition ¢,, — 0 as a hypoth-
esis rather than a conclusion. To illustrate why this occurs, we provide an
example of a regular basis of Int(R, R) (an R-basis of Int(R, R) consisting of
one polynomial of each degree) which admits a nontrivial representation of
the identically zero function. In the case R = IF,[[t]], this resolves a question
of Wagner [6, Section 4].

Let g be the cardinality of the residue field k, and choose a complete
set of residues ao,...,aq,—1 modulo m such that ap = 0. We construct a
m-ordering A = {a;} by the following rule: if Y. ¢;¢" is the base ¢ expansion

of n, then
an = Z e, "
i
For m a nonnegative integer, let
Qo) = ("0
and define the regular basis { P, (x)} of Int(R, R) as follows:

Py(z) = {

Qm(r) — Qu-_1(z) if n=¢*™ — 1 for some m > 0,

(z) " otherwise.

Also, let ¢, = 1 if n = ¢*™ — 1 for some m > 0 and ¢, = 0 otherwise.
We claim that the series ) ¢, P,(x) converges pointwise to 0 on R, even
though the ¢, are not all zero. Since
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N
chPn(x) =Qm(z) forg®™ —1<N < q2(m+1) 1,
n=0

it is equivalent to show @, (z) converges pointwise to 0 as m — oo.
We may assume x # 0, since @, (0) = 0 for all m > 0; in this case, z # 0
(mod 7') for some I. Expanding the generalized binomial coefficient, we find

q2m72

Q)= [ ZForm-i—o
=0 Clq2m_1 — Qa;
Note that if ¢ and j are distinct nonnegative integers and s is the small-
est integer such that ¢ # j (mod ¢°), then a; # a; (mod 7°). Hence the
denominator in the above product runs through each nonzero residue class
modulo m2™ exactly once, while the numerator runs through each residue
class once except that of x + agm_1 — ag2m_1. For m > [, the latter fails to
be divisible by 7!; it follows that for some m-adic integer 7,

2my

m(T) = =0 (mod 7711,
Qm () T+ agm 1 —agm 3 (mod 7 )

In particular, @, (z) — 0 as m — oo, as desired.

We conclude by briefly stating the implications of Theorem 1 for K-
valued measures on S. Recall that a K-valued measure on S is a K-linear
map p from C(S, K) to K, where C(.S, K') denotes the set of continuous func-
tions from S to K. By convention, one writes u(f) symbolically as fS fdu.
With this notation, Theorem 1 immediately translates into the following
characterization of measures on S.

THEOREM 3. A K-valued measure p on S is uniquely determined by
the sequence pp = fS (i)Adu of elements of K. Conversely, any bounded
sequence {ur} in K determines a unique K-valued measure p on S by the
formula [ fdp = 377 crpw, where {cy} is the sequence corresponding to
f as in Theorem 1.
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