Quadratic function fields whose class numbers are not divisible by three

 $\mathbf{b}\mathbf{y}$

HUMIO ICHIMURA (Yokohama)

1. Introduction. For an algebraic number field K, let Cl(K) be its ideal class group and h(K) = |Cl(K)|. For a prime number l dividing the degree $[K : \mathbb{Q}]$, we have a lot of information on the l-part Cl(K)(l) of Cl(K)(see e.g. [2], [3], [11], [14]). On the other hand, when $l \nmid [K : \mathbb{Q}]$, not so many results are known on Cl(K)(l). One of such is that of Hartung [8] and Horie [9], who proved that there exist infinitely many imaginary quadratic fields K with $l \nmid h(K)$ (and satisfying some additional conditions) for any odd prime number l. When l = 3, there are stronger results concerning the "density" of the set of quadratic fields K with $3 \nmid h(K)$ (and satisfying some additional conditions), which were obtained by Davenport and Heilbronn [5], Datskovsky and Wright [4], and Kimura [12]. They also obtained analogous results for quadratic extensions over the rational function field $\mathbb{F}_q(T)$, where \mathbb{F}_q is a fixed finite field.

Since the methods in the papers referred to above are not constructive, it is desirable to give *explicit* families of infinitely many quadratic extensions K over \mathbb{Q} or $\mathbb{F}_q(T)$ with $l \nmid h(K)$ for each odd prime number l. Here, h(K) is the number of divisor classes of K of degree zero when K is a function field of one variable over a finite constant field. The main purpose of this note is to give such families when l = 3 in the function field case.

Let us give the main results. Let p be a fixed prime number, q a fixed power of p, and \mathbb{F}_q the finite field with cardinality q. Let T be a fixed indeterminate. We take the rational function field $\mathbb{F}_q(T)$ as the base field. For simplicity, we assume $p \geq 5$ in this section. For $n \geq 1$ and $a \in \mathbb{F}_q^{\times}$, we put

$$L_{n,a} = \mathbb{F}_q(T, (T^{3^n} + a)^{1/2}).$$

¹⁹⁹¹ Mathematics Subject Classification: Primary 11R58; Secondary 11R11, 11R29. The author was partially supported by Grant-in-Aid for Scientific Research (C), Grant Number 11640041.

^[181]

The genus of $L_{n,a}$ is $(3^n - 1)/2$. We show that $3 \nmid h(L_{n,a})$ when $q \equiv 1 \mod 3$ and $a \notin (\mathbb{F}_q^{\times})^2$ (Theorem 1(II)). However, when $q \equiv -1 \mod 3$, we have $3 \mid h(L_{n,a})$ for all $a \in \mathbb{F}_q^{\times}$ and n (Theorem 1(III)). So, we have to find another family. We define rational functions $X_n = X_n(T)$ in $\mathbb{F}_q(T)$ inductively as follows:

(1)
$$X_0 = T$$
, $X_n = (X_{n-1}^3 - 3X_{n-1} - 1)/(3(X_{n-1}^2 + X_{n-1}))$ for $n \ge 1$.

We easily see that when $q \equiv -1 \mod 3$, there exists $\gamma \in \mathbb{F}_q^{\times}$ such that $\gamma^2 - 3\gamma + 9 \notin (\mathbb{F}_q^{\times})^2$. We put

$$L_{n}'' = \mathbb{F}_{q}(T, (3X_{n} + \gamma)^{1/2}).$$

The genus of L''_n is $3^n - 1$. We show that $3 \nmid h(L''_n)$ for all $n \geq 1$ when $q \equiv -1 \mod 3$ (Theorem 4). We give similar families also when p = 2, 3 (Theorem 4, Theorem 3).

REMARK 1. The second formula in (1) is a variant of the polynomial $f_a = X^3 - aX^2 - (a+3)X - 1$ ($a \in \mathbb{Z}$). This polynomial was first effectively used by Shanks [16]. A property of f_a is that its discriminant is $(a^2+3a+9)^2$, which is used in the proof of Theorem 4.

REMARK 2. Let ∞_T be the prime divisor of $\mathbb{F}_q(T)$ corresponding to the pole of T. After Artin [1], we say that a quadratic extension $K/\mathbb{F}_q(T)$ of nonzero genus is a "real" quadratic extension when ∞_T splits, and an "imaginary" one otherwise. The quadratic extensions given in Theorems 1–4 in Section 2 are imaginary ones.

REMARK 3. Nagell [13] (resp. Yamamoto [17]) constructed infinitely many imaginary (resp. real) quadratic extensions (over \mathbb{Q}) whose class numbers are divisible by a given integer. For analogous results for the function field case, see Friesen [6] and the author [10].

CONVENTION. For the rational function field $\mathbb{F}_q(X)$ with an indeterminate X, we denote by ∞_X its prime divisor corresponding to the pole of X. Further, for an irreducible monic P = P(X) in the polynomial ring $\mathbb{F}_q[X]$, we denote by (P) the prime divisor of $\mathbb{F}_q(X)$ corresponding to the zeros of P. When $l \neq p$, let $\mu_{l^{\infty}}$ be the group of l^a th roots of unity for all $a \geq 1$ in the algebraic closure $\overline{\mathbb{F}}_q$, and ζ_{l^a} a primitive l^a th root of unity. For a module M, we abbreviate the quotient M/lM (or M/M^l) by M/l.

2. Families of quadratic extensions over $\mathbb{F}_q(T)$. Let q be a fixed power of a prime number p, and l a fixed *odd* prime number. In this section, we give several families of quadratic extensions L over $\mathbb{F}_q(T)$ with $l \mid h(L)$ (resp. $l \nmid h(L)$). The results announced in Section 1 for l = 3 are contained in these ones.

For an element x of the algebraic closure $\overline{\mathbb{F}_q(T)}$, we put

$$x^{\mathcal{P}} = x^p - x$$
 and $x^{\mathcal{P}^n} = (x^{\mathcal{P}^{n-1}})^{\mathcal{P}}$ for $n \ge 1$

We also denote by x^{1/\mathcal{P}^n} an element z satisfying $z^{\mathcal{P}^n} = x$.

First, assume that $l \neq p$. For $n \geq 1$ and $a \in \mathbb{F}_q$, we put

$$L_{n,a} = \begin{cases} \mathbb{F}_q(T, (T^{l^n} + a)^{1/2}) & \text{for } p \neq 2, \\ \mathbb{F}_q(T, (T^{l^n} + a)^{1/\mathcal{P}}) & \text{for } p = 2. \end{cases}$$

Here, we assume $a \neq 0$ when $p \neq 2$. Let $\delta_l(q)$ be the order of $q \mod l$ in the multiplicative group $(\mathbb{Z}/l\mathbb{Z})^{\times}$, and let $\mathbb{F}_q^{\mathcal{P}}$ be the subset of \mathbb{F}_q consisting of elements $x^{\mathcal{P}}$ with $x \in \mathbb{F}_q$. For the quadratic extensions $L_{n,a}$, we prove the following assertions.

THEOREM 1. Assume that $l \neq p$ and $p \neq 2$.

- (I) When $a \in (\mathbb{F}_q^{\times})^2$, we have $l \mid h(L_{n,a})$ for all n.
- (II) When $\delta_l(q)$ is odd, we have $l \mid h(L_{n,a})$ if and only if $a \in (\mathbb{F}_q^{\times})^2$.
- (III) When $\delta_l(q) = 2$, we have $l \mid h(L_{n,a})$ for all a and n.

THEOREM 2. Assume that $l \neq p$ and p = 2.

- (I) When $a \in \mathbb{F}_q^{\mathcal{P}}$, we have $l \mid h(L_{n,a})$ for all n.
- (II) When $\delta_l(q)$ is odd, we have $l \mid h(L_{n,a})$ if and only if $a \in \mathbb{F}_q^{\mathcal{P}}$.
- (III) When $\delta_l(q) = 2$, we have $l \mid h(L_{n,a})$ for all a and n.

Next, assume that l = p. For $n \ge 1$ and $a \in \mathbb{F}_q$, we put

$$L'_{n,a} = \mathbb{F}_q(T, (T^{\mathcal{P}^n} + a)^{1/2}).$$

For these quadratic extensions, we prove the following:

THEOREM 3. Assume that l = p. We have $l \nmid h(L'_{n,a})$ for all a and n.

Finally, let l = 3 and $q \equiv -1 \mod 3$. Let $X_n = X_n(T)$ be the rational function in $\mathbb{F}_q(T)$ defined by (1), and when $p \neq 2$, let γ be a fixed element of \mathbb{F}_q^{\times} such that $\gamma^2 - 3\gamma + 9 \notin (\mathbb{F}_q^{\times})^2$. For $n \geq 1$, we put

$$L_n'' = \begin{cases} \mathbb{F}_q(T, (3X_n + \gamma)^{1/2}) & \text{for } p \neq 2, \\ \mathbb{F}_q(T, (X_n)^{1/\mathcal{P}}) & \text{for } p = 2. \end{cases}$$

For these quadratic extensions, we prove the following:

THEOREM 4. Assume that $l \equiv 3$ and $q \equiv -1 \mod 3$. We have $3 \nmid h(L''_n)$ for all n.

REMARK 4. When $\delta_l(q)$ is even but not 2, the author could not show whether or not $l \mid h(L_{n,a})$ for $a \notin (\mathbb{F}_q^{\times})^2$.

3. Some lemmas. Let k be a fixed algebraic function field of one variable with constant field \mathbb{F}_q , and let l be a fixed prime number (not necessarily

odd). In this section, we give several lemmas concerning the class number h(k) of k or that of a finite separable extension over k. They are well known or, otherwise, known to specialists.

The following lemma follows from class field theory.

LEMMA 1. Let \mathfrak{p} be a prime divisor of k with $l \nmid \deg(\mathfrak{p})$, where $\deg(\ast)$ denotes the degree of a divisor. Then $l \mid h(k)$ if and only if there exists an unramified cyclic extension over k of degree l in which \mathfrak{p} splits completely.

For this, the readers may consult Rosen [15, p. 368]. From this lemma, we immediately obtain the following corollaries.

COROLLARY 1. Let \mathfrak{p} be as in Lemma 1. Let $\mathbb{F}_Q/\mathbb{F}_q$ be a finite extension and $K = k\mathbb{F}_Q$. Assume that \mathfrak{p} remains prime in K. Then $l \mid h(K)$ if $l \mid h(k)$.

COROLLARY 2. Let \mathfrak{p} be as in Lemma 1. Let K/k be a finite separable extension in which \mathfrak{p} is totally ramified. Then $l \mid h(K)$ if $l \mid h(k)$.

The following lemma is a function field analogue of a theorem of Iwasawa [11] on the class numbers of algebraic number fields.

LEMMA 2. Let K/k be a finite *l*-Galois extension. Assume that exactly one prime divisor \mathfrak{P} of K is ramified over k and that $l \nmid \deg(\mathfrak{P})$. Then $l \mid h(K)$ implies $l \mid h(k)$.

Proof. Though this assertion is more or less known, we give a proof for the convenience of the readers. Assume that $l \mid h(K)$. Let H/K be the maximal unramified abelian extension of exponent l in which \mathfrak{P} splits completely. As $l \mid h(K)$, we have $H \neq K$ by Lemma 1. Put $\mathfrak{p} = \mathfrak{P} \cap k$. Then we see that \mathfrak{P} is the unique prime divisor of K over \mathfrak{p} from an assumption of the lemma. Therefore, H is Galois over k. Let G = Gal(H/k) and $Z (\subseteq G)$ the decomposition group of an extension of \mathfrak{P} in H. We have $G \neq Z$ as $H \neq K$. Then, since G is an l-group, there exists a normal subgroup \widetilde{Z} of Gsuch that $[G:\widetilde{Z}] = l$ and $\widetilde{Z} \supseteq Z$ (cf. Hall [7, Theorem 4.3.2]). Let E be the intermediate field of H/k corresponding to \widetilde{Z} by Galois theory. Then E/kis an unramified cyclic extension of degree l, and \mathfrak{p} splits completely in E. Therefore, we obtain $l \mid h(k)$ by Lemma 1. ■

The following is a version of Lemma 2. As in Section 1, we denote by ∞_T the prime divisor of $\mathbb{F}_q(T)$ corresponding to the pole of T.

LEMMA 3. Let $k = \mathbb{F}_q(T)$ and K/k a finite *l*-Galois extension. Assume that $q \equiv 1 \mod l$. Assume further that (i) ∞_T is totally ramified in K, (ii) exactly one prime divisor \mathfrak{p} of k other than ∞_T is ramified in K, and (iii) $l \nmid \deg(\mathfrak{p})$. Then $l \nmid h(K)$.

Proof. Assume that $l \mid h(K)$. Then, in a way similar to the proof of Lemma 2, we see that there exists a cyclic extension E over k of degree l

unramified outside \mathfrak{p} in which ∞_T splits completely. Let $P = P(T) \ (\in \mathbb{F}_q[T])$ be the irreducible monic corresponding to \mathfrak{p} . Since $q \equiv 1 \mod l$, we can write $E = \mathbb{F}_q(T, (\zeta P^a)^{1/l})$ for some $\zeta \in \mathbb{F}_q^{\times}$ and $a \in \mathbb{Z}$. Then, since $l \nmid \deg(P)$ and ∞_T splits in E, it follows that $l \mid a$ and $\zeta \in (\mathbb{F}_q^{\times})^l$, and hence E = k. This is a contradiction.

The following lemma is known as Abhyankar's lemma (cf. Cornell [2]).

LEMMA 4. Let E_i be a finite separable extension over a local field κ with ramification index e_i (i = 1, 2). If E_2 is at most tamely ramified and $e_2 | e_1$, then $E_1 E_2 / E_1$ is unramified.

Finally, assume that $l \neq \operatorname{char}(k) (= p)$. Let $\zeta = \zeta_l$ be a primitive *l*th root of unity, $K = k(\zeta)$ and $\Delta = \operatorname{Gal}(K/k)$. Let ∞ be a fixed prime divisor of k such that $\operatorname{deg}(\infty)$ is relatively prime to $l|\Delta|$. There exists a unique prime divisor $\widetilde{\infty}$ of K over ∞ as $\operatorname{deg}(\infty)$ and $|\Delta|$ are relatively prime. For $v \in K^{\times}$, we denote by [v] the class in $K^{\times}/l = K^{\times}/(K^{\times})^l$ represented by v. We regard K^{\times}/l as a module over the group ring $\mathbb{F}_l[\Delta]$. For an $\mathbb{F}_l[\Delta]$ -module M and an (\mathbb{F}_l -valued) character χ of Δ , let $M(\chi)$ denote the χ -component of M. Namely, $M(\chi)$ is the maximal submodule of M on which Δ acts via χ . Let ω be the (\mathbb{F}_l -valued) character of Δ .

LEMMA 5. In the above setting, we have $l \mid h(k)$ if and only if there exists a nontrivial element [v] of $(K^{\times}/l)(\omega)$ or $(K^{\times}/l)(\chi_0)$ such that (i) the cyclic extension $K(v^{1/l})/K$ of degree l is unramified and (ii) $\widetilde{\infty}$ splits completely in this extension.

Proof. Denote by Cl_K the divisor class group of K of degree zero. Let \widetilde{H}/K be the maximal unramified abelian extension of exponent l, and H the maximal intermediate field of \widetilde{H}/K in which $\widetilde{\infty}$ splits completely. The fields \widetilde{H} and H are Galois also over k as $\widetilde{\infty}$ is the unique prime of K over ∞ . We put $A = \operatorname{Gal}(H/K)$. Further, let \widetilde{V} and V be the subgroups of K^{\times}/l such that

$$\widetilde{H} = K(v^{1/l} \mid [v] \in \widetilde{V}) \text{ and } H = K(v^{1/l} \mid [v] \in V)$$

respectively. The groups A, \tilde{V}, V as well as $Cl_K/l = Cl_K/Cl_K^l$ are naturally regarded as modules over $\mathbb{F}_l[\Delta]$ since \tilde{H} and H are Galois over k. By class field theory, we have a canonical isomorphism $Cl_K/l \cong A$ compatible with the action of Δ . So, we identify these two modules. We see that $l \mid h(k)$ if and only if $(Cl_K/l)(\chi_0)$ is nontrivial from class field theory (cf. [15, p. 368]).

Now, let χ be any \mathbb{F}_l -valued character of Δ . We prove the following:

CLAIM 1. The dimensions of the four vector spaces

 $(Cl_K/l)(\chi), \quad (Cl_K/l)(\omega\chi^{-1}), \quad V(\chi), \quad V(\omega\chi^{-1})$ over \mathbb{F}_l are equal.

The desired assertion follows from this.

Let $\mu_{l^a} = \mu_{l^{\infty}} \cap K$. Then we easily see that $H = H(\zeta_{l^{a+1}})$. From this, it follows that

(2)
$$\dim \widetilde{V}(\chi) = \begin{cases} \dim V(\chi) & \text{for } \chi \neq \omega, \\ \dim V(\chi) + 1 & \text{for } \chi = \omega. \end{cases}$$

Here, dim(*) denotes the dimension of * over \mathbb{F}_l . For each element $[v] \in \widetilde{V}$, the principal divisor (v) is written as $(v) = \mathfrak{A}^l$ for some divisor \mathfrak{A} of K. By mapping [v] to the divisor class $[\mathfrak{A}]$ of \mathfrak{A} , we obtain the following exact sequence:

$$0 \to \mu_{l^a} / \mu_{l^{a-1}} \to \widetilde{V} \to {}_l C l_K \to 0.$$

Here, ${}_{l}Cl_{K}$ is the elements a of Cl_{K} with $a^{l} = 1$. Clearly, this sequence is compatible with the Δ -action. Hence, by (2), we obtain

(3)
$$\dim(Cl_K/l)(\chi) = \dim({}_lCl_K)(\chi) = \dim V(\chi)$$

for any χ . On the other hand, the Kummer pairing

$$A \times V \to \mu_l, \quad (\sigma, [v]) \to \langle \sigma, [v] \rangle = (v^{1/l})^{\sigma - 1}$$

is nondegenerate and satisfies

$$\langle \sigma^{\varrho}, [v]^{\varrho} \rangle = \langle \sigma, [v] \rangle^{\varrho} = \langle \sigma, [v] \rangle^{\omega(\varrho)} \quad \text{for } \varrho \in \Delta$$

From this, we easily obtain

(4)
$$\dim(Cl_K/l)(\chi) = \dim V(\omega\chi^{-1})$$

for any χ . The assertion of Claim 1 follows from (3) and (4).

4. Proof of Theorems 1 and 2. We give a proof only for the case $p \neq 2$ (Theorem 1). The case p = 2 (Theorem 2) can be proved in a similar way.

We assume that $l \neq p$ and $p \neq 2$. We fix $a \in \mathbb{F}_q^{\times}$, and write $L_n = L_{n,a}$ for brevity. Putting $Y = (T^{l^n} + a)^{1/2}$, we have

$$L_n = \mathbb{F}_q(Y, (Y^2 - a)^{1/l^n}).$$

Proof of (I) and (III). The prime divisor ∞_Y of $\mathbb{F}_q(Y)$ is totally ramified in the extension $L_n/\mathbb{F}_q(Y)$. Therefore, we see that the condition $l \mid h(L_{n-1})$ implies $l \mid h(L_n)$ by the second corollary of Lemma 1. Hence, it suffices to prove the assertions (I) and (III) only when n = 1. We write L = L_1 for brevity. Let $\zeta = \zeta_l$, and let $Q = |\mathbb{F}_q(\zeta)|$ so that $\mathbb{F}_Q = \mathbb{F}_q(\zeta)$. Put $\widetilde{L} =$ $L\mathbb{F}_Q$. We identify the Galois group $\Delta = \operatorname{Gal}(\mathbb{F}_Q/\mathbb{F}_q)$ with $\operatorname{Gal}(\mathbb{F}_Q(Y)/\mathbb{F}_q(Y))$ and $\operatorname{Gal}(\widetilde{L}/L)$ in the obvious way. Let $\widetilde{\infty}_Y$ be the unique prime divisor of \widetilde{L} over ∞_Y .

First, assume that $a = b^2$ with $b \in \mathbb{F}_q^{\times}$. Put v = (Y-b)/(Y+b). Clearly, we have $[v] \in (\widetilde{L}^{\times}/l)(\chi_0)$. We see that the cyclic extension $\widetilde{L}(v^{1/l})/\widetilde{L}$ is

186

unramified by Lemma 4, and that $\widetilde{\infty}_Y$ splits completely in this extension as $v \equiv 1 \mod (1/Y)$. Therefore, by Lemma 5, we get $l \mid h(L)$.

Next, assume that $\delta_l(q) = 2$ and $a \notin (\mathbb{F}_q^{\times})^2$. The condition $\delta_l(q) = 2$ implies $|\Delta| = [\mathbb{F}_Q : \mathbb{F}_q] = 2$. Hence, $a = \alpha^2$ for some $\alpha \in \mathbb{F}_Q^{\times}$. Put $v = (Y - \alpha)/(Y + \alpha)$. We have $[v] \in (\widetilde{L}^{\times}/l)(\omega)$ as $\delta_l(q) = 2$. We see that the cyclic extension $\widetilde{L}(v^{1/l})/\widetilde{L}$ is unramified and that $\widetilde{\infty}_Y$ splits completely in this extension similarly to the above. Therefore, we get $l \mid h(L)$ by Lemma 5. The assertions (I) and (III) follow from these.

Proof of (II). By (I), it suffices to show that $l \nmid h(L_n)$ when $a \notin (\mathbb{F}_q^{\times})^2$. So, we assume $a \notin (\mathbb{F}_q^{\times})^2$. Let $Q_n = |\mathbb{F}_q(\zeta_{l^n})|$ so that $\mathbb{F}_{Q_n} = \mathbb{F}_q(\zeta_{l^n})$. We put $\widetilde{L}_n = L_n \mathbb{F}_{Q_n}$. To prove $l \nmid h(L_n)$, it suffices to show $l \nmid h(\widetilde{L}_n)$ because of the first corollary of Lemma 1. As $\delta_l(q) = [\mathbb{F}_{Q_1} : \mathbb{F}_q]$ is odd, $[\mathbb{F}_{Q_n} : \mathbb{F}_q]$ is also odd. Hence, $a \notin (\mathbb{F}_{Q_n}^{\times})^2$, and $Y^2 - a$ is irreducible over \mathbb{F}_{Q_n} . Therefore, the extension \widetilde{L}_n over $\mathbb{F}_{Q_n}(Y)$ satisfies the assumptions of Lemma 3, and hence, we obtain $l \nmid h(\widetilde{L}_n)$.

5. Proof of Theorem 3. We assume that l = p. We fix $a \in \mathbb{F}_q$, and write $L'_n = L'_{n,a}$ $(n \ge 1)$ for brevity. Putting $Y = (T^{\mathcal{P}^n} + a)^{1/2}$, we have

$$L'_n = \mathbb{F}_q(Y, (Y^2 - a)^{1/\mathcal{P}^n}) \quad (n \ge 1).$$

We put $L'_0 = \mathbb{F}_q(Y)$. Let $Z = (Y^2 - a)^{1/\mathcal{P}^{n-1}}$. Then

$$L'_{n-1} = \mathbb{F}_q(Y, Z)$$
 and $L'_n = \mathbb{F}_q(Y, Z^{1/\mathcal{P}}).$

The prime divisor ∞_Z of $\mathbb{F}_q(Z)$ is ramified in the quadratic extension $L'_{n-1}/\mathbb{F}_q(Z)$. The Artin–Schreier extension $\mathbb{F}_q(Z^{1/\mathcal{P}})/\mathbb{F}_q(Z)$ is unramified outside ∞_Z and is totally ramified at ∞_Z . Therefore, we see that the cyclic extension L'_n/L'_{n-1} of degree l = p is ramified only at the unique prime of L'_{n-1} over ∞_Z . Then, by Lemma 2, the condition $l \mid h(L'_n)$ implies $l \mid h(L'_{n-1})$. From this, we obtain the assertion as $l \nmid h(L'_0)$.

6. Proof of Theorem 4. We give a proof only for the case $p \neq 2$. The case p = 2 can be proved in a similar way.

We assume that $l = 3, q \equiv -1 \mod 3$ and $p \neq 2$. Fix $n \ge 1$. For $1 \le i \le n$, we put

$$N_i = \mathbb{F}_q(X_{n-i})$$
 and $M_i = \mathbb{F}_q(X_{n-i}, (3X_n + \gamma)^{1/2}).$

Then we see from (1) that

$$N_1 \subseteq N_2 \subseteq \ldots \subseteq N_n = \mathbb{F}_q(T), \quad M_1 \subseteq M_2 \subseteq \ldots \subseteq M_n = L'_n$$

H. Ichimura

and that M_i/N_i is a quadratic extension. The polynomial $P_i = X_{n-i}^2 + X_{n-i} + 1$ in $\mathbb{F}_q[X_{n-i}]$ is irreducible as $q \equiv -1 \mod 3$. We denote by (P_i) the prime divisor of N_i corresponding to the zeros of P_i .

To prove Theorem 4, we prepare several claims.

CLAIM 2. The extension N_{i+1}/N_i is cyclic cubic and unramified outside (P_i) . We have $(P_i) = (P_{i+1})^3$ in this extension.

Proof. Put $Y = X_{n-(i+1)}$ and $Z = X_{n-i}$ for brevity. Then $N_{i+1} = \mathbb{F}_q(Y)$ and $N_i = \mathbb{F}_q(Z)$. By (1), Y is a root of the polynomial $Y^3 - 3ZY^2 - 3(1 + Z)Y - 1$ over $\mathbb{F}_q(Z)$. The discriminant of this polynomial is $3^4(Z^2 + Z + 1)^2$. Hence, N_{i+1}/N_i is a cyclic cubic extension, in which (P_i) is ramified. Since

$$P_i = Z^2 + Z + 1 = (Y^2 + Y + 1)^3 / (9(Y^2 + Y)^2),$$

we see that $(P_i) = (P_{i+1})^3$ in $N_{i+1} = \mathbb{F}_q(Y)$. Finally, we see that the other primes are unramified in N_{i+1}/N_i because N_i and N_{i+1} are of genus zero and because of the Riemann–Hurwitz formula for genus of algebraic function fields.

Let $\zeta = \zeta_3$, and $\mathbb{F}_Q = \mathbb{F}_q(\zeta)$ with $Q = q^2$.

CLAIM 3. $\gamma + 3\zeta$ is not a square in \mathbb{F}_{Q}^{\times} .

Proof. Assume, on the contrary, that $\gamma + 3\zeta = (\lambda + \mu\zeta)^2$ for some $\lambda, \mu \in \mathbb{F}_q$. Clearly, $\mu \neq 0$. By the above, we get

$$\gamma = \lambda^2 - \mu^2$$
 and $3 = 2\lambda\mu - \mu^2$.

From this, we obtain

$$3(\lambda/\mu)^2 - 2\gamma(\lambda/\mu) + (\gamma - 3) = 0.$$

Hence, the discriminant $4(\gamma^2 - 3\gamma + 9)$ of this quadratic polynomial must be a square in \mathbb{F}_a^{\times} . This contradicts the choice of γ .

CLAIM 4. The prime (P_1) of N_1 remains prime in the quadratic extension M_1/N_1 .

Proof. We see from (1) that

 $3X_n + \gamma \equiv 3X_{n-1} + \gamma \mod P_1 \ (= X_{n-1}^2 + X_{n-1} + 1).$

Since ζ is a root of P_1 , the assertion follows from Claim 3.

CLAIM 5. We have $3 \nmid h(M_1)$.

Proof. Put $Y = X_{n-1}$ and $Z = (3X_n + \gamma)^{1/2}$. Then $M_1 = \mathbb{F}_q(Y, Z)$. We see that the genus of M_1 is 2 because exactly 6 prime divisors are ramified in the quadratic extension $M_1 \overline{\mathbb{F}}_q / \overline{\mathbb{F}}_q(Y)$. In the following, we view M_1 as an extension over $\mathbb{F}_q(Z)$. By (1), Y is a root of the polynomial

$$Y^3 - (Z^2 - \gamma)Y^2 - (Z^2 - \gamma + 3)Y - 1$$

over $\mathbb{F}_q(Z)$. The discriminant of this polynomial is P^2 with

$$P = P(Z) = (Z^{2} - \gamma)^{2} + 3(Z^{2} - \gamma) + 9.$$

A root α of P(Z) satisfies $\alpha^2 = \gamma + 3\zeta$. Then, by Claim 3, we see that α is of degree 4 over \mathbb{F}_q , and hence, P is irreducible over \mathbb{F}_q . From the above, we see that $M_1/\mathbb{F}_q(Z)$ is a cyclic cubic extension, in which the prime of $\mathbb{F}_q(Z)$ corresponding to the irreducible monic P(Z) is ramified. Since the genus of M_1 is 2 and deg(P) = 4, we see that the other primes of $\mathbb{F}_q(Z)$ are unramified in M_1 by the Riemann–Hurwitz formula. Hence, we obtain $3 \nmid h(M_1)$ by Lemma 2.

CLAIM 6. Assume that $3 \nmid h(M_i)$ and the prime (P_i) of N_i remains prime in the quadratic extension M_i/N_i . Then we have $3 \nmid h(M_{i+1})$, and (P_{i+1}) remains prime in M_{i+1}/N_{i+1} .

Proof. Since $M_{i+1} = M_i N_{i+1}$, we obtain the assertion by using Claim 2 and Lemma 2. ■

Now, we obtain Theorem 4 for the case $p \neq 2$ from Claims 4, 5 and 6.

The case p = 2 can be proved in a similar way by using, in place of Claim 3, the following:

CLAIM 7. Let p = 2 and $q \equiv -1 \mod 3$. Then $T^4 + T + 1$ is irreducible over \mathbb{F}_q .

References

- E. Artin, Quadratische Körper im Gebiet der höheren Kongruenzen I und II, Math. Z. 19 (1923), 153-246.
- [2] G. Cornell, Abhyankar's lemma and the class group, in: Number Theory, Carbondale, 1979, M. Nathanson (ed.), Lecture Notes in Math. 751, Springer, New York, 1981, 82–88.
- [3] —, Relative genus theory and the class group of l-extensions, Trans. Amer. Math. Soc. 277 (1983), 321–429.
- B. Datskovsky and D. J. Wright, Density of discriminants of cubic extensions, J. Reine Angew. Math. 386 (1988), 116–138.
- H. Davenport and H. Heilbronn, On the density of discriminants of cubic fields II, Proc. Roy. Soc. London Ser. A 322 (1971), 405-420.
- [6] C. Friesen, Class number divisibility in real quadratic function fields, Canad. Math. Bull. 35 (1992), 361–370.
- [7] M. Hall, The Theory of Groups, Macmillan, New York, 1959.
- [8] P. Hartung, Proof of the existence of infinitely many imaginary quadratic fields whose class numbers are not divisible by three, J. Number Theory 6 (1976), 276–278.
- [9] K. Horie, A note on basic Iwasawa λ -invariants of imaginary quadratic fields, Invent. Math. 88 (1987), 31–38.
- [10] H. Ichimura, On the class groups of pure function fields, Proc. Japan Acad. 64 (1988), 170–173; corrigendum, ibid. 75 (1999), 22.

H. Ichimura

- K. Iwasawa, A note on class numbers of algebraic number fields, Abh. Math. Sem. Univ. Hamburg 20 (1956), 257–258.
- [12] I. Kimura, On class numbers of quadratic extensions over function fields, Manuscripta Math. 97 (1998), 81–91.
- T. Nagell, Über die Klassenzahl imaginär-quadratischer Zahlkörper, Abh. Math. Sem. Univ. Hamburg 1 (1922), 140–150.
- [14] P. Roquette and H. Zassenhaus, A class rank estimate for algebraic number fields, J. London Math. Soc. 44 (1969), 31–38.
- [15] M. Rosen, The Hilbert class fields in function fields, Exposition. Math. 5 (1987), 365–378.
- [16] D. Shanks, The simplest cubic fields, Math. Comp. 28 (1974), 1137–1157.
- Y. Yamamoto, On unramified Galois extensions of quadratic number fields, Osaka J. Math. 7 (1970), 57–76.

Department of Mathematics Yokohama City University 22-2, Seto, Kanazawa-ku Yokohama, 236-0027 Japan E-mail: ichimura@yokohama-cu.ac.jp

 $Received \ on \ 12.2.1999$

(3556)