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Quadratic function fields
whose class numbers are not divisible by three

by

Humio Ichimura (Yokohama)

1. Introduction. For an algebraic number field K, let Cl(K) be its
ideal class group and h(K) = |Cl(K)|. For a prime number l dividing the
degree [K : Q], we have a lot of information on the l-part Cl(K)(l) of Cl(K)
(see e.g. [2], [3], [11], [14]). On the other hand, when l - [K : Q], not so many
results are known on Cl(K)(l). One of such is that of Hartung [8] and
Horie [9], who proved that there exist infinitely many imaginary quadratic
fields K with l -h(K) (and satisfying some additional conditions) for any
odd prime number l. When l = 3, there are stronger results concerning the
“density” of the set of quadratic fields K with 3 -h(K) (and satisfying some
additional conditions), which were obtained by Davenport and Heilbronn [5],
Datskovsky and Wright [4], and Kimura [12]. They also obtained analogous
results for quadratic extensions over the rational function field Fq(T ), where
Fq is a fixed finite field.

Since the methods in the papers referred to above are not constructive,
it is desirable to give explicit families of infinitely many quadratic extensions
K over Q or Fq(T ) with l -h(K) for each odd prime number l. Here, h(K) is
the number of divisor classes of K of degree zero when K is a function field
of one variable over a finite constant field. The main purpose of this note is
to give such families when l = 3 in the function field case.

Let us give the main results. Let p be a fixed prime number, q a fixed
power of p, and Fq the finite field with cardinality q. Let T be a fixed
indeterminate. We take the rational function field Fq(T ) as the base field.
For simplicity, we assume p ≥ 5 in this section. For n ≥ 1 and a ∈ F×q , we
put

Ln,a = Fq(T, (T 3n + a)1/2).
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The genus of Ln,a is (3n− 1)/2. We show that 3 -h(Ln,a) when q ≡ 1 mod 3
and a 6∈ (F×q )2 (Theorem 1(II)). However, when q ≡ −1 mod 3, we have
3 |h(Ln,a) for all a ∈ F×q and n (Theorem 1(III)). So, we have to find another
family. We define rational functions Xn = Xn(T ) in Fq(T ) inductively as
follows:

(1) X0 = T, Xn = (X3
n−1 − 3Xn−1 − 1)/(3(X2

n−1 +Xn−1)) for n ≥ 1.

We easily see that when q ≡ −1 mod 3, there exists γ ∈ F×q such that
γ2 − 3γ + 9 6∈ (F×q )2. We put

L′′n = Fq(T, (3Xn + γ)1/2).

The genus of L′′n is 3n − 1. We show that 3 -h(L′′n) for all n ≥ 1 when
q ≡ −1 mod 3 (Theorem 4). We give similar families also when p = 2, 3
(Theorem 4, Theorem 3).

Remark 1. The second formula in (1) is a variant of the polynomial
fa = X3−aX2− (a+ 3)X − 1 (a ∈ Z). This polynomial was first effectively
used by Shanks [16]. A property of fa is that its discriminant is (a2+3a+9)2,
which is used in the proof of Theorem 4.

Remark 2. Let ∞T be the prime divisor of Fq(T ) corresponding to
the pole of T . After Artin [1], we say that a quadratic extension K/Fq(T )
of nonzero genus is a “real” quadratic extension when ∞T splits, and an
“imaginary” one otherwise. The quadratic extensions given in Theorems 1–4
in Section 2 are imaginary ones.

Remark 3. Nagell [13] (resp. Yamamoto [17]) constructed infinitely
many imaginary (resp. real) quadratic extensions (over Q) whose class num-
bers are divisible by a given integer. For analogous results for the function
field case, see Friesen [6] and the author [10].

Convention. For the rational function field Fq(X) with an indetermi-
nate X, we denote by ∞X its prime divisor corresponding to the pole of X.
Further, for an irreducible monic P = P (X) in the polynomial ring Fq[X],
we denote by (P ) the prime divisor of Fq(X) corresponding to the zeros
of P . When l 6= p, let µl∞ be the group of lath roots of unity for all a ≥ 1 in
the algebraic closure Fq, and ζla a primitive lath root of unity. For a module
M , we abbreviate the quotient M/lM (or M/M l) by M/l.

2. Families of quadratic extensions over Fq(T ). Let q be a fixed
power of a prime number p, and l a fixed odd prime number. In this section,
we give several families of quadratic extensions L over Fq(T ) with l |h(L)
(resp. l -h(L)). The results announced in Section 1 for l = 3 are contained
in these ones.
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For an element x of the algebraic closure Fq(T ), we put

xP = xp − x and xP
n

= (xP
n−1

)P for n ≥ 1.

We also denote by x1/Pn an element z satisfying zP
n

= x.
First, assume that l 6= p. For n ≥ 1 and a ∈ Fq, we put

Ln,a =

{
Fq(T, (T l

n

+ a)1/2) for p 6= 2,

Fq(T, (T l
n

+ a)1/P) for p = 2.

Here, we assume a 6= 0 when p 6= 2. Let δl(q) be the order of q mod l in the
multiplicative group (Z/lZ)×, and let FPq be the subset of Fq consisting of
elements xP with x ∈ Fq. For the quadratic extensions Ln,a, we prove the
following assertions.

Theorem 1. Assume that l 6= p and p 6= 2.

(I) When a ∈ (F×q )2, we have l |h(Ln,a) for all n.
(II) When δl(q) is odd , we have l |h(Ln,a) if and only if a ∈ (F×q )2.

(III) When δl(q) = 2, we have l |h(Ln,a) for all a and n.

Theorem 2. Assume that l 6= p and p = 2.

(I) When a ∈ FPq , we have l |h(Ln,a) for all n.
(II) When δl(q) is odd , we have l |h(Ln,a) if and only if a ∈ FPq .

(III) When δl(q) = 2, we have l |h(Ln,a) for all a and n.

Next, assume that l = p. For n ≥ 1 and a ∈ Fq, we put

L′n,a = Fq(T, (TP
n

+ a)1/2).

For these quadratic extensions, we prove the following:

Theorem 3. Assume that l = p. We have l -h(L′n,a) for all a and n.

Finally, let l = 3 and q ≡ −1 mod 3. Let Xn = Xn(T ) be the rational
function in Fq(T ) defined by (1), and when p 6= 2, let γ be a fixed element
of F×q such that γ2 − 3γ + 9 6∈ (F×q )2. For n ≥ 1, we put

L′′n =
{
Fq(T, (3Xn + γ)1/2) for p 6= 2,
Fq(T, (Xn)1/P) for p = 2.

For these quadratic extensions, we prove the following:

Theorem 4. Assume that l = 3 and q ≡ −1 mod 3. We have 3 -h(L′′n)
for all n.

Remark 4. When δl(q) is even but not 2, the author could not show
whether or not l |h(Ln,a) for a 6∈ (F×q )2.

3. Some lemmas. Let k be a fixed algebraic function field of one variable
with constant field Fq, and let l be a fixed prime number (not necessarily



184 H. Ichimura

odd). In this section, we give several lemmas concerning the class number
h(k) of k or that of a finite separable extension over k. They are well known
or, otherwise, known to specialists.

The following lemma follows from class field theory.

Lemma 1. Let p be a prime divisor of k with l - deg(p), where deg(∗)
denotes the degree of a divisor. Then l |h(k) if and only if there exists an
unramified cyclic extension over k of degree l in which p splits completely.

For this, the readers may consult Rosen [15, p. 368]. From this lemma,
we immediately obtain the following corollaries.

Corollary 1. Let p be as in Lemma 1. Let FQ/Fq be a finite extension
and K = kFQ. Assume that p remains prime in K. Then l |h(K) if l |h(k).

Corollary 2. Let p be as in Lemma 1. Let K/k be a finite separable
extension in which p is totally ramified. Then l |h(K) if l |h(k).

The following lemma is a function field analogue of a theorem of Iwasawa
[11] on the class numbers of algebraic number fields.

Lemma 2. Let K/k be a finite l-Galois extension. Assume that exactly
one prime divisor P of K is ramified over k and that l - deg(P). Then
l |h(K) implies l |h(k).

P r o o f. Though this assertion is more or less known, we give a proof
for the convenience of the readers. Assume that l |h(K). Let H/K be the
maximal unramified abelian extension of exponent l in which P splits com-
pletely. As l |h(K), we have H 6= K by Lemma 1. Put p = P ∩ k. Then we
see that P is the unique prime divisor of K over p from an assumption of
the lemma. Therefore, H is Galois over k. Let G = Gal(H/k) and Z (⊆ G)
the decomposition group of an extension of P in H. We have G 6= Z as
H 6= K. Then, since G is an l-group, there exists a normal subgroup Z̃ of G
such that [G : Z̃] = l and Z̃ ⊇ Z (cf. Hall [7, Theorem 4.3.2]). Let E be the
intermediate field of H/k corresponding to Z̃ by Galois theory. Then E/k
is an unramified cyclic extension of degree l, and p splits completely in E.
Therefore, we obtain l |h(k) by Lemma 1.

The following is a version of Lemma 2. As in Section 1, we denote by
∞T the prime divisor of Fq(T ) corresponding to the pole of T .

Lemma 3. Let k = Fq(T ) and K/k a finite l-Galois extension. Assume
that q ≡ 1 mod l. Assume further that (i) ∞T is totally ramified in K, (ii)
exactly one prime divisor p of k other than ∞T is ramified in K, and (iii)
l - deg(p). Then l -h(K).

P r o o f. Assume that l |h(K). Then, in a way similar to the proof of
Lemma 2, we see that there exists a cyclic extension E over k of degree l
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unramified outside p in which∞T splits completely. Let P = P (T ) (∈ Fq[T ])
be the irreducible monic corresponding to p. Since q ≡ 1 mod l, we can write
E = Fq(T, (ζP a)1/l) for some ζ ∈ F×q and a ∈ Z. Then, since l - deg(P ) and
∞T splits in E, it follows that l | a and ζ ∈ (F×q )l, and hence E = k. This is
a contradiction.

The following lemma is known as Abhyankar’s lemma (cf. Cornell [2]).

Lemma 4. Let Ei be a finite separable extension over a local field κ with
ramification index ei (i = 1, 2). If E2 is at most tamely ramified and e2 | e1,
then E1E2/E1 is unramified.

Finally, assume that l 6= char(k) (= p). Let ζ = ζl be a primitive lth root
of unity, K = k(ζ) and ∆ = Gal(K/k). Let ∞ be a fixed prime divisor of
k such that deg(∞) is relatively prime to l|∆|. There exists a unique prime
divisor ∞̃ of K over∞ as deg(∞) and |∆| are relatively prime. For v ∈ K×,
we denote by [v] the class in K×/l = K×/(K×)l represented by v. We regard
K×/l as a module over the group ring Fl[∆]. For an Fl[∆]-module M and
an (Fl-valued) character χ of ∆, let M(χ) denote the χ-component of M .
Namely, M(χ) is the maximal submodule of M on which ∆ acts via χ. Let
ω be the (Fl-valued) character of ∆ representing its Galois action on ζ, and
χ0 the trivial character of ∆.

Lemma 5. In the above setting , we have l |h(k) if and only if there exists
a nontrivial element [v] of (K×/l)(ω) or (K×/l)(χ0) such that (i) the cyclic
extension K(v1/l)/K of degree l is unramified and (ii) ∞̃ splits completely
in this extension.

P r o o f. Denote by ClK the divisor class group of K of degree zero. Let
H̃/K be the maximal unramified abelian extension of exponent l, and H

the maximal intermediate field of H̃/K in which ∞̃ splits completely. The
fields H̃ and H are Galois also over k as ∞̃ is the unique prime of K over
∞. We put A = Gal(H/K). Further, let Ṽ and V be the subgroups of K×/l
such that

H̃ = K(v1/l | [v] ∈ Ṽ ) and H = K(v1/l | [v] ∈ V )

respectively. The groups A, Ṽ , V as well as ClK/l = ClK/Cl
l
K are naturally

regarded as modules over Fl[∆] since H̃ and H are Galois over k. By class
field theory, we have a canonical isomorphism ClK/l ∼= A compatible with
the action of ∆. So, we identify these two modules. We see that l |h(k) if
and only if (ClK/l)(χ0) is nontrivial from class field theory (cf. [15, p. 368]).

Now, let χ be any Fl-valued character of ∆. We prove the following:

Claim 1. The dimensions of the four vector spaces
(ClK/l)(χ), (ClK/l)(ωχ−1), V (χ), V (ωχ−1)

over Fl are equal.
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The desired assertion follows from this.
Let µla = µl∞ ∩K. Then we easily see that H̃ = H(ζla+1). From this, it

follows that

(2) dim Ṽ (χ) =
{

dimV (χ) for χ 6= ω,
dimV (χ) + 1 for χ = ω.

Here, dim(∗) denotes the dimension of ∗ over Fl. For each element [v] ∈ Ṽ ,
the principal divisor (v) is written as (v) = Al for some divisor A of K.
By mapping [v] to the divisor class [A] of A, we obtain the following exact
sequence:

0→ µla/µla−1 → Ṽ → lClK → 0.
Here, lClK is the elements a of ClK with al = 1. Clearly, this sequence is
compatible with the ∆-action. Hence, by (2), we obtain

(3) dim(ClK/l)(χ) = dim(lClK)(χ) = dimV (χ)

for any χ. On the other hand, the Kummer pairing

A× V → µl, (σ, [v])→ 〈σ, [v]〉 = (v1/l)σ−1

is nondegenerate and satisfies

〈σ%, [v]%〉 = 〈σ, [v]〉% = 〈σ, [v]〉ω(%) for % ∈ ∆.
From this, we easily obtain

(4) dim(ClK/l)(χ) = dimV (ωχ−1)

for any χ. The assertion of Claim 1 follows from (3) and (4).

4. Proof of Theorems 1 and 2. We give a proof only for the case
p 6= 2 (Theorem 1). The case p = 2 (Theorem 2) can be proved in a similar
way.

We assume that l 6= p and p 6= 2. We fix a ∈ F×q , and write Ln = Ln,a
for brevity. Putting Y = (T l

n

+ a)1/2, we have

Ln = Fq(Y, (Y 2 − a)1/ln).

P r o o f o f (I) a n d (III). The prime divisor ∞Y of Fq(Y ) is totally
ramified in the extension Ln/Fq(Y ). Therefore, we see that the condition
l |h(Ln−1) implies l |h(Ln) by the second corollary of Lemma 1. Hence, it
suffices to prove the assertions (I) and (III) only when n = 1. We write L =
L1 for brevity. Let ζ = ζl, and let Q = |Fq(ζ)| so that FQ = Fq(ζ). Put L̃ =
LFQ. We identify the Galois group ∆=Gal(FQ/Fq) with Gal(FQ(Y )/Fq(Y ))
and Gal(L̃/L) in the obvious way. Let ∞̃Y be the unique prime divisor of L̃
over ∞Y .

First, assume that a = b2 with b ∈ F×q . Put v = (Y − b)/(Y + b). Clearly,

we have [v] ∈ (L̃×/l)(χ0). We see that the cyclic extension L̃(v1/l)/L̃ is
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unramified by Lemma 4, and that ∞̃Y splits completely in this extension as
v ≡ 1 mod (1/Y ). Therefore, by Lemma 5, we get l |h(L).

Next, assume that δl(q) = 2 and a 6∈ (F×q )2. The condition δl(q) = 2
implies |∆| = [FQ : Fq] = 2. Hence, a = α2 for some α ∈ F×Q. Put v =

(Y − α)/(Y + α). We have [v] ∈ (L̃×/l)(ω) as δl(q) = 2. We see that the
cyclic extension L̃(v1/l)/L̃ is unramified and that ∞̃Y splits completely in
this extension similarly to the above. Therefore, we get l |h(L) by Lemma 5.
The assertions (I) and (III) follow from these.

P r o o f o f (II). By (I), it suffices to show that l -h(Ln) when a 6∈ (F×q )2.
So, we assume a 6∈ (F×q )2. Let Qn = |Fq(ζln)| so that FQn = Fq(ζln). We put

L̃n = LnFQn . To prove l -h(Ln), it suffices to show l -h(L̃n) because of the
first corollary of Lemma 1. As δl(q) = [FQ1 : Fq] is odd, [FQn : Fq] is also
odd. Hence, a 6∈ (F×Qn)2, and Y 2 − a is irreducible over FQn . Therefore, the

extension L̃n over FQn(Y ) satisfies the assumptions of Lemma 3, and hence,
we obtain l -h(L̃n).

5. Proof of Theorem 3. We assume that l = p. We fix a ∈ Fq, and
write L′n = L′n,a (n ≥ 1) for brevity. Putting Y = (TP

n

+ a)1/2, we have

L′n = Fq(Y, (Y 2 − a)1/Pn) (n ≥ 1).

We put L′0 = Fq(Y ). Let Z = (Y 2 − a)1/Pn−1
. Then

L′n−1 = Fq(Y, Z) and L′n = Fq(Y,Z1/P).

The prime divisor ∞Z of Fq(Z) is ramified in the quadratic extension
L′n−1/Fq(Z). The Artin–Schreier extension Fq(Z1/P)/Fq(Z) is unramified
outside ∞Z and is totally ramified at ∞Z . Therefore, we see that the
cyclic extension L′n/L

′
n−1 of degree l = p is ramified only at the unique

prime of L′n−1 over ∞Z . Then, by Lemma 2, the condition l |h(L′n) implies
l |h(L′n−1). From this, we obtain the assertion as l -h(L′0).

6. Proof of Theorem 4. We give a proof only for the case p 6= 2. The
case p = 2 can be proved in a similar way.

We assume that l = 3, q ≡ −1 mod 3 and p 6= 2. Fix n ≥ 1. For 1 ≤ i ≤ n,
we put

Ni = Fq(Xn−i) and Mi = Fq(Xn−i, (3Xn + γ)1/2).

Then we see from (1) that

N1 ⊆ N2 ⊆ . . . ⊆ Nn = Fq(T ), M1 ⊆M2 ⊆ . . . ⊆Mn = L′′n



188 H. Ichimura

and that Mi/Ni is a quadratic extension. The polynomial Pi = X2
n−i +

Xn−i+ 1 in Fq[Xn−i] is irreducible as q ≡ −1 mod 3. We denote by (Pi) the
prime divisor of Ni corresponding to the zeros of Pi.

To prove Theorem 4, we prepare several claims.

Claim 2. The extension Ni+1/Ni is cyclic cubic and unramified outside
(Pi). We have (Pi) = (Pi+1)3 in this extension.

P r o o f. Put Y = Xn−(i+1) and Z = Xn−i for brevity. Then Ni+1 =
Fq(Y ) and Ni = Fq(Z). By (1), Y is a root of the polynomial Y 3 − 3ZY 2 −
3(1 + Z)Y − 1 over Fq(Z). The discriminant of this polynomial is
34(Z2 + Z + 1)2. Hence, Ni+1/Ni is a cyclic cubic extension, in which (Pi)
is ramified. Since

Pi = Z2 + Z + 1 = (Y 2 + Y + 1)3/(9(Y 2 + Y )2),

we see that (Pi) = (Pi+1)3 in Ni+1 = Fq(Y ). Finally, we see that the other
primes are unramified in Ni+1/Ni because Ni and Ni+1 are of genus zero
and because of the Riemann–Hurwitz formula for genus of algebraic function
fields.

Let ζ = ζ3, and FQ = Fq(ζ) with Q = q2.

Claim 3. γ + 3ζ is not a square in F×Q.

P r o o f. Assume, on the contrary, that γ + 3ζ = (λ + µζ)2 for some
λ, µ ∈ Fq. Clearly, µ 6= 0. By the above, we get

γ = λ2 − µ2 and 3 = 2λµ− µ2.

From this, we obtain

3(λ/µ)2 − 2γ(λ/µ) + (γ − 3) = 0.

Hence, the discriminant 4(γ2 − 3γ + 9) of this quadratic polynomial must
be a square in F×q . This contradicts the choice of γ.

Claim 4. The prime (P1) of N1 remains prime in the quadratic extension
M1/N1.

P r o o f. We see from (1) that

3Xn + γ ≡ 3Xn−1 + γ mod P1 (= X2
n−1 +Xn−1 + 1).

Since ζ is a root of P1, the assertion follows from Claim 3.

Claim 5. We have 3 -h(M1).

P r o o f. Put Y = Xn−1 and Z = (3Xn+γ)1/2. Then M1 = Fq(Y, Z). We
see that the genus of M1 is 2 because exactly 6 prime divisors are ramified
in the quadratic extension M1Fq/Fq(Y ). In the following, we view M1 as an
extension over Fq(Z). By (1), Y is a root of the polynomial

Y 3 − (Z2 − γ)Y 2 − (Z2 − γ + 3)Y − 1
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over Fq(Z). The discriminant of this polynomial is P 2 with

P = P (Z) = (Z2 − γ)2 + 3(Z2 − γ) + 9.

A root α of P (Z) satisfies α2 = γ + 3ζ. Then, by Claim 3, we see that α
is of degree 4 over Fq, and hence, P is irreducible over Fq. From the above,
we see that M1/Fq(Z) is a cyclic cubic extension, in which the prime of
Fq(Z) corresponding to the irreducible monic P (Z) is ramified. Since the
genus of M1 is 2 and deg(P ) = 4, we see that the other primes of Fq(Z)
are unramified in M1 by the Riemann–Hurwitz formula. Hence, we obtain
3 -h(M1) by Lemma 2.

Claim 6. Assume that 3 -h(Mi) and the prime (Pi) of Ni remains prime
in the quadratic extension Mi/Ni. Then we have 3 -h(Mi+1), and (Pi+1)
remains prime in Mi+1/Ni+1.

P r o o f. Since Mi+1 = MiNi+1, we obtain the assertion by using Claim 2
and Lemma 2.

Now, we obtain Theorem 4 for the case p 6= 2 from Claims 4, 5 and 6.

The case p = 2 can be proved in a similar way by using, in place of
Claim 3, the following:

Claim 7. Let p = 2 and q ≡ −1 mod 3. Then T 4 + T + 1 is irreducible
over Fq.
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[13] T. Nage l l, Über die Klassenzahl imaginär-quadratischer Zahlkörper , Abh. Math.
Sem. Univ. Hamburg 1 (1922), 140–150.

[14] P. Roquette and H. Zassenhaus, A class rank estimate for algebraic number
fields, J. London Math. Soc. 44 (1969), 31–38.

[15] M. Rosen, The Hilbert class fields in function fields, Exposition. Math. 5 (1987),
365–378.

[16] D. Shanks, The simplest cubic fields, Math. Comp. 28 (1974), 1137–1157.
[17] Y. Yamamoto, On unramified Galois extensions of quadratic number fields, Osaka

J. Math. 7 (1970), 57–76.

Department of Mathematics
Yokohama City University
22-2, Seto, Kanazawa-ku
Yokohama, 236-0027 Japan
E-mail: ichimura@yokohama-cu.ac.jp

Received on 12.2.1999 (3556)


