Quadratic function fields
whose class numbers are not divisible by three

by

HUMIO ICHIMURA (Yokohama)

1. Introduction. For an algebraic number field K, let $Cl(K)$ be its ideal class group and $h(K) = |Cl(K)|$. For a prime number l dividing the degree $[K : \mathbb{Q}]$, we have a lot of information on the l-part $Cl(K)(l)$ of $Cl(K)$ (see e.g. [2], [3], [11], [14]). On the other hand, when $l \nmid [K : \mathbb{Q}]$, not so many results are known on $Cl(K)(l)$. One of such is that of Hartung [8] and Horie [9], who proved that there exist infinitely many imaginary quadratic fields K with $l \nmid h(K)$ (and satisfying some additional conditions) for any odd prime number l. When $l = 3$, there are stronger results concerning the “density” of the set of quadratic fields K with $3 \nmid h(K)$ (and satisfying some additional conditions), which were obtained by Davenport and Heilbronn [5], Datskovsky and Wright [4], and Kimura [12]. They also obtained analogous results for quadratic extensions over the rational function field $\mathbb{F}_q(T)$, where \mathbb{F}_q is a fixed finite field.

Since the methods in the papers referred to above are not constructive, it is desirable to give explicit families of infinitely many quadratic extensions K over \mathbb{Q} or $\mathbb{F}_q(T)$ with $l \nmid h(K)$ for each odd prime number l. Here, $h(K)$ is the number of divisor classes of K of degree zero when K is a function field of one variable over a finite constant field. The main purpose of this note is to give such families when $l = 3$ in the function field case.

Let us give the main results. Let p be a fixed prime number, q a fixed power of p, and \mathbb{F}_q the finite field with cardinality q. Let T be a fixed indeterminate. We take the rational function field $\mathbb{F}_q(T)$ as the base field. For simplicity, we assume $p \geq 5$ in this section. For $n \geq 1$ and $a \in \mathbb{F}_q^\times$, we put

$$L_{n,a} = \mathbb{F}_q(T, (T^{3^n} + a)^{1/2}).$$

1991 Mathematics Subject Classification: Primary 11R58; Secondary 11R11, 11R29.

The author was partially supported by Grant-in-Aid for Scientific Research (C), Grant Number 11640041.
The genus of $L_{n,a}$ is $(3^n - 1)/2$. We show that $3 \nmid h(L_{n,a})$ when $q \equiv 1 \mod 3$ and $a \not\in (\mathbb{F}_q^\times)^2$ (Theorem 1(II)). However, when $q \equiv -1 \mod 3$, we have $3 \mid h(L_{n,a})$ for all $a \in \mathbb{F}_q^\times$ and n (Theorem 1(III)). So, we have to find another family. We define rational functions $X_n = X_n(T)$ in $\mathbb{F}_q(T)$ inductively as follows:

\begin{equation}
X_0 = T, \quad X_n = (X_n^3 - 3X_{n-1} - 1)/(3(X_{n-1}^2 + X_{n-1})) \quad \text{for } n \geq 1.
\end{equation}

We easily see that when $q \equiv -1 \mod 3$, there exists $\gamma \in \mathbb{F}_q^\times$ such that $\gamma^2 - 3\gamma + 9 \not\in (\mathbb{F}_q^\times)^2$. We put $L''_n = \mathbb{F}_q(T, (3X_n + \gamma)^{1/2})$. The genus of L''_n is $3^n - 1$. We show that $3 \nmid h(L''_n)$ for all $n \geq 1$ when $q \equiv -1 \mod 3$ (Theorem 4). We give similar families also when $p = 2, 3$ (Theorem 4, Theorem 3).

Remark 1. The second formula in (1) is a variant of the polynomial $f_a = X^3 - aX^2 - (a + 3)X - 1$ ($a \in \mathbb{Z}$). This polynomial was first effectively used by Shanks [16]. A property of f_a is that its discriminant is $(a^2 + 3a + 9)^2$, which is used in the proof of Theorem 4.

Remark 2. Let ∞_T be the prime divisor of $\mathbb{F}_q(T)$ corresponding to the pole of T. After Artin [1], we say that a quadratic extension $K/\mathbb{F}_q(T)$ of nonzero genus is a “real” quadratic extension when ∞_T splits, and an “imaginary” one otherwise. The quadratic extensions given in Theorems 1–4 in Section 2 are imaginary ones.

Remark 3. Nagell [13] (resp. Yamamoto [17]) constructed infinitely many imaginary (resp. real) quadratic extensions (over \mathbb{Q}) whose class numbers are divisible by a given integer. For analogous results for the function field case, see Friesen [6] and the author [10].

Convention. For the rational function field $\mathbb{F}_q(X)$ with an indeterminate X, we denote by ∞_X its prime divisor corresponding to the pole of X. Further, for an irreducible monic $P = P(X)$ in the polynomial ring $\mathbb{F}_q[X]$, we denote by (P) the prime divisor of $\mathbb{F}_q(X)$ corresponding to the zeros of P. When $l \neq p$, let μ_{l^a} be the group of l^ath roots of unity for all $a \geq 1$ in the algebraic closure $\bar{\mathbb{F}}_q$, and ζ_l a primitive l^ath root of unity. For a module M, we abbreviate the quotient M/lM (or M/M') by M/l.

2. Families of quadratic extensions over $\mathbb{F}_q(T)$. Let q be a fixed power of a prime number p, and l a fixed odd prime number. In this section, we give several families of quadratic extensions L over $\mathbb{F}_q(T)$ with $l \mid h(L)$ (resp. $l \nmid h(L)$). The results announced in Section 1 for $l = 3$ are contained in these ones.
For an element x of the algebraic closure $\overline{\mathbb{F}}_q(T)$, we put

$$x^P = x^P - x \quad \text{and} \quad x^{P^n} = (x^{P^{n-1}})^P \quad \text{for} \quad n \geq 1.$$

We also denote by x^{1/P^n} an element z satisfying $z^{P^n} = x$.

First, assume that $l \neq p$. For $n \geq 1$ and $a \in \mathbb{F}_q$, we put

$$L_{n,a} = \begin{cases} \mathbb{F}_q(T,(T^n + a)^{1/2}) & \text{for} \quad p \neq 2, \\ \mathbb{F}_q(T,(T^n + a)^{1/2}) & \text{for} \quad p = 2. \end{cases}$$

Here, we assume $a \neq 0$ when $p \neq 2$. Let $\delta_l(q)$ be the order of q mod l in the multiplicative group $(\mathbb{Z}/l\mathbb{Z})^\times$, and let \mathbb{F}^P_q be the subset of \mathbb{F}_q consisting of elements x^P with $x \in \mathbb{F}_q$. For the quadratic extensions $L_{n,a}$, we prove the following assertions.

THEOREM 1. Assume that $l \neq p$ and $p \neq 2$.

(I) When $a \in (\mathbb{F}^\times_q)^2$, we have $l \mid h(L_{n,a})$ for all n.

(II) When $\delta_l(q)$ is odd, we have $l \mid h(L_{n,a})$ if and only if $a \in (\mathbb{F}^\times_q)^2$.

(III) When $\delta_l(q) = 2$, we have $l \mid h(L_{n,a})$ for all a and n.

THEOREM 2. Assume that $l \neq p$ and $p = 2$.

(I) When $a \in \mathbb{F}^P_q$, we have $l \mid h(L_{n,a})$ for all n.

(II) When $\delta_l(q)$ is odd, we have $l \mid h(L_{n,a})$ if and only if $a \in \mathbb{F}^P_q$.

(III) When $\delta_l(q) = 2$, we have $l \mid h(L_{n,a})$ for all a and n.

Next, assume that $l = p$. For $n \geq 1$ and $a \in \mathbb{F}_q$, we put

$$L'_{n,a} = \mathbb{F}_q(T,(T^{P^n} + a)^{1/2}).$$

For these quadratic extensions, we prove the following:

THEOREM 3. Assume that $l = p$. We have $l \nmid h(L'_{n,a})$ for all a and n.

Finally, let $l = 3$ and $q \equiv -1 \pmod 3$. Let $X_n = X_n(T)$ be the rational function in $\mathbb{F}_q(T)$ defined by (1), and when $p \neq 2$, let γ be a fixed element of \mathbb{F}^\times_q such that $\gamma^2 - 3\gamma + 9 \notin (\mathbb{F}^\times_q)^2$. For $n \geq 1$, we put

$$L''_n = \begin{cases} \mathbb{F}_q(T,(3X_n + \gamma)^{1/2}) & \text{for} \quad p \neq 2, \\ \mathbb{F}_q(T,(X_n)^{1/P}) & \text{for} \quad p = 2. \end{cases}$$

For these quadratic extensions, we prove the following:

THEOREM 4. Assume that $l = 3$ and $q \equiv -1 \pmod 3$. We have $3 \nmid h(L''_n)$ for all n.

REMARK 4. When $\delta_l(q)$ is even but not 2, the author could not show whether or not $l \mid h(L_{n,a})$ for $a \notin (\mathbb{F}^\times_q)^2$.

3. Some lemmas. Let k be a fixed algebraic function field of one variable with constant field \mathbb{F}_q, and let l be a fixed prime number (not necessarily
In this section, we give several lemmas concerning the class number $h(k)$ of k or that of a finite separable extension over k. They are well known or, otherwise, known to specialists.

The following lemma follows from class field theory.

Lemma 1. Let p be a prime divisor of k with $l \nmid \deg(p)$, where $\deg(\ast)$ denotes the degree of a divisor. Then $l \mid h(k)$ if and only if there exists an unramified cyclic extension over k of degree l in which p splits completely.

For this, the readers may consult Rosen [15, p. 368]. From this lemma, we immediately obtain the following corollaries.

Corollary 1. Let p be as in Lemma 1. Let \mathbb{F}_q be a finite extension and $K = k\mathbb{F}_q$. Assume that p remains prime in K. Then $l \mid h(K)$ if $l \mid h(k)$.

Corollary 2. Let p be as in Lemma 1. Let K/k be a finite separable extension in which p is totally ramified. Then $l \mid h(K)$ if $l \mid h(k)$.

The following lemma is a function field analogue of a theorem of Iwasawa [11] on the class numbers of algebraic number fields.

Lemma 2. Let K/k be a finite l-Galois extension. Assume that exactly one prime divisor \mathfrak{P} of K is ramified over k and that $l \mid \deg(\mathfrak{P})$. Then $l \mid h(K)$ implies $l \mid h(k)$.

Proof. Though this assertion is more or less known, we give a proof for the convenience of the readers. Assume that $l \mid h(K)$. Let H/K be the maximal unramified abelian extension of exponent l in which \mathfrak{P} splits completely. As $l \mid h(K)$, we have $H \neq K$ by Lemma 1. Put $p = \mathfrak{P} \cap k$. Then we see that \mathfrak{P} is the unique prime divisor of K over p from an assumption of the lemma. Therefore, H is Galois over k. Let $G = \text{Gal}(H/k)$ and $Z \subseteq G$ the decomposition group of an extension of \mathfrak{P} in H. We have $G \neq Z$ as $H \neq K$. Then, since G is an l-group, there exists a normal subgroup \tilde{Z} of G such that $[G : \tilde{Z}] = l$ and $\tilde{Z} \supseteq Z$ (cf. Hall [7, Theorem 4.3.2]). Let E be the intermediate field of H/k corresponding to \tilde{Z} by Galois theory. Then E/k is an unramified cyclic extension of degree l, and p splits completely in E. Therefore, we obtain $l \mid h(k)$ by Lemma 1.

The following is a version of Lemma 2. As in Section 1, we denote by ∞_T the prime divisor of $\mathbb{F}_q(T)$ corresponding to the pole of T.

Lemma 3. Let $k = \mathbb{F}_q(T)$ and K/k a finite l-Galois extension. Assume that $q \equiv 1 \mod l$. Assume further that (i) ∞_T is totally ramified in K, (ii) exactly one prime divisor p of k other than ∞_T ramified in K, and (iii) $l \mid \deg(p)$. Then $l \mid h(K)$.

Proof. Assume that $l \mid h(K)$. Then, in a way similar to the proof of Lemma 2, we see that there exists a cyclic extension E over k of degree l
unramified outside \(p \) in which \(\infty_T \) splits completely. Let \(P = P(T) (\in \mathbb{F}_q[T]) \) be the irreducible monic corresponding to \(p \). Since \(q \equiv 1 \mod l \), we can write \(E = \mathbb{F}_q(T, (\zeta P^n)^{1/l}) \) for some \(\zeta \in \mathbb{F}_q^\times \) and \(n \in \mathbb{Z} \). Then, since \(l \not| \deg(P) \) and \(\infty_T \) splits in \(E \), it follows that \(l \mid a \) and \(\zeta \in (\mathbb{F}_q^\times)^l \), and hence \(E = k \). This is a contradiction.

The following lemma is known as Abhyankar’s lemma (cf. Cornell [2]).

Lemma 4. Let \(E_i \) be a finite separable extension over a local field \(k \) with ramification index \(e \), \(i = 1, 2 \). If \(E_2 \) is at most tamely ramified and \(e_2 \mid e_1 \), then \(E_1 E_2/E_1 \) is unramified.

Finally, assume that \(l \not= \text{char}(k) = (p) \). Let \(\zeta = \zeta_i \) be a primitive \(l \)th root of unity, \(K = k(\zeta) \) and \(\Delta = \text{Gal}(K/k) \). Let \(\infty \) be a fixed prime divisor of \(k \) such that \(\deg(\infty) \) is relatively prime to \(l|\Delta| \). There exists a unique prime divisor \(\infty \) of \(K \) over \(\infty \) as deg(\(\infty \)) and \(|\Delta| \) are relatively prime. For \(v \in K^\times \), we denote by \([v]\) the class in \(K^\times/l = K^\times/(K^\times)^l \) represented by \(v \). We regard \(K^\times/l \) as a module over the group ring \(\mathbb{F}_l[\Delta] \). For an \(\mathbb{F}_l[\Delta] \)-module \(M \) and an \((\mathbb{F}_l\text{-valued}) \) character \(\chi \) of \(\Delta \), let \(M(\chi) \) denote the \(\chi \)-component of \(M \). Namely, \(M(\chi) \) is the maximal submodule of \(M \) on which \(\Delta \) acts via \(\chi \). Let \(\omega \) be the \((\mathbb{F}_l\text{-valued}) \) character of \(\Delta \) representing its Galois action on \(\zeta \), and \(\chi_0 \) the trivial character of \(\Delta \).

Lemma 5. In the above setting, we have \(l \mid h(k) \) if and only if there exists a nontrivial element \([v]\) of \((K^\times/l)(\omega)\) or \((K^\times/l)(\chi_0)\) such that (i) the cyclic extension \(K(v^{1/l})/K \) of degree \(l \) is unramified and (ii) \(\infty \) splits completely in this extension.

Proof. Denote by \(Cl_K \) the divisor class group of \(K \) of degree zero. Let \(\bar{H}/K \) be the maximal unramified abelian extension of exponent \(l \), and \(H \) the maximal intermediate field of \(\bar{H}/K \) in which \(\infty \) splits completely. The fields \(\bar{H} \) and \(H \) are Galois also over \(k \) as \(\infty \) is the unique prime of \(K \) over \(\infty \). We put \(A = \text{Gal}(H/K) \). Further, let \(\tilde{V} \) and \(V \) be the subgroups of \(K^\times/l \) such that
\[
\tilde{H} = K(v^{1/l} \mid [v] \in \tilde{V}) \quad \text{and} \quad H = K(v^{1/l} \mid [v] \in V)
\]
respectively. The groups \(A, \tilde{V}, V \) as well as \(Cl_K/l = Cl_K/Cl_K \) are naturally regarded as modules over \(\mathbb{F}_l[\Delta] \) since \(\bar{H} \) and \(H \) are Galois over \(k \). By class field theory, we have a canonical isomorphism \(Cl_K/l \cong A \) compatible with the action of \(\Delta \). So, we identify these two modules. We see that \(l/h(k) \) if and only if \((Cl_K/l)(\chi_0)\) is nontrivial from class field theory (cf. [15, p. 368]).

Now, let \(\chi \) be any \(\mathbb{F}_l \)-valued character of \(\Delta \). We prove the following:

Claim 1. The dimensions of the four vector spaces
\[
(Cl_K/l)(\chi), \quad (Cl_K/l)(\omega \chi^{-1}), \quad V(\chi), \quad V(\omega \chi^{-1})
\]
over \(\mathbb{F}_l \) are equal.
The desired assertion follows from this.

Let $\mu^a = \mu^\infty \cap K$. Then we easily see that $\widetilde{H} = H(\zeta_{a+1})$. From this, it follows that

$$\dim V(\chi) = \begin{cases} \dim V(\chi) & \text{for } \chi \neq \omega, \\ \dim V(\chi) + 1 & \text{for } \chi = \omega. \end{cases}$$

Here, $\dim(\ast)$ denotes the dimension of \ast over F. For each element $[v] \in \widetilde{V}$, the principal divisor (v) is written as $(v) = \mathfrak{A}^l$ for some divisor \mathfrak{A} of K. By mapping $[v]$ to the divisor class $[\mathfrak{A}]$ of \mathfrak{A}, we obtain the following exact sequence:

$$0 \to \mu^a / \mu^{a-1} \to \widetilde{V} \to \imath Cl_K \to 0.$$

This sequence is compatible with the Δ-action. Hence, by (2), we obtain

$$\dim(\imath Cl_K / l)(\chi) = \dim V(\chi)$$

for any χ. On the other hand, the Kummer pairing $A \times V \to \mu_l$, $(\sigma, [v]) \to \langle \sigma, [v]\rangle = (v^{1/l})^{\sigma-1}$ is nondegenerate and satisfies

$$\langle \sigma^\varrho, [v]^{\varrho} \rangle = \langle \sigma, [v]\rangle^{\varrho} = \langle \sigma, [v]\rangle^{\omega(\varrho)}$$

for $\varrho \in \Delta$.

From this, we easily obtain

$$\dim(\imath Cl_K / l)(\chi) = \dim V(\omega \chi^{-1})$$

for any χ. The assertion of Claim 1 follows from (3) and (4). ■

4. Proof of Theorems 1 and 2. We give a proof only for the case $p \neq 2$ (Theorem 1). The case $p = 2$ (Theorem 2) can be proved in a similar way.

We assume that $l \neq p$ and $p \neq 2$. We fix $a \in \mathbb{F}^\times_q$, and write $L_n = L_{n,a}$ for brevity. Putting $Y = (T^{l^n} + a)^{1/2}$, we have

$$L_n = \mathbb{F}_q(Y, (Y^2 - a)^{1/l^n}).$$

Proof of (I) and (III). The prime divisor ∞_Y of $\mathbb{F}_q(Y)$ is totally ramified in the extension $L_n/\mathbb{F}_q(Y)$. Therefore, we see that the condition $l \mid h(L_{n-1})$ implies $l \mid h(L_n)$ by the second corollary of Lemma 1. Hence, it suffices to prove the assertions (I) and (III) only when $n = 1$. We write $L = L_1$ for brevity. Let $\zeta = \zeta_l$, and let $Q = [\mathbb{F}_q(\zeta)]$ so that $\mathbb{F}_Q = \mathbb{F}_q(\zeta)$. Put $\tilde{L} = L \mathbb{F}_Q$. We identify the Galois group $\Delta = \text{Gal}(\mathbb{F}_Q/\mathbb{F}_q)$ with $\text{Gal}(\mathbb{F}_Q(Y)/\mathbb{F}_q(Y))$ and $\text{Gal}(\tilde{L}/L)$ in the obvious way. Let ∞_Y be the unique prime divisor of \tilde{L} over ∞_Y.

First, assume that $a = b^2$ with $b \in \mathbb{F}_q^\times$. Put $v = (Y - b)/(Y + b)$. Clearly, we have $[v] \in (\tilde{L}^\infty/l)(\chi_0)$. We see that the cyclic extension $\tilde{L}(v^{1/l})/\tilde{L}$ is
unramified by Lemma 4, and that \(\infty_Y \) splits completely in this extension as \(v \equiv 1 \pmod{(1/Y)} \). Therefore, by Lemma 5, we get \(l \mid h(L) \).

Next, assume that \(\delta_l(q) = 2 \) and \(a \not\in (\mathbb{F}_q^\times)^2 \). The condition \(\delta_l(q) = 2 \) implies \(|\Delta| = |F_Q : F_q| = 2\). Hence, \(a = \alpha^2 \) for some \(\alpha \in F_q \). Put \(v = (Y - \alpha)/(Y + \alpha) \). We have \([v] \in (\bar{L}^\times/\ell)(\omega) \) as \(\delta_l(q) = 2 \). We see that the cyclic extension \(\bar{L}(v^{1/\ell})/\bar{L} \) is unramified and that \(\infty_Y \) splits completely in this extension similarly to the above. Therefore, we get \(l \mid h(L) \) by Lemma 5. The assertions (I) and (III) follow from these.

Proof of (II). By (I), it suffices to show that \(l \nmid h(L_n) \) when \(a \not\in (\mathbb{F}_q^\times)^2 \).

So, we assume \(a \not\in (\mathbb{F}_q^\times)^2 \). Let \(Q_n = |F_q(\zeta_{q^n})| \) so that \(F_{Q_n} = F_q(\zeta_{q^n}) \). We put \(\bar{L}_n = L_nF_{Q_n} \). To prove \(l \nmid h(L_n) \), it suffices to show \(l \nmid h(\bar{L}_n) \) because of the first corollary of Lemma 1. As \(\delta_l(q) = |F_Q : F_q| \) is odd, \(|F_{Q_n} : F_q| \) is also odd. Hence, \(a \not\in (\mathbb{F}_{Q_n}^\times)^2 \), and \(Y^2 - a \) is irreducible over \(F_{Q_n} \). Therefore, the extension \(\bar{L}_n \) over \(F_{Q_n}(Y) \) satisfies the assumptions of Lemma 3, and hence, we obtain \(l \nmid h(\bar{L}_n) \).

5. Proof of Theorem 3. We assume that \(l = p \). We fix \(a \in \mathbb{F}_q \), and write \(L'_n = L'_{n,a} \) \((n \geq 1)\) for brevity. Putting \(Y = (T^{q^n} + a)^{1/2} \), we have

\[
L'_n = F_q(Y, (Y^2 - a)^{1/p^n}) \quad (n \geq 1).
\]

We put \(L'_0 = F_q(Y) \). Let \(Z = (Y^2 - a)^{1/p^{n-1}} \). Then

\[
L'_{n-1} = F_q(Y, Z) \quad \text{and} \quad L'_n = F_q(Y, Z^{1/p}).
\]

The prime divisor \(\infty_Z \) of \(F_q(Z) \) is ramified in the quadratic extension \(L'_{n-1}/F_q(Z) \). The Artin–Schreier extension \(F_q(Z^{1/p})/F_q(Z) \) is unramified outside \(\infty_Z \) and is totally ramified at \(\infty_Z \). Therefore, we see that the cyclic extension \(L'_n/L'_{n-1} \) of degree \(l = p \) is ramified only at the unique prime of \(L'_{n-1} \) over \(\infty_Z \). Then, by Lemma 2, the condition \(l \mid h(L'_n) \) implies \(l \mid h(L'_{n-1}) \). From this, we obtain the assertion as \(l \nmid h(L'_0) \).

6. Proof of Theorem 4. We give a proof only for the case \(p \neq 2 \). The case \(p = 2 \) can be proved in a similar way.

We assume that \(l = 3 \), \(q \equiv -1 \pmod{3} \) and \(p \neq 2 \). Fix \(n \geq 1 \). For \(1 \leq i \leq n \), we put

\[
N_i = F_q(X_{n-i}) \quad \text{and} \quad M_i = F_q(X_{n-i}, (3X_n + \gamma)^{1/2}).
\]

Then we see from (1) that

\[
N_1 \subseteq N_2 \subseteq \ldots \subseteq N_n = F_q(T), \quad M_1 \subseteq M_2 \subseteq \ldots \subseteq M_n = L''_n
\]
and that M_i/N_i is a quadratic extension. The polynomial $P_i = X_{n-i}^2 + X_{n-i} + 1 \in \mathbb{F}_q[X_{n-i}]$ is irreducible as $q \equiv -1 \mod 3$. We denote by (P_i) the prime divisor of N_i corresponding to the zeros of P_i.

To prove Theorem 4, we prepare several claims.

Claim 2. The extension N_{i+1}/N_i is cyclic cubic and unramified outside (P_i). We have $(P_i) = (P_{i+1})^3$ in this extension.

Proof. Put $Y = X_{n-(i+1)}$ and $Z = X_{n-i}$ for brevity. Then $N_{i+1} = \mathbb{F}_q(Y)$ and $N_i = \mathbb{F}_q(Z)$. By (1), Y is a root of the polynomial $Y^3 - 3ZY^2 - 3(1 + Z)Y - 1$ over $\mathbb{F}_q(Z)$. The discriminant of this polynomial is $3^4(Z^2 + Z + 1)^2$. Hence, N_{i+1}/N_i is a cyclic cubic extension, in which (P_i) is ramified. Since $P_i = Z^2 + Z + 1 = (Y^2 + Y + 1)^3/(9(Y^2 + Y)^2)$, we see that $(P_i) = (P_{i+1})^3$ in $N_{i+1} = \mathbb{F}_q(Y)$. Finally, we see that the other primes are unramified in N_{i+1}/N_i because N_i and N_{i+1} are of genus zero and because of the Riemann–Hurwitz formula for genus of algebraic function fields.

Let $\zeta = \zeta_3$, and $\mathbb{F}_Q = \mathbb{F}_q(\zeta)$ with $Q = q^2$.

Claim 3. $\gamma + 3\zeta$ is not a square in \mathbb{F}_Q^\times.

Proof. Assume, on the contrary, that $\gamma + 3\zeta = (\lambda + \mu\zeta)^2$ for some $\lambda, \mu \in \mathbb{F}_q$. Clearly, $\mu \neq 0$. By the above, we get $\gamma = \lambda^2 - \mu^2$ and $3 = 2\lambda\mu - \mu^2$.

From this, we obtain $3(\lambda/\mu)^2 - 2\gamma(\lambda/\mu) + (\gamma - 3) = 0$.

Hence, the discriminant $4(\gamma^2 - 3\gamma + 9)$ of this quadratic polynomial must be a square in \mathbb{F}_q^\times. This contradicts the choice of γ.

Claim 4. The prime (P_1) of N_1 remains prime in the quadratic extension M_1/N_1.

Proof. We see from (1) that $3X_n + \gamma \equiv 3X_{n-1} + \gamma \mod P_1 (= X_{n-1}^2 + X_{n-1} + 1)$. Since ζ is a root of P_1, the assertion follows from Claim 3.

Claim 5. We have $3 \nmid h(M_1)$.

Proof. Put $Y = X_{n-1}$ and $Z = (3X_n + \gamma)^{1/2}$. Then $M_1 = \mathbb{F}_q(Y, Z)$. We see that the genus of M_1 is 2 because exactly 6 prime divisors are ramified in the quadratic extension $M_1/\mathbb{F}_q(\zeta)$. In the following, we view M_1 as an extension over $\mathbb{F}_q(Z)$. By (1), Y is a root of the polynomial $Y^3 - (Z^2 + \gamma)Y^2 - (Z^2 - \gamma + 3)Y - 1$.
Quadratic function fields

over \(F_q(Z) \). The discriminant of this polynomial is \(P^2 \) with

\[
P = P(Z) = (Z^2 - \gamma)^2 + 3(Z^2 - \gamma) + 9.
\]

A root \(\alpha \) of \(P(Z) \) satisfies \(\alpha^2 = \gamma + 3\zeta \). Then, by Claim 3, we see that \(\alpha \) is of degree 4 over \(F_q \), and hence, \(P \) is irreducible over \(F_q \). From the above, we see that \(M_1/F_q(Z) \) is a cyclic cubic extension, in which the prime of \(F_q(Z) \) corresponding to the irreducible monic \(P(Z) \) is ramified. Since the genus of \(M_1 \) is 2 and \(\deg(P) = 4 \), we see that the other primes of \(F_q(Z) \) are unramified in \(M_1 \) by the Riemann–Hurwitz formula. Hence, we obtain 3 \(\nmid h(M_1) \) by Lemma 2.

Claim 6. Assume that 3 \(\nmid h(M_i) \) and the prime \((P_i) \) of \(N_i \) remains prime in the quadratic extension \(M_i/N_i \). Then we have 3 \(\nmid h(M_{i+1}) \), and \((P_{i+1}) \) remains prime in \(M_{i+1}/N_{i+1} \).

Proof. Since \(M_{i+1} = M_i N_{i+1} \), we obtain the assertion by using Claim 2 and Lemma 2.

Now, we obtain Theorem 4 for the case \(p \neq 2 \) from Claims 4, 5 and 6.

The case \(p = 2 \) can be proved in a similar way by using, in place of Claim 3, the following:

Claim 7. Let \(p = 2 \) and \(q \equiv -1 \mod 3 \). Then \(T^4 + T + 1 \) is irreducible over \(F_q \).

References

Department of Mathematics
Yokohama City University
22-2, Seto, Kanazawa-ku
Yokohama, 236-0027 Japan
E-mail: ichimura@yokohama-cu.ac.jp

Received on 12.2.1999