
ACTA ARITHMETICA
XCI.2 (1999)

The Stickelberger element of an imaginary quadratic field

by

Peter Schmid (Tübingen)

1. Introduction. Sinnott [5] has introduced Stickelberger ideals for all
abelian number fields. These ideals (of the integral group algebra of the
Galois group) annihilate the ideal class group of the field and, for non-
real fields, their indices give interpretations of the minus part of the class
number. In general, the so-called Sinnott module, occurring in the index
formula, is not easy to deal with for arbitrary abelian fields. Recently Kučera
[3] was able to compute this index for a compositum of quadratic number
fields. Here we handle the very special case of an imaginary quadratic field
K = Q(

√
D), where D = −d is its (negative) discriminant.

Recall that d is the conductor of K, hence Q(ζd) is the smallest cyclo-
tomic field containing K. For a ∈ G(d) = (Z/dZ)∗ let σa : ζd 7→ ζad be
the corresponding automorphism of Q(ζd), and let {a/d} be the fractional
part of a. (So {a/d} is the rational number x in the interval [0, 1) such that
x− a′/d ∈ Z for any integer a′ representing a.) According to the definition
given in Washington’s book [6, p. 93] then

θ = θK =
∑

a∈G(d)

{
a

d

}
(σ−1
a )|K

is the Stickelberger element of K. Let G = 〈j〉 be the Galois group of K|Q.
Then θ ∈ QG is in the rational group algebra of G and, of course, dθ ∈ ZG.
We even have the following (cf. Example (b) in [6, p. 94]):

Theorem 1. The Stickelberger element θ = θK is in the integral group
ring ZG of the Galois group of K unless d = 3, 4 or 8.

The proof is quite elementary. In what follows we exclude the cases
d = 3, 4, 8 (where the class number h = hK = 1). Then we define S = SK =
〈θ, 1+j〉 to be the Stickelberger ideal to K. This (additive) join is an ideal of
ZG, and it turns out that it agrees with the notion introduced by Sinnott [5].

1991 Mathematics Subject Classification: 11R11, 11R29.

[165]



166 P. Schmid

Note that the norm 1 + j annihilates the ideal class group C = ClK and,
therefore, j acts on C by inversion. Write θ = u + vj (u, v ∈ Z). From the
(analytic) class number formula we obtain h = |C| = −(u − v). It is thus
immediate that θ annihilates C as well.

Corollary. The Stickelberger ideal S = SK annihilates the ideal class
group C of K. In fact , ZG/S ' Z/hZ as rings (uniquely).

Of course, annihilation of the class group may be proved (by purely alge-
braic means) using Stickelberger’s factorization of Gauss sums in cyclotomic
fields (see Theorem 6.2 in [6] and Theorem 3.1 in [5]). On the other hand,
there is also an elegant arithmetic approach to the class number formula for
imaginary quadratic number fields due to Orde [4].

The (cyclic) structure of ZG/S (as an additive group) does not really re-
flect the structure of the ideal class group C, because usually the annihilator
of C is larger than the Stickelberger ideal:

Theorem 2. Let t be the number of rational primes dividing d. Assume
that t ≥ 2. Then θ/2t−2 is in ZG and annihilates C = ClK .

Here we apply the Gauss theorem on genera. It tells us that t− 1 of the
ramified prime ideals of K (lying over d) give rise to an independent set of
involutions in C (but each getting principal in the genus field of K). There is
no (analogous) result describing the p-primary structure of C for odd primes
p. Heuristic methods (Cohen–Lenstra [2]) indicate, and experience confirms
it (see e.g. Buell [1]), that the odd part of C is cyclic with probability of
about 97%. We just mention the following.

Addendum. Suppose p is an odd prime. Then θ/p ∈ ZG if and only if
p is a divisor of both h and ϕ(d) (Euler function).

In this case θ/p annihilates C precisely when the p-component of C is
not cyclic. This is a rather sophisticated comment, however, because no
arithmetic condition seems to be around forcing this annihilation.

2. Quadratic characters. Let χ be an (arbitrary) primitive Dirichlet
character with order 2 and conductor d. We do not insist that χ is odd. One
knows that χ = χD is determined by its discriminant D where D = −d if χ
is odd (χ(−1) = −1) and D = d otherwise. We define

uχ =
1
d

d∑
a=1

χ(a)=1

a and vχ =
1
d

d∑
a=1

χ(a)=−1

a.

Obviously duχ, dvχ are integers. Note also that ϕ(d) = |G(d)| is an even
integer. There are just ϕ(d)/2 integers a in the real interval [1, d) (prime to
d) for which χ(a) = 1 (and the same number for which χ(a) = −1).
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Lemma 1. We have uχ + vχ = ϕ(d)/2.

P r o o f. By the very definition d(uχ + vχ) =
∑

(a,d)=1 a (with a ∈ Z ∩
[1, d)). Now a is prime to d precisely when d−a is prime to d, and a+(d−a) =
d. We conclude (à la Gauss) that 2d(uχ + vχ) = ϕ(d)d, as desired.

Lemma 2. Suppose d is a power of an odd prime p. Then d = p, D =
(−1)(p−1)/2p and χ =

( ·
p

)
is the Legendre symbol. Except when p = 3 here

uχ and vχ are integers.

P r o o f. The first statement follows from the fact that G(pn) is cyclic for
all n ≥ 1 (and χ is primitive of order 2). Let G(p) = 〈z〉. Then z2 6= 1 unless
p = 3, and we have

2
∑

y∈F2
p

y =
∑

x∈Fp
x2 =

∑

x∈Fp
(zx)2 = 2z2

∑

y∈F2
p

y

in the finite field Fp = Z/pZ. This gives the result for uχ. By Lemma 1 (or
directly) then vχ is an integer as well.

Lemma 3. Suppose d is a 2-power. Then d = 4 (D = −4) or d = 8
(D = ±8). Here uχ = vχ = 1 if χ is even (D = 8) and otherwise uχ, vχ are
not integral.

P r o o f. For n ≥ 3 the group G(2n) is of type (2, 2n−2). Hence the kernel
of any character of G(2n) of order 2 contains the kernel of the natural map
G(2n) ³ G(23). The remainder is by inspection.

Lemma 4. If d is not a prime power , then both uχ and vχ are integers.

P r o o f. By hypothesis d = d1d2 for relatively prime integers di ≥ 3.
Then G(d) ' G(d1) × G(d2) in the natural way (by the Chinese remain-
der theorem), and χ = χ1 · χ2 for unique (primitive, quadratic) Dirichlet
characters χi with conductor di.

For a fixed integer a ∈ Z ∩ [1, d1) relatively prime to d1 consider the set

Σa = {x ∈ Z : 1 ≤ x ≤ d, (x, d) = 1, x ≡ a (mod d1)}.
The cardinality of this set is |G(d2)| = ϕ(d2). There are just ϕ(d2)/2 ele-
ments x ∈ Σa for which χ2(x) = 1 (resp. χ2(x) = −1). Since χ1(x) = χ1(a)
for each x ∈ Σa, and χ(x) = χ1(x)χ2(x), there are exactly ϕ(d2)/2 elements
x ∈ Σa satisfying χ(x) = 1 (independent of whether χ1(a) = 1 or −1).
Therefore we have

duχ ≡ ϕ(d2)
2

d1∑
a=1

(a,d1)=1

a ≡ ϕ(d2)
2

d1
ϕ(d1)

2
(mod d1),

where we used Lemma 1 (for χ1) to compute the sum. It follows that duχ =
d1d2uχ is an integer divisible by d1. Hence d2uχ is an integer. Similarly d1uχ
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is an integer. Using the fact that (d1, d2) = 1 we see that uχ is an integer,
as desired. By the same argument, or by Lemma 1, also vχ is an integer.

3. Proof of Theorem 1. We return to the imaginary quadratic field K
with discriminantD = −d, Galois group G = 〈j〉, and quadratic (Kronecker)
character χ = χD. For this χ we write u = uχ and v = vχ. We have
χ(a) = −1 if (σ−1

a )|K = j and χ(a) = 1 otherwise (a ∈ G(d)). Thus, by
definition, the Stickelberger element of K is θ = u+ vj. Furthermore,

B1,χ =
1
d

d∑
a=1

χ(a)a = u− v

is the (generalized) Bernoulli number. By the (analytic) class number for-
mula h = −B1,χ except when d = 3 or d = 4. Excluding these two cases
and also d = 8, from Lemmas 2–4 it follows that both u, v are integers.
Consequently, θ = u+ vj ∈ ZG, which is Theorem 1.

The assignment x + yj 7→ x − y is a ring epimorphism from ZG onto
Z, with kernel 〈1 + j〉, mapping θ onto u − v = −h. Hence ZG/S ' Z/hZ,
which gives the corollary to Theorem 1.

Remark. Stickelberger factorization yields that θ = u+ vj annihilates
C = ClK (without assuming the class number formula). Then our lemmas
provide for the (apparently strong) upper estimate that the exponent of C
is a divisor of −B1,χ = v−u. However, we do not get v > u in this manner,
not even B1,χ 6= 0 (which follows from L(1, χ) 6= 0). The sign involved,
formulated as a problem on Gauss sums, has a long history (Gauss, Dirichlet,
Kronecker, Schur).

4. Proof of Theorem 2. By Lemma 1 we have u+ v = ϕ(d)/2. More-
over, excluding the cases d = 3, 4, by the class number formula h = v − u.
Consequently,

(∗) h = −2u+ ϕ(d)/2 = 2v − ϕ(d)/2.

Now suppose the number of primes dividing d is t ≥ 2. Then ϕ(d) is divisible
by 2t. By the Gauss theorem on genera C = ClK has 2-rank t− 1. It follows
that the exponent of C is a divisor of h/2t−2. In other words, h/2t−2 is an
even integer which annihilates C. We infer from (∗) that both u and v are
integers divisible by 2t−2. From θ = u+ vj it is thus immediate that θ/2t−2

is in ZG and that it annihilates C (Theorem 2).
Suppose now that p is an odd prime. If θ/p ∈ ZG, then both u and v

are integers divisible by p. This forces that d 6= 3, 4, 8. Moreover, it follows
that p divides h = v − u. The class number formula (∗) shows that p is a
divisor of ϕ(d). The converse is proved similarly, giving the addendum to
Theorem 2.
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Remark. Recall that the class number formula (∗) holds true when
d 6= 3, 4. Excluding also d = 8 we know that u, v are integers. Then if h
is odd, ϕ(d)/2 must be odd and so d a prime ≡ 3 (mod 4). This is a weak
form of the Gauss theorem on genera. Conversely, from the Gauss theorem
and formula (∗) we may deduce that u and v are integers when d 6= 3, 4, 8.
For then h is odd precisely when d is a prime ≡ 3 (mod 4), and just in this
case ϕ(d)/2 is odd too.

References

[1] D. A. Bue l l, Class groups of quadratic fields, Math. Comp. 30 (1976), 610–623.
[2] H. Cohen and H. W. Lenstra, Heuristics on class groups of number fields, in:

Number Theory (Noordwijkerhout, 1983), Lecture Notes in Math. 1068, Springer,
1984, 33–62.
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