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1. Introduction. In the early 1920s, van der Corput developed a pow-
erful method to estimate exponential sums of the following type (cf. [18],
Chap. 4):

S =
∑

a≤m≤b
e(f(m)),

where 1 ≤ a ≤ b ≤ 2a, m runs through integers, e(ξ) = exp(2πiξ) for real
ξ, and f(x) is a real function such that at least the first derivative f ′(x)
exists for x ∈ [a, b]. Apart from the well-known Weyl inequality, another
basic procedure of the method is to transform the estimate of the sum S to
the estimate of another exponential sum. Precisely speaking, if the second
derivative f ′′(x) is continuous and does not change sign on [a, b], then

S = λ
∑

α<v<β

|f ′′(xv)|−1/2e(f(xv)− vxv + 1/8) + E,

where λ = 1 or −i according as either f ′′ > 0 or f ′′ < 0, xv is the solution of
f ′(x) = v, α ≤ v ≤ β, α = min(f ′(a), f ′(b)), β = max(f ′(a), f ′(b)), and E
is the error term. The problem left to be settled is how we can get a better
estimate for E. If f (3)(x) is continuous on [a, b], f ′(x) is decreasing on [a, b],
and

λ2 ≤ |f ′′(x)| ≤ Aλ2, |f (3)(x)| ≤ Aλ3, λ2 > 0, λ3 > 0,

and A is a positive constant, then van der Corput showed (cf. [18], Theorem
4.9) that

E = O(λ−1/2
2 ) +O(log(2 + (b− a)λ2)) +O((b− a)λ1/5

2 λ
1/5
3 ).
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Assuming the additional condition that f (4)(x) is continuous on [a, b] and
satisfies

|f (4)(x)| ≤ Aλ4, λ4 > 0, λ2
3 = λ2λ4,

Phillips [17] showed that

E = O(λ−1/2
2 ) +O(log(2 + (b− a)λ2)) +O((b− a)λ1/3

3 ).

Although this estimate suffices to establish the theory of exponent pairs,
it is not useful for estimating several multiple exponential sums. Therefore,
Heath-Brown [3] got an important improvement by means of complex anal-
ysis. Assume that f(z) is analytic in a domain R containing the interval
[a, b], R′ = {z | az ∈ R} is an open convex set, and |f ′′(z)| ≤ M holds for
z ∈ R. Moreover, for a real number x ∈ R, f ′′(x) ≤ −AM , where A > 0 is
a positive constant. Then Lemma 6 of [3] gives

E = O(M−1/2) +O(log(2 + (b− a)M)).

It is noteworthy that Kolesnik already stated essentially the same result as
Lemma 2 of [5] in 1982, but gave no detailed proof. Heath-Brown’s estimate
for the error term E is of course good enough, and it has been used in the
investigation of many problems (cf. [3], [6], [7], [13]–[15]). However, it does
not suffice in the estimation of many multiple exponential sums, especially
those coming from multiple divisor problems (cf. [2], [4], [8]–[12], [19], [20]).
Assuming that f(x) is an algebraic function for x ∈ [a, b], and

R−1 ≤ |f ′′(x)| ≤ AR−1, |f (3)(x)| ≤ A(RU)−1, U ≥ 1,

Min [16] got a stronger estimate for E. Theorem 2.2 of [16] gives

E = E1 + E2 +O(log(2 + (b− a)R−1)) +O((b− a+R)U−1)

+O(min(R1/2,max(1/〈α〉, 1/〈β〉))),
where

E1 = λbα|f ′′(xα)|−1/2e(f(xα)− αxα + 1/8),

E2 = λbβ |f ′′(xβ)|−1/2e(f(xβ)− βxβ + 1/8),
bα = 1/2 if α is an integer, otherwise bα = 0, and bβ is defined similarly,
〈α〉 = β − α if α is an integer, and otherwise 〈α〉 = ‖α‖ = minn∈Z |n − α|,
and 〈β〉 is defined similarly. Before Jia’s work [4] and the author’s work [8],
Min’s result was neither known abroad nor used domestically. In fact Jia [4]
only used a consequence of Min’s result, that is (note that E1 = O(bαR1/2)),

E = O(min(R1/2, 1/‖α‖)) +O(min(R1/2, 1/‖β‖))
+O(log(2 + (b− a)R−1)) +O((b− a+R)U−1).

Min’s result plays a decisive role in recent deeper investigations of certain
exponential sums (cf. [2], [4], [8]–[12], [19], [20]). However, the statement of
Min’s result depends on the deep notion of “algebraic function” (cf. Chapter
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8 of [1] for a precise definition), which makes its proof obscure (it will be
clear later where this deep notion is appealed to). The dependence on such a
deep notion is also not in consistence with van der Corput’s original method,
which depends only on properties of derivative functions. Moreover, Min’s
method does not even yield a direct proof for the simple case where f(x)
is a monomial. In this paper, we shall show that if the derivatives of f(x)
satisfy suitable conditions, then Min’s estimate for the error term E of van
der Corput’s formula still holds true. Let f (k)(x) denote the derivative of f
of order k, 2 ≤ k ≤ 5.

Theorem 1. Let f(x) be a real function such that f (5)(x) is a continuous
function for x ∈ [a, b], Ck (1 ≤ k ≤ 6) be certain positive constants,

C1R
−1 ≤ |f (2)(x)| ≤ C2R

−1, |βk(x)| ≤ CkU2−k, U ≥ 1, 3 ≤ k ≤ 5,

βk(x) = f (k)(x)/f (2)(x).

Assume that |3β4(x)− 5β2
3(x)| ≥ C6U

−2 for all x ∈ [a, b]. Then
∑

a≤m≤b
e(f(m)) = λ

∑

α<v<β

|f ′′(xv)|−1/2e(f(xv)− vxv + 1/8) + E,(1)

E = E1 + E2 +O(log(2 + (b− a)R−1)) +O((b− a+R)U−1)

+O(min(R1/2,max(1/〈α〉, 1/〈β〉))),
where E1, E2, and all other symbols are defined as before.

Applying Theorem 1, we can prove the following

Theorem 2. If f(x) = Bxδ, Bδ 6= 0, δ 6= 1, 2, then (1) holds with
R = (|B|aδ−2)−1, U = a.

Exponential sums weighted by the factor m−1/2 are of particular interest
in case f(x) is a monomial. Using Theorem 1, we can easily get

Theorem 3. If f(x) = Bxδ, δB > 0, δ 6= 1, 2, then
∑

a≤m≤b
m−1/2e(f(m))

= Cλ
∑

α<v<β

v−1/2e(g(v)) + E1 + E2 +O(a−1/2 log(2 + (b− a)R−1))

+O((b− a+R)a−3/2) +O(a−1/2 min(R1/2,max(1/〈α〉, 1/〈β〉))),
where C = (|δ − 1|)−1/2, λ = 1 or −i according as δ > 1 or δ < 1,
α = min(f ′(a), f ′(b)), β = max(f ′(a), f ′(b)), g(v) = (δB)τvη(δ−1 − 1), τ =
1/(1− δ), η = δ/(δ− 1), E1 = Cλα−1/2bαe(g(α)), E2 = Cλβ−1/2bβe(g(β)),
the notations bα, bβ , 〈α〉 and 〈β〉 are defined as before, and R = (|B|aδ−2)−1.
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Theorems 2 and 3 show the validity of all the results in the literature
derived from Min’s result, without depending on the notion of “algebraic
function”.

2. Lemmas

Lemma 1. Let f(x) be a real function on [a, b] such that f ′(x) is contin-
uous and decreasing , f ′(a) = β, f ′(b) = α, and g(x) is a positive decreasing
function defined on the same interval with g′(x) continuous and |g′(x)| de-
creasing. Then for every positive constant ϕ smaller than 1 we have

∑

a≤n≤b
g(n)e(f(n)) =

∑

α−ϕ<v<β+ϕ

b\
a

g(x)e(f(x)− vx) dx

+O(g(a) log(β − α+ 2)) +O(|g′(a)|).
P r o o f. This is Lemma 4.10 of [18].

Lemma 2. If F (x) and G(x) are real functions on [a, b] such that
G(x)/F ′(x) is monotonic, and |G(x)/F ′(x)| ≤M for all x ∈ [a, b], then

b\
a

G(x)e(F (x)) dx = O(M).

P r o o f. This is Lemma 4.3 of [18].

Lemma 3. If F (x) is a real function such that F ′′(x) is continuous and
|F ′′(x)| ≥ r > 0 for all x ∈ [a, b], and G(x) is a real function such that
|G(x)| ≤M and G(x) is monotonic on [a, b], then

b\
a

G(x)e(F (x)) dx = O(Mr−1/2).

P r o o f. This is Lemma 4.5 of [18].

Lemma 4. Let M > N > 0. Then
M\
N

e(x2) dx = (1 + i)
M\
N

exp(−4πx2) dx(i)

+O(min(N, 1/N)) +O

(
1− exp(−4πM2)

M

)
,

∞\
N

e(x2) dx = O(min(1, 1/N)),(ii)

∞\
0

e(x2) dx = 1
4 (1 + i),(iii)
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(iv)
∞\
N

e(x)x−1/2 dx = O(min(1, N−1/2)),

(v)
∞\
0

e(x)x−1/2 dx = 1
2 (1 + i).

P r o o f. By the residue theorem we get\
L

e(z2) dz = 0,

where L is the closed path consisting of the four sides of the quadrangle of
the complex plane with vertices (N, 0), (M, 0), (M,M) and (N,N). Thus

M\
N

e(x2) dx = R1 +R2 +R3,

where R1, R2 and R3 are the integrals over the sides from (M,M) to (M, 0),
(N,N) to (M,M), and (N, 0) to (N,N) respectively. We have

|R1| =
∣∣∣
M\
0

exp(2πi(M + iy)2) dy
∣∣∣ = O

(M\
0

exp(−4πMy) dy
)

= O

(
1− exp(−4πM2)

M

)
,

R2 =
M\
N

exp(2πi(t+ ti)2)(1 + i) dt = (1 + i)
M\
N

exp(−4πt2) dt,

|R3| =
∣∣∣
N\
0

exp(2πi(N + iy)2) dy
∣∣∣ = O

(N\
0

exp(−4Ny) dy
)

= O

(
1− exp(−4πN2)

N

)
.

Now R3 = O(1/N) is obvious. For sufficiently small N , exp(−4πN2) =
1 + O(N2). This shows that R3 = O(min(N, 1/N)), and (i) follows. (ii)
follows from (i) by letting M →∞ and noting that

∞\
N

exp(−4πx2) dx <
∞\
0

exp(−4πx2) dx = O(1),

∞\
N

exp(−4πx2) dx <
∞\
N

exp(−4πNx) dx = O(1/N).
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Letting M →∞ and N → 0, from (i) we get
∞\
0

e(x2) dx = (1 + i)
∞\
0

exp(−4πx2) dx := (1 + i)I, say.

It suffices for us to calculate the integral I. We have

I2 =
∞\
0

∞\
0

exp(−4π(x2 + y2)) dx dy.

Let x = r cos θ, y = r sin θ, 0 ≤ r < ∞, and 0 ≤ θ ≤ π/2. This changes the
double (x, y) integral into a double (r, θ) integral, and we get

I2 =
∞\
0

exp(−4πr2)r dr
π/2\
0

dθ = 1/16,

which proves (iii). Letting x = u2 in the integrals of (iv) and (v), it is easy
to see that the conclusions follow from (ii) and (iii) respectively.

3. Proof of Theorem 1. As f ′′(x) does not change sign on [a, b], we
can suppose without losing generality that f ′′(x) < 0 for all x ∈ [a, b]. By
Lemma 1 we have

(2)
∑

a≤n≤b
e(f(n)) =

∑

α−1/2<v<β+1/2

b\
a

e(f(x)− vx) dx+O(log(β − α+ 2)).

Let nv be the unique number satisfying f ′(nv) = v, where α ≤ v ≤ β. Then
nv ∈ [a, b]. Assume that nv 6= b. Let ξ = b− nv. We have

b\
nv

e(f(x)− vx) dx =
ξ\
0

e(f(t+ nv)− v(t+ nv)) dt(3)

= e(f(nv)− vnv)
ξ\
0

e(A(t)) dt,

where A(t) = f(t + nv) − f(nv) − vt. Let ε be a sufficiently small given
positive constant depending on the constants Ck (2 ≤ k ≤ 6). If t ≥ εU ,
then

A′(t) = f ′(t+ nv)− f ′(nv) = tf ′′(t1 + nv) ≤ −εUR−1,

where t1 ∈ [0, t]. Thus by Lemma 2 we get

(4)
ξ\
c

e(A(t)) dt = O(RU−1),
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where c = min(ξ, εU). The leading term in the Taylor expansion of A(t) is
1
2f
′′(nv)t2, thus we may approximate the integral

J =
c\
0

e(−A(t)) dt

by
∞\
0

e
(− 1

2f
′′(nv)t2

)
dt =

(− 1
2f
′′(nv)

)−1/2 1
2

∞\
0

e(x)x−1/2 dx.

Let −A(t) = u. We have

J =
d\
0

e(u)(−A′(t(u)))−1 du,

where d = −A(c) > 0. Let Y =
(− 1

2f
′′(nv)

)−1/2
. We have

(5) J − 1
2
Y

∞\
0

e(x)x−1/2 dx =
d\
0

e(u)F (u) du− 1
2
Y

∞\
d

e(u)u−1/2 du,

where

F (u) = − 1
A′(t(u))

− 1
2
Y u−1/2,

A′(·) is the derivative of A(·), and t(u) is the solution of A(t) = −u. We
have

F ′(u) =
−A′′(t(u))
(A′(t(u)))3 +

1
4
Y u−3/2.

If there is u ∈ (0, d] such that F ′(u) = 0, then there is t ∈ (0, c] such that

(6) f ′′(t+ n)(f ′(t+ n)− f ′(n))−3 = 1
4Y (−f(t+ n) + f(n) + vt)−3/2,

where we write n = nv for simplicity. We will deduce a contradiction from
(6) under the assumptions of Theorem 1. Taking Taylor expansions we get

f ′′(t+ n) = f (2)(n) + tf (3)(n) + 1
2 t

2f (4)(n) + 1
6 t

3f (5)(N1),

f ′(t+ n)− f ′(n) = tf (2)(n) + 1
2 t

2f (3)(n) + 1
6 t

3f (4)(n) + 1
24 t

4f (5)(N2),

f(t+ n)−f(n)−vt = 1
2f

(2)(n)t2 + 1
6f

(3)(n)t3 + 1
24f

(4)(n)t4 + 1
120f

(5)(N3)t5,

where N1, N2 and N3 are suitable numbers in [n, n+ t]. Thus from (6) and
the assumptions of Theorem 1, we get

F1(t)(F3(t))3/2 = (F2(t))3,(7)

F1(t) = 1 + tβ3 + 1
2 t

2β4 + c1θ1t
3U−3,

F2(t) = 1 +X1, X1 = 1
2 tβ3 + 1

6 t
2β4 + c2θ2t

3U−3,

F3(t) = 1 +X2, X2 = 1
3 tβ3 + 1

12 t
2β4 + c3θ3(t/U)3,
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where βk = βk(n), ci is a suitable positive constant, and θi = θi(t) ∈ [0, 1].
As |βk| ≤ CkU−k+2, t ≤ εU , we have X2 = O(t/U) = O(ε), and

(F2(t))3 = (1 +X1)3 = 1 + 3X1 + 3X2
1 +X3

1

= 1 + 3
2 tβ3 + t2

(
3
4β

2
3 + 1

2β4
)

+ c4θ4(t/U)3,

(F3(t))3/2 = (1 +X2)3/2 = 1 + 3
2X2 + 3

8X
2
2 + c5θ5(t/U)3

= 1 + 1
2 tβ3 + t2

(
1
8β4 + 1

24β
2
3

)
+ c6θ6(t/U)3,

F1(t)(F3(t))3/2 = 1 + 3
2 tβ3 + t2

(
5
8β4 + 13

24β
2
3

)
+ c7θ7(t/U)3.

Thus from (7) we get
5
24β

2
3 − 1

8β4 + c8θ8tU
−3 = 0,

which is impossible, for we have |3β4 − 5β2
3 | ≥ C6U

−2 and t ≤ εU . This
shows that F ′(u) 6= 0 for u ∈ (0, d]. As F ′(u) is a continuous function for
u ∈ (0, d], it follows that F ′(u) does not change sign on (0, d], which implies
that F (u) is monotonic on (0, d]. For u ∈ (0, d], from

(8) u = −A(t) = −(f(n+ t)− f(n)− vt) = − 1
2f
′′(n)t2(1 +O(t/U))

we get
t = t(u) = Y u1/2(1 +O(t/U)).

Thus
A′(t(u)) = f ′(n+ t)− f ′(n) = f ′′(n)t(1 +O(tU−1))

= −2Y −1u1/2(1 +O(tU−1)),

F (u) = − 1
A′(t(u))

− 1
2
Y u−1/2 = O(Y u−1/2tU−1) = O(RU−1).

Let d′ ∈ (0, d) be arbitrary. By Lemma 2 we get
d\
d′
e(u)F (u) du = O(RU−1).

As the implied constant does not depend on d′, letting d′ → 0 we get

(9)
d\
0

e(u)F (u) du = O(RU−1).

By Lemma 4(iv) we get
∞\
d

e(u)u−1/2 du = O(min(1, d−1/2)).

From (8) we deduce that d = −A(c) � c2/R. As c = min(εU, b − n) and
|f ′(b)− f ′(n)| � (b− n)/R, and n = nv is such that f ′(n) = v, we get

d−1/2 � R1/2c−1 � R1/2(U−1+(b−n)−1)� R1/2(U−1+R−1(v−f ′(b))−1),
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and thus

min(1, d−1/2)� R1/2U−1 + min(1, R−1/2(v − f ′(b))−1),

(10) Y

∞\
d

e(u)u−1/2 du = O(R1/2 min(1, d−1/2))

= O(R/U) +O

(
min

(
R1/2,

1
v − f ′(b)

))
.

From Lemma 4(v), (5), (9) and (10), we get

(11)
c\
0

e(−A(t)) dt = 1
4 (1 + i)Y +O

(
R/U + min

(
R1/2,

1
v − f ′(b)

))
.

As (1− i)Y = −2i|f ′′(nv)|−1/2e(1/8), from (3), (4) and (11), for nv 6= b we
have

b\
nv

e(f(x)− vx) dx = − 1
2 i|f ′′(nv)|−1/2e(f(nv)− vnv + 1/8)(12)

+O(R/U) +O

(
min

(
R1/2,

1
v − f ′(b)

))
.

Similarly, for nv 6= a we can show that
nv\
a

e(f(x)− vx) dx = − 1
2 i|f ′′(nv)|−1/2e(f(nv)− vnv + 1/8)(13)

+O(R/U) +O

(
min

(
R1/2,

1
f ′(a)− v

))
.

Thus, for nv ∈ (a, b) we have

(14)
b\
a

e(f(x)− vx) dx

= − i|f ′′(nv)|−1/2e(f(nv)− vnv + 1/8) +O(R/U)

+O

(
min

(
R1/2,

1
v − f ′(b)

))
+O

(
min

(
R1/2,

1
f ′(a)− v

))
.

It is easy to observe that
∑

α<v<β

min
(
R1/2,

1
v − α

)
� min(R1/2, 1/〈α〉) + log(β − α+ 2),(15)

∑

α<v<β

min
(
R1/2,

1
β − v

)
� min(R1/2, 1/〈β〉) + log(β − α+ 2),(16)
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where α = f ′(b) < β = f ′(a). As β − α� R−1(b− a), we have

(17)
log(β − α+ 2)� log(2 + (b− a)R−1),

(β − α+ 1)RU−1 � (b− a+R)U−1.

From (12) to (17) we get

(18)
∑

α≤v≤β

b\
a

e(f(x)− vx) dx

= −i
∑

α<v<β

|f ′′(xv)|−1/2e(f(xv)− vxv + 1/8) + E,

E = E1 + E2 +O(log(2 + (b− a)R−1)) +O((b− a+R)U−1)

+O(min(R1/2,max(1/〈α〉, 1/〈β〉))).
If v is an integer, v ∈ (α− 1/2, α), then α is not an integer, and we have

f ′(x)− v ≥ f ′(b)− v = α− v = ‖α‖ = 〈α〉 > 0.

Thus by Lemmas 2 and 3 we get

(19)
∑

v∈(α−1/2,α)

b\
a

e(f(x)− vx) dx� min(R1/2, 1/〈α〉),

and this estimate also holds if α is an integer, in which case the interval
(α− 1/2, α) does not contain integers. Similarly, we have

(20)
∑

v∈(β,β+1/2)

b\
a

e(f(x)− vx) dx� min(R1/2, 1/〈β〉).

Hence, from (2) and (18) we conclude that (1) holds with λ = −i. If f ′′(x) >
0 for all x ∈ [a, b], then by a similar argument, we can obtain (11) with
−A(t) and v − f ′(b) being replaced by A(t) and f ′(b)− v respectively, and
consequently, we should replace −i in (12)–(14) and (18) by 1, which results
in the choice λ = 1 in (1). This completes the proof of Theorem 1.

Remark. In the proof of Theorem 1, we find that it is vital to evaluate
the integral

d\
0

e(u)F (u) du,

which requires showing the monotonicity of the function F (u). To this end,
Min assumed that f(x) is an algebraic function, from which he inferred that
F (u) is also an algebraic function, and thus is monotonic in O(1) small
intervals. The question of whether Min’s argument is reasonable is beyond
the range of this paper. (In Min’s argument, d is just −A(b− nv).)
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4. Proof of Theorem 2. Let B and δ be two real numbers with Bδ 6= 0,
δ 6= 1, 2. If δ 6= 1/2, then

|3β4(x)− 5β2
3(x)| = x−2|(δ − 2)(1− 2δ)| � a−2 for x ∈ [a, b].

Thus it is easy to see that the conditions of Theorem 1 are satisfied. Hence
(1) holds. If δ = 1/2, then we need an alternative treatment. We recall
that the condition |3β4(x) − 5β2

3(x)| ≥ C6a
−2 is introduced to show the

monotonicity of F (u). In case δ = 1/2, suppose without loss of generality
that B > 0. Then

F (u) = x1/2
v B−1F1(θ),

F1(θ) = − 2((1 + θ)−1/2 − 1)−1

−
√

2
(
1 + 1

2θ − (1 + θ)1/2
)−1/2

, θ = t(u)/xv.

As 1+ 1
2θ−(1+θ)1/2 = 1

2 ((1+θ)1/2−1)2, θ > 0, it is easy to see that F1(u) =

2, thus F (u) keeps the value 2x1/2
v B−1 for u ∈ [0, d], which completes the

proof.

5. Proof of Theorem 3. Without loss of generality we may suppose
that δ < 1. In this case α = f ′(b), β = f ′(a), and λ = −i. By Lemma 1 we
get

∑

a≤n≤b
n−1/2e(f(n)) =

∑

α−1/2<v<β+1/2

b\
a

x−1/2e(f(x)− vx) dx(21)

+O(a−1/2 log(β − α+ 2)).

Let xv be the solution of f ′(x) = v, where α ≤ v ≤ β. Then xv ∈ [a, b].
Assume that xv 6= b, ε is a sufficiently small given positive number depending
on δ, and b′ = min(b, xv + εa). For b′ = xv + εa, let

G(x) =
x−1/2

f ′(x)− v , b′ ≤ x ≤ b.

We have
G′(x) = 1

2Bδ((1− 2δ)xδ−1 + xδ−1
v )(f ′(x)− v)−2.

Thus G′(x) = 0 has at most one root for x ∈ [b′, b]. Consequently, for a
suitable number b′′ ∈ [b′, b], G(x) is monotonic in [b′, b′′] and in [b′′, b]. Let
R = (|B|aδ−2)−1. For b′ ≤ x ≤ b, as

|f ′(x)− v| = |f ′(x)− f ′(xv)| � R−1(x− xv)� aR−1,

we have G(x)� Ra−3/2. Thus using Lemma 2 we get

(22)
b\
b′
x−1/2e(f(x)− vx) dx = O(Ra−3/2).
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This estimate holds trivially for b′ = b. Let c = b′ − xv. We get

(23)
b′\
xv

x−1/2e(f(x)− vx) dx = e(f(xv)− vxv)
c\
0

(xv + t)−1/2e(A(t)) dt,

where A(t) = f(t+ xv)− f(xv)− vt. We have

(24)
c\
0

(xv + t)−1/2e(A(t)) dt

= x−1/2
v

c\
0

e(A(t)) dt+
c\
0

((xv + t)−1/2 − x−1/2
v )e(A(t)) dt.

Let (we consider H(0) as the limit of H(t) as t→ 0)

H(t) = ((xv + t)−1/2 − x−1/2
v )(A′(t))−1, 0 ≤ t ≤ c.

As A′(t) = f ′(t+ xv)− f ′(xv) = δB((t+ xv)δ−1 − xδ−1
v ), we have

H ′(t) =
δB
(− 1

2 (xv + t)−3/2((t+ xv)δ−1 − xδ−1
v )

)

(A′(t))2

− δB(δ − 1)((xv + t)−1/2 − x−1/2
v )(t+ xv)δ−2

(A′(t))2 .

By means of Taylor expansions we get

H ′(t) = δBx−5/2
v

(
1
8 (δ − 1)(2δ − 1)(t/xv)2 +O(t3x−3

v )
)
(A′(t))−2.

Thus H ′(t) does not change sign for δ 6= 1/2, and so H(t) is monotonic. In
case δ = 1/2, we find that H(t) = 2B−1. Hence H(t) is always a monotonic
function for 0 ≤ t ≤ c. Also, by using the Taylor expansion we find that
H(t) = O(Ra−3/2). Thus by Lemma 2 we get

(25)
c\
0

((xv + t)−1/2 − x−1/2
v )e(A(t)) dt = O(Ra−3/2).

As x−1/2
v |f ′′(xv)|−1/2 = Cv−1/2, from (11) and (22)–(25) we get

b\
xv

x−1/2e(f(x)− vx) dx = − 1
2Civ

−1/2e(f(xv)− vxv + 1/8)

+O

(
Ra−3/2 + a−1/2 min

(
R1/2,

1
v − α

))
.

The argument is then similar to (13)–(18) of Section 3, and we get
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(26)
∑

α≤v≤β

b\
a

x−1/2e(f(x)− vx) dx

= −Ci
∑

α≤v≤β
v−1/2e(f(xv)− vxv + 1/8) + E,

E = E1 + E2 +O(a−1/2 log(2 + (b− a)R−1)) +O((b− a+R)a−3/2)

+O(a−1/2 min(R1/2,max(1/〈α〉, 1/〈β〉))),
where E1 and E2 are defined in the statement of Theorem 3. For an integer
v ∈ (α− 1/2, α) or v ∈ (β, β + 1/2), by taking derivatives it is easy to show
that the function x−1/2(f ′(x)−v)−1 is monotonic in the intervals [a, a′] and
[a′, b] respectively for a suitable a′ ∈ [a, b]. Thus similarly to (19) and (20)
we can deduce from Lemmas 2 and 3 that

∑

α−1/2<v<α

b\
a

x−1/2e(f(x)− vx) dx� a−1/2 min(R1/2, 1/〈α〉),

∑

β<v<β+1/2

b\
a

x−1/2e(f(x)− vx) dx� a−1/2 min(R1/2, 1/〈β〉).

Theorem 3 follows in view of (21) and (26). The case of δ > 1 can dealt with
similarly, and we can get (26) with −i being replaced by 1, and α = f ′(a),
β = f ′(b). The proof of Theorem 3 is finished.

Using the method of deriving Theorem 3, we can also get a similar result
for the exponential sum

∑
a≤n≤b n

µe(f(n)), where µ < 0, µ 6= −1/2, and
f(n) takes the form as stated in Theorem 3.

Appendix. The author has found on pp. 85–92 of the Selected Works
of I. M. Vinogradov (Springer, Berlin, 1985) that an argument similar to
Min’s was already developed as early as 1927. Vinogradov’s result is worse
than Min’s, and needs more conditions imposed on parameters. In both
Vinogradov’s and Min’s method, an “algebraic function” is defined by an
algebraic equation in two real variables. The modern version of this concept
is not so simple, cf. also pp. 90–101 of C. L. Siegel’s work Topics in Complex
Function Theory , Vol. 1, Wiley, 1969.
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