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Quadratic factors of f(x)− g(y)
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1. Introduction. In this note we consider the following problem:

Problem 1.1. When does a polynomial of the form f(x)− g(y) have a
quadratic factor?

Let K be a field and f(x), g(x) ∈ K[x]. It is trivial that f(x)− g(y) has
a linear factor if and only if f(x) = g(ax+ b), where a ∈ K∗ and b ∈ K.

The problem when f(x)− g(y) has a quadratic factor is considerably
more complicated. If f = φ ◦ f1 and g = φ ◦ g1, where φ(x), f1(x), g1(x) ∈
K[x] and max(deg f1,deg g1) = 2 then, trivially, f(x)− g(y) has the quad-
ratic factor f1(x)− g1(y). However, there also is a famous series of non-
trivial examples, provided by the Chebyshev polynomials: Tn(x) + Tn(y)
splits (over an algebraically closed field) into quadratic factors (and one
linear factor if n is odd; see Proposition 3.1). Recall that the Chebyshev
polynomials are defined from Tn(cosx) = cosnx, or, alternatively, from
Tn((z + z−1)/2) = (zn + z−n)/2.

In this note we completely solve Problem 1.1 for polynomials over a field
of characteristic 0. We start from the case of algebraically close base field,
which is technically simpler.

Theorem 1.2. Let f(x) and g(x) be polynomials over an algebraically
closed field K of characteristic 0. Then the following assertions are equiva-
lent :

(a) The polynomial f(x)− g(y) has a factor of degree at most 2.
(b) f = φ ◦ f1 and g = φ ◦ g1, where φ(x), f1(x), g1(x) ∈ K[x] and either

deg f1, deg g1 ≤ 2, or f1(x) = T2k(αx+ β) and g1(x) = −T2k(γx+ δ), where
k ≥ 2, α, γ ∈ K∗ and β, δ ∈ K.
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For many applications assuming the base field algebraically closed is too
restrictive. Therefore it is desirable to drop this assumption. Also, sometimes
it is important to know not only that f = φ◦f1 and g = φ◦g1 with some very
special f1 and g1, but also that the quadratic factor divides f1(x)−g1(y). All
this is achieved in the following refinement of Theorem 1.2, where Dickson
polynomials Dn(x, a) (see Section 3) replace Chebyshev polynomials.

Theorem 1.3. Let f(x) and g(x) be polynomials over a field K of char-
acteristic 0, and let q(x, y) ∈ K[x, y] be an irreducible (over K) quadratic
factor of f(x)− g(y). Then there exist polynomials φ(x), f1(x), g1(x) ∈ K[x]
such that f = φ ◦ f1, g = φ ◦ g1 and one of the following two options takes
place:

(a) We have max(deg f1, deg g1) = 2 and q(x, y) = f1(x)− g1(y).
(b) There exists an integer n > 2 with 2 cos(2π/n) ∈ K such that for

some α ∈ K∗ and a, β, γ ∈ K we have

f1(x) = Dn(x+ β, a), g1(x) = −Dn((αx+ γ) · 2 cos(π/n), a),

and q(x, y) is a quadratic factor of f1(x) − g1(y). Moreover , e2πi/n 6∈ K
when a = 0.

Notice that in the second option g1(x) ∈ K[x] by (6), and f1(x)− g1(y)
splits over K into irreducible quadratic factors (and one linear factor if n
is odd) by Corollary 3.2. If a 6= 0 then the quadratic factors are absolutely
irreducible.

Problem 1.1 is motivated by Diophantine applications. By the classical
theorem of Siegel [15, 10] the finiteness problem for the Diophantine equa-
tion f(x) = g(y) reduces to the question of whether or not the corresponding
plain curve has a component of genus 0 and with at most 2 points at infinity.
Fried [7, Corollary of Theorem 3] showed that the latter question reduces to
two independent problems, one of which is Problem 1.1, and the other is a
special version of Ritt’s second theorem [12, 14]. In the joint paper [1] with
Robert F. Tichy we obtain, using Theorem 1.3, a very explicit finiteness
criterion for the equation f(x) = g(y).

To the best of my knowledge, the first one to consider Problem 1.1 was
Tverberg. In Chapter 2 of his thesis [18] he proved the following: if deg f =
deg g and f(x) − g(y) has a quadratic factor, then either f = φ ◦ f1 and
g = φ◦g1, where deg φ > 1, or f = ` ◦ T4 ◦ f1 and g = ` ◦ (−T4) ◦ g1, where `
is a linear polynomial. Tverberg also obtained a similar result about cubic
factors.

Our method is quite different from Tverberg’s (though some similarities
do exist) and relies on the study of the monodromy group of the polyno-
mials f and g. This approach is inspired by Fried [5, 6] and Turnwald [16].
(See especially Remark 1 in [7, p. 48].)
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The general problem of factorization of f(x)− g(y) has a long history,
which cannot be presented here. We just mention that among the contrib-
utors were Cassels, Davenport, Feit, Fried, Lewis, Schinzel, Tverberg, and
many others. Fried [6, Theorem 1 on pp. 141–142] proved that if f is an in-
decomposable (1) polynomial of degree n and K contains no complex subfield
of Q(e2πi/n) (in particular, if K = Q), then f(x)− g(y) is reducible (over Q)
only in trivial cases. He also showed that the problem with indecompos-
able f and general K reduces to a certain problem in group theory, studied
by Feit [3]. For further advances see [4, 8, 9]. Quite recently, Cassou-Noguès
and Couveignes [2], essentially using the previous work of Fried and Feit,
and assuming the classification of finite simple groups, completely classified
the pairs of polynomials f, g with indecomposable f such that f(x)− g(y)
is reducible (2). The intersection of this result with ours is that, when f is
indecomposable, the difference f(x)− g(y) can have a quadratic factor only
in trivial cases. This follows also from Tverberg’s result.

It is possible (though not obvious) that Theorems 1.2 and 1.3 extend,
with suitable modifications, to characteristic p > 2. I did not consider the
positive characteristics since I could not imagine any applications of such a
result.

In Sections 2 and 3 we collect necessary material about two very classical
objects: dihedral groups and Dickson polynomials. The results of these two
sections are certainly known, but I could not find them in the standard
literature.

Some of the results of Section 3, in particular Theorem 3.8, are inspired
by Turnwald [16]. (Most of his paper was incorporated in Chapters 2 and 6
of [11].)

The proof of Theorems 1.2 and 1.3 occupies Section 4.
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Conventions. All fields in this paper are of characteristic 0 (although
some of the results are valid in arbitrary characteristic). The capital letter K
always stands for a field. We assume that all fields that occur in the paper
are contained in one big algebraically closed (unnamed) field. In particular,
any field K has a well-defined algebraic closure K, any two fields K and K ′

have well-defined intersection K ∩K ′ and composite KK ′, etc.
Throughout the paper

• Zn stands for the cyclic group of order n,
• Dn stands for the nth dihedral group, and
• Sn stands for the nth symmetric group.

We use (a, b) for the greatest common divisor of a and b. When it can
be confused with (a, b) as an ordered pair, we write gcd(a, b).

The groups are written multiplicatively, and the neutral element of a
group is denoted by 1 or id (the latter is used mainly when the group is
realized as a permutation group).

2. Dihedral groups. Recall that the dihedral group Dn is the group
generated by two symbols α, β with the relations α2 = (αβ)2 = βn = 1. The
group Dn consists of 2n elements, and has a cyclic subgroup of index 2,
generated by β. All elements outside this subgroup are of order 2.

The identity α−1βα = β−1 implies the following.

Proposition 2.1. The conjugacy class of any γ ∈ 〈β〉 is {γ, γ−1}.
Notice that Dn is generated by two elements of order 2 (which are α

and αβ). It is important that this property characterizes dihedral groups.

Proposition 2.2 ([13, p. 51]). Let G be a finite group generated by two
of its elements of order 2. Then G ∼= Dn, where n is the order of the product
of the generators.

Dihedral subgroups of the symmetric group. Recall that Sn denotes the
nth symmetric group. In this subsection n ≥ 3.

Proposition 2.3. Let G be a subgroup of Sn isomorphic to Dm for
some m, and containing an n-cycle. Then m = n.

P r o o f. The only cyclic subgroup of Sn containing a given n-cycle is the
group generated by this cycle. Hence the maximal cyclic subgroup of G is
of order n. On the other hand, since G ∼= Dm, the maximal cyclic subgroup
of G is of order max{m, 2}. Since n ≥ 3, we have m = n.
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Definition 2.4. A dihedral subgroup of Sn is a subgroup isomorphic
to Dn and containing an n-cycle.

Theorem 2.5. Any n-cycle σ ∈ Sn is contained in exactly one dihedral
subgroup. The elements of this subgroup may only have the permutation
types

(1) (m, . . . ,m), (1, 2, . . . , 2), (1, 1, 2, . . . , 2),

where m |n.

(Of course, the second of the types (1) may only occur for odd n, while
the third one only for even n.)

P r o o f. Existence. We may assume that σ = (1, . . . , n). Consider a reg-
ular n-gon with vertices numbered 1, . . . , n. It is well known that the group
of its isometries is Dn. Action of this group on the vertices defines a dihedral
subgroup containing σ. Obviously, the elements of this subgroup have only
the permutation types (1).

Uniqueness. There are exactly 1
2 (n− 1)! distinct 2-element sets of the

form {σ, σ−1}, where σ ∈ Sn is an n-cycle. It follows that the normalizer of
any of these sets consists of n!/

(
1
2 (n− 1)!

)
= 2n elements.

On the other hand, by Proposition 2.1, for any n-cycle σ, the set {σ, σ−1}
is normalized by any dihedral subgroup containing σ. Since the normalizer
of {σ, σ−1} consists of 2n elements, the uniqueness follows.

It follows that all dihedral subgroups of Sn are conjugate. We shall not
use this fact.

Let Sn be realized as the permutation group of the set {0, . . . , n− 1},
and let Dn be realized as the dihedral subgroup containing the cycle σ :=
(0, . . . , n− 1). Then for any k ∈ {0, . . . , n− 1} there exists exactly one τ =
τk ∈ Dn \ {id} such that τk(k) = k. (Indeed, there is exactly one non-trivial
isometry of the regular n-gon stabilizing a given vertex.) Obviously, τ2

k = id.

Proposition 2.6. The subgroup generated by τ0 and τk is of index
gcd(n, 2k) in Dn.

P r o o f. By Proposition 2.2, the subgroup generated by τ0 and τk is
isomorphic to Dm, where m is the order of τ0τk. Since τ0στ0 = σ−1 and
τk = σkτ0σ

−k, we have τ0τk = σ−2k. Hence m = n/(n, 2k), whence the
result.

3. Dickson polynomials. For a ∈ K, the nth Dickson polynomial
Dn(x, a) is defined from the relation

(2) Dn(z + a/z, a) = zn + (a/z)n.

Sometimes we write Dn,a(x) instead of Dn(x, a).
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The following identities (where Tn stands for the nth Chebyshev poly-
nomial) will be used in the paper without special reference:

Dn(x, 0) = xn; Dn(x, 1) = 2Tn(x/2);(3)

D1(x, a) = x; D2(x, a) = x2 − 2a;(4)

Dmn(x, a) = Dm(Dn(x, a), an);(5)

bnDn(x, a) = Dn(bx, b2a).(6)

The proofs are immediate, upon substituting x = z + a/z into both sides.
For further facts about Dickson polynomials, including equivalent defi-

nitions, differential equations, etc., see [11, Chapter 2].

Factorization. The following is a slight modification of Proposition 1.7
from [16].

Proposition 3.1. Put

(7) Φn(x, y, a) =
∏

1≤k<n
k≡1 mod 2

(x2 − xy · 2 cos(πk/n) + y2 − a · 4 sin2(πk/n)).

Then

(8) Dn(x, a) +Dn(y, a) =
{
Φn(x, y, a) if n is even,
(x+ y)Φn(x, y, a) if n is odd.

In particular ,

(9) Tn(x) + Tn(y) =
{ 1

2Φn(2x, 2y, 1) if n is even,
(x+ y)Φn(2x, 2y, 1) if n is odd.

P r o o f. Put

Ψn(x, y, a) = (x−y)
∏

1≤k≤(n−1)/2

(x2−xy·2 cos(2πk/n)+y2−a·4 sin2(2πk/n)).

By [16, Proposition 1.7],

(10) Dn(x, a)−Dn(y, a) =
{
Ψn(x, y, a) if n is even,
(x+ y)Ψn(x, y, a) if n is odd.

In particular,

(11) Dn(x, a)2 −Dn(y, a)2 = D2n(x, a)−D2n(y, a) = Ψ2n(x, y, a).

Now (8) follows from (10) and (11) after obvious transformations.

Corollary 3.2. If a ∈ K∗ and 2 cos(2π/n) ∈ K then the polynomial
Dn(x, a) + Dn(y · 2 cos(π/n), a) splits over K into absolutely irreducible
quadratic factors (and a linear factor if n is odd). If 2 cos(2π/n) ∈ K but
e2πi/n 6∈ K then Dn(x, 0)+Dn(y ·2 cos(π/n), 0) splits over K into irreducible
quadratic factors (and a linear factor if n is odd).
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Extrema. Given a polynomial f(x) having s distinct roots in K, its root
type is the array (µ1, . . . , µs) formed of the multiplicities of its roots. Obvi-
ously, µ1 + . . .+ µs = deg f .

Given γ ∈ K, put

δ(γ) = δf (γ) =
s∑

i=1

(µi − 1) = deg f − s,

where (µ1, . . . , µs) is the root type of f(x)− γ. We have

(12)
∑

γ∈K
δf (γ) =

∑

γ∈K
deg gcd(f(x)− γ, f ′(x)) = deg f ′(x) = deg f − 1.

We say that γ ∈ K is an extremum of f(x) if f(x)− γ has a multiple root
(equivalently, if δf (γ) > 0). The type of an extremum γ is the root type of
f(x)− γ.

Proposition 3.3. (a) The polynomial Dn(x, 0) has exactly one extre-
mum γ = 0, of type (n).

(b) If a 6= 0 and n ≥ 3 then Dn(x, a) has exactly two extrema ±2an/2.
If n is odd then both are of type (1, 2, . . . , 2). If n is even then 2an/2 is of
type (1, 1, 2, . . . , 2), and −2an/2 is of type (2, . . . , 2).

P r o o f. (a) is obvious. To prove (b), observe that (3)

Dn(2
√
a, a) = Dn(

√
a+ a/

√
a, a) = 2an/2,

and Dn(−2
√
a, a)=(−1)n2an/2. Substituting y=±2

√
a into (10), we obtain

Dn(x, a)± 2an/2 = (x± 2
√
a)∆n(x,±√a)2 (n odd),(13)

Dn(x, a)− 2an/2 = (x2 − 4a)∆n(x,
√
a)2 (n even),(14)

where ∆n(x, α) =
∏

1≤k≤(n−1)/2(x − α · 2 cos(2πk/n)). Also, if n is even
then

(15) Dn(x, a) + 2an/2 = D2(Dn/2(x, a), an/2) + 2an/2 = Dn/2(x, a)2.

Now (b) follows from (13)–(15), which show that ±2an/2 are the extrema
of the required type, and from (12), which implies that no other extrema
exist.

It is of fundamental importance that, basically, the Dickson polynomials
are characterized by the property established in Proposition 3.3. We shall
use this classical fact in the following form.

Theorem 3.4. Let f(x) ∈ K[x] be a polynomial of degree n having ex-
trema only of one of the following types:

(16) (n), (2, . . . , 2), (1, 2, . . . , 2), (1, 1, 2, . . . , 2).

(3) We fix a value of the
√
a and define an/2 = (

√
a)n.
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Then either deg f = 4 or

(17) f(x) = αDn(x+ β, a) + γ, where α ∈ K∗ and a, β, γ ∈ K.

(We do not assume that the extrema belong to K.)

P r o o f. If f(x) has at least 3 extrema, then (12) implies that deg f = 4.
If f(x) has a single extremum γ, then, again by (12), it is of type (n). It

is immediate now that (17) with a = 0 holds.
From now on, assume that f(x) has exactly two extrema. Using induction

on n, we shall prove that in this case (17) holds with a 6= 0.
If n is odd then both the extrema are of type (1, 2, . . . , 2). In this case

the assertion is a particular case of [16, Lemma 1.11] (reproduced in [11] as
Lemma 6.16).

Now assume that n is even, and write n = 2m. Since f(x) has two ex-
trema, we have n ≥ 4. By (12), one of the extrema is of type (2, . . . , 2) and
the other is of type (1, 1, 2, . . . , 2). Since the extrema have distinct types,
they both belong to K. Without loss of generality, we may assume that the
polynomial f(x) is monic and that the extremum of type (2, . . . , 2) is 0.
This means that f(x) = g(x)2, where g(x) ∈ K[x] is a monic polynomial of
degree m.

If m = 2 then g(x) = D2(x+ β, a), where a, β ∈ K. Moreover, a 6= 0, be-
cause g(x) has simple roots.

Now assume that m = deg g > 2. Let κ 6= 0 be the other extremum
of f(x). Then (g(x)−√κ)(g(x)+

√
κ) has 2 simple roots, all the other roots

being of order 2. It follows that ±√κ are extrema of g(x), of one of the last
three types from (16). Identity (12) applied to the polynomial g(x) yields
that it has no other extrema. By induction, g(x) = αDm(x+β, a)+γ, where
a, α ∈ K∗ and β, γ ∈ K. Since g(x) is monic, α = 1. Since its extrema ±√κ
are symmetric with respect to 0, we have γ = 0.

Thus, in either case, m = 2 or m > 2, we have g(x) = Dm(x+ β, a),
where a ∈ K∗ and β ∈ K. It follows that f(x) = g(x)2 = Dn(x+β, a)+2am,
as wanted.

Monodromy. Given a polynomial f(x) ∈ K[x], consider f(x)− t as a
polynomial in x over K(t), and denote by ff its splitting field over K(t).
The Galois group Gal(ff/K(t)) is called the monodromy group of f over K,
and denoted by MonK f . The absolute monodromy group MonK f is denoted
by Mon f . We have the standard exact sequence

(18) 1→ Mon f → MonK f → Gal(K̂/K)→ 1,

where K̂ is the constant subfield of ff .
It will be convenient to number the roots of Dn(x, a)− t as follows.

Let x(0) be one of the roots, and let z be one of the roots of Z + a/Z = x(0).
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Then the n roots of Dn(x, a)− t are

(19) x(k) = ξkz + ξ−ka/z (k = 0, . . . , n− 1),

where ξ = e2πi/n. Notice that

z = (ξkx(k) − ξjx(j))/(ξ2k − ξ2j) (2k 6≡ 2j mod n),

which implies

(20) KfDn,a = K(z) (n ≥ 3).

Notice also that [K(z) : K(x(0))] = 2 when a 6= 0, because (x(0))2 − 4a (the
Z-discriminant of Z2 − x(0)Z + a) is not a square in K(x(0)). This implies
that

(21) [KfDn,a : K(t)] = [K(z) : K(t)] = 2n (a 6= 0, n ≥ 3).

The minimal polynomial of z over K(t) is Z2n − tZn + an, and the 2n con-
jugates of z are

ξkz, ξka/z (k = 0, . . . , n− 1).

Now it is easy to show that

(22) MonDn,a
∼=
{
Zn if a = 0,
Dn if a 6= 0 and n ≥ 3.

(Recall that Zn stands for the cyclic group of order n, and Dn is the nth
dihedral group.) Indeed, the case a = 0 is obvious. Now assume that a 6= 0.
By definition,

G := MonDn,a = Gal(KfDn,a/K(t)) = Gal(K(z)/K(t)).

Let α and β be the automorphisms of K(z) defined by α(z) = a/z and
β(z) = ξz. Since βk(z) = ξkz and αβk(z) = ξka/z, the group G is generated
by α and β. Since α2 = (αβ)2 = βn = 1, the group G is a quotient of Dn.
Since |G| = 2n, we conclude that G ∼= Dn.

Proposition 3.5. The constant subfield of fDn,0 is K(ξ). If a ∈ K∗
then the constant subfield of fDn,a is K(2 cos(2π/n)).

P r o o f. The first assertion is obvious. Now assume that a 6= 0. We have

(23) 2 cos(2π/n) = (x(k) + x(k+2))/x(k+1) ∈ fDn,a (k = 0, . . . , n− 3).

It remains to prove that [fDn,a : K(t, 2 cos(2π/n))] = [KfDn,a : K(t)] = 2n.
Since, obviously, [fDn,a : K(t, 2 cos(2π/n))] ≥ [KfDn,a : K(t)], it suffices to
show that

(24) [fDn,a : K(t, 2 cos(2π/n))] ≤ 2n.

Rewriting (23) as

x(k+2) = x(k+1) · 2 cos(2π/n)− x(k) (k = 0, . . . , n− 3),
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we conclude that fDn,a ⊆ K(x(0), x(1), 2 cos(2π/n)). Since

x(1) + x(n−1) = x(0) · 2 cos(2π/n) ∈ K(x(0), 2 cos(2π/n)),

and

x(1)x(n−1) = (x(0))2 − 2a(1− 2 cos(4π/n)) ∈ K(x(0), 2 cos(2π/n)),

we have [K(x(0), x(1), 2 cos(2π/n)) : K(x(0), 2 cos(2π/n))] ≤ 2. This implies
(24), and the proposition follows.

As usual, the group MonK f acts faithfully on the set of roots of f(x)− t.
This action defines (up to conjugation in Sn) an embedding MonK f ↪→ Sn,
where n = deg f . In the sequel, we shall view MonK f as a subgroup of Sn,
and Mon f as a subgroup of MonK f .

In particular, we embed MonK Dn,a into Sn through the correspondence
k 7→ x(k).

Proposition 3.6. Let a ∈ K and n ≥ 3. Then the following assertions
are equivalent.

(a) MonK Dn,a
∼= Dn.

(b) MonK Dn,a is the dihedral subgroup of Sn (see Definition 2.4), con-
taining the cycle (0, . . . , n− 1).

(c) 2 cos(2π/n) ∈ K and if a = 0 then ξ 6∈ K.

P r o o f. To begin with, observe that the absolute monodromy group
MonDn,a contains the cycle (0, . . . , n− 1), which is given (through k 7→ x(k))
by the automorphism z 7→ ξz of K(z). Hence MonK Dn,a also contains this
cycle, which proves the equivalence (a)⇔ (b).

When a 6= 0, (a) is equivalent to (c) by (18), (22) and Proposition 3.5.
We are left with a = 0. Assume first (c), which means in this case

that 2 cos(2π/n) ∈ K but ξ 6∈ K. Let α and β be the automorphisms of
fDn,0 = K(ξ, z) defined by α(ξ) = ξ−1, α(z) = z and β(ξ) = ξ, β(z) = ξz.
Then α2 = βn = (αβ)2 = id, which shows that MonK Dn,0 is a quotient
of Dn. Since [K(ξ, z) : K(t)] = 2n, we have MonK Dn,0

∼= Dn.
Conversely, assume that MonK Dn,0

∼= Dn. Then ξ 6∈ K (for otherwise
Mon f = MonK f). Let γ ∈ Mon f be defined by γ(z) = ξz. By Proposi-
tion 2.1, the conjugacy class of γ in MonK f is {γ, γ−1}. It follows that
the set {ξ, ξ−1} is stable under MonK f . Hence 2 cos(2π/n) = ξ + ξ−1 ∈ K.

Thus, (a) is equivalent to (c) also when a = 0. The proposition is
proved.

Proposition 3.7. Let f(x) be a polynomial of degree n. Then the group
Mon f contains an n-cycle. Also, for any extremum γ ∈ K of f of type
(e1, . . . , es), the group Mon f contains a permutation of type (e1, . . . , es).

P r o o f. See [16, Lemmas 3.3 and 3.4] or [11, Theorems 6.12 and 6.13].
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Theorem 3.8. Let f(x) ∈ K[x] be a polynomial of degree n ≥ 3. Assume
that MonK f ∼=Dm for some m. Then m= n and f(x) = αDn(x+ β, a) + γ,
where α ∈ K∗ and a, β, γ ∈ K.

P r o o f. To begin with, notice that MonK f contains an n-cycle by Propo-
sition 3.7. Hence m = n by Proposition 2.3, and MonK f is a dihedral sub-
group of Sn (see Definition 2.4).

Assume first that n = 4. Since every 2-element subgroup of D4 is con-
tained in a 4-element subgroup, there exists an intermediate field between
K(t) and K(x0), where x0 is a root of f(x)− t. It follows that f(x) is a
composition of two quadratic polynomials, which can be written as f(x) =
α((x − β)2 − 2a)2 + γ′. Plainly, α ∈ K∗ and a, β, γ′ ∈ K. Further, f(x) =
αD4(x+ β, a) + γ with γ = γ′ + αa2 ∈ K.

Now assume that n 6= 4. By Proposition 3.7 and Theorem 2.5, the poly-
nomial f(x) may have extrema only of the types (1). Identity (12) implies
that in the first of the types only m = n or m = 2 (for even n) are possible.
In other words, f(x) may have extrema only of the types (16). By Theo-
rem 3.4, we have f(x) = αDn(x + β, a) + γ with α ∈ K∗ and a, β, γ ∈ K.
The theorem is proved.

Remark 3.9. Turnwald [16, Theorem 3.11] proved that a polynomial
with a solvable monodromy group is a composition of linear polynomials,
Dickson polynomials and polynomials of degree 4. Recently [17] he extended
this result (with appropriate modifications) to arbitrary characteristic.

The sum of two roots. Fix a ∈ K and an integer n ≥ 3. In this subsection
we assume that

(25) 2 cos(2π/n) ∈ K and if a = 0 then ξ = e2πi/n 6∈ K.
It is easy to see that

(26) [(K(x(0)) ∩K(x(k))) : K(t)] = (n, 2k)

(we use the notation (19)). Indeed, Proposition 3.6 implies that MonK Dn,a

is the dihedral subgroup of Sn containing the cycle (x(0), . . . , x(n−1)). By
Proposition 2.6, the subgroup of MonK Dn,a stabilizing the field K(x(0)) ∩
K(x(k)) is of index (n, 2k). This proves (26).

Proposition 3.10. Let x0 and x1 be two roots of Dn(x, a)− t satisfying
x0 + x1 6= 0. Then x0 + x1 is a root of Dn(x/(2 cos(πk/n)), a)− (−1)kt,
where k ∈ {0, . . . , n− 1} is distinct from n/2. If n ≡ 0 mod 4 and [(K(x0)∩
K(x1)) : K(t)] = 2 then k is odd.

P r o o f. Without loss of generality, x0 = x(0) and x1 = x(k), where k 6=
n/2 because x0 + x1 6= 0. Then x0 + x1 = x′ · 2 cos(π/k), where

x′ = eπik/nz + e−πik/na/z.
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Hence Dn(x′, a) = (−1)k(zn + (a/z)n) = (−1)kt, which proves the first as-
sertion.

If n ≡ 0 mod 4 and [(K(x0)∩K(x1)) : K(t)] = 2 then k is odd by (26).

4. Proof of Theorems 1.2 and 1.3

Proof of Theorem 1.3. Since the proof is rather long, we divide it into
short logically complete steps.

Step 0 (preliminaries). We may assume that

min(deg f, deg g) > 1,(27)

max(deg f, deg g) ≥ 3(28)

for otherwise there is nothing to prove.
Let x0 ∈ K(t) be a root of f(x)− t. Then there is a root y0 of g(x)− t

such that q(x0, y0) = 0. Since q(x, y) is irreducible, for any Φ(x, y) ∈ K[x, y]
we have

(29) Φ(x0, y0) = 0⇒ q(x, y) |Φ(x, y).

Step 1. Assume first that K(x0) ∩K(y0) is a proper extension of K(t),
and write it as K(z), where z is integral over K[t]. Then z = f0(x0) =
g0(y0) and t = φ0(z), where f0, g0 and φ0 are polynomials over K with
deg f0 < deg f and deg g0 < deg g. We have f = φ0 ◦ f0 and g = φ0◦g0. Since
f0(x0)− g0(y0) = 0, the polynomial q(x, y) divides f0(x)− g0(y) by (29).
Using induction on deg f , we conclude that f0 = φ1 ◦ f1 and g0 = φ1 ◦ g1,
where f1 and g1 are as required. Putting φ = φ0 ◦ φ1, we complete the proof
in this case.

Step 2. From now on,

(30) K(x0) ∩K(y0) = K(t).

Let Ω be a Galois extension of K(t) containing x0 and y0, and G the sub-
group of Gal(Ω/K(t)) stabilizing x0. Since y0 is at most quadratic over
K(x0), the field K(x0, y0) is G-invariant. Similarly, if H is the subgroup
stabilizing y0 then K(x0, y0) is H-invariant.

By (30), the subgroups G and H together generate the whole group
Gal(Ω/K(t)). Hence K(x0, y0) is invariant with respect to Gal(Ω/K(t)),
which implies that K(x0, y0) is a Galois extension of K(t). Thus,

K(x0) ⊆ ff ⊆ K(x0, y0).

(Recall that ff denotes the splitting field of f(x)− t over K(t).)

Step 3. Another consequence of (30) is

(31) [K(x0, y0) : K(x0)] = [K(x0, y0) : K(y0)] = 2.
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Indeed, the inequality

[K(x0, y0) : K(x0)] ≤ 2

is obvious. Now if y0 ∈ K(x0) then (30) implies y0 ∈ K(t), which contra-
dicts (27). Hence [K(x0, y0) : K(x0)] = 2, and similarly [K(x0, y0) : K(y0)]
= 2, proving (31). It follows from (31) that

(32) deg f = deg g.

Step 4. Write q(x, y) = qxxx
2 + qxyxy + qyyy

2 + linear terms. Then
qxxqyy 6= 0 by (31). It is important that also qxy 6= 0.

Indeed, if qxy = 0, then q(x, y) = f0(x)− g0(y), where f0 and g0 are poly-
nomials over K of degree at most 2. Since

z := f0(x0) = g0(y0) ∈ K(x0) ∩K(y0) = K(t),

we have

deg f = deg g = [K(x0) : K(t)] ≤ [K(x0) : K(z)] = deg f0 ≤ 2,

contradicting (28). Hence qxy 6= 0.

Step 5. Let x1 be the conjugate to x0 over K(y0). Then x1 is a root
of f(x)− t, and qxy 6= 0 implies that x0 +x1 = α1y0 + γ1 with α1 ∈ K∗ and
γ1 ∈ K. In particular, y0 ∈ ff , which implies that ff = K(x0, y0).

Let σ (respectively, τ) be the non-trivial automorphism of ff over K(x0)
(respectively, K(y0)). By (30), the automorphisms σ and τ generate the
group MonK f . By Propositions 2.2 and 2.3, we have MonK f ∼= Dn, where
n = deg f = deg g. Theorem 3.8 implies that f(x) = κDn(x+β, a)+λ where
κ ∈ K∗ and a, β, λ ∈ K. By Proposition 3.6,

(33) 2 cos(2π/n) ∈ K and if a = 0 then e2πi/n 6∈ K.
Step 6. Thus, x0 + β and x1 + β are two roots of Dn(x, a)− t′, where

t′ = (t− λ)/κ. Proposition 3.10 implies that x0 + x1 + 2β = α1y0 + γ1 + 2β
is a root of Dn(x/(2 cos(πk/n)), a)− (−1)kt′, where k ∈ {0, . . . , n− 1} and
k 6= n/2.

It follows that the polynomials g(x)− t and

Dn

(
α1x+ γ1 + 2β

2 cos(πk/n)
, a

)
− (−1)kt′

have a common root y0. Since both the polynomials are irreducible over
K(t), we have

g(x)− t = c

(
Dn

(
α1x+ γ1 + 2β

2 cos(πk/n)
, a

)
− (−1)k(t− λ)/κ

)

with c ∈ K∗. Comparing the coefficients of t, we find c = (−1)kκ. Thus,

(34) g(x) = (−1)kκDn

(
α1x+ γ1 + 2β

2 cos(πk/n)
, a

)
+ λ.
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Step 7. If

(35) at least one of the numbers k and n is odd,

then cos(πk/n) cos(π/n) ∈ K, and we can rewrite (34) as

g(x) = κ(−Dn((αx+ γ) · 2 cos(π/n), a)) + λ

where

α =
(−1)k+1α1

4 cos(πk/n) cos(π/n)
∈ K∗, γ =

(−1)k+1(γ1 + 2β)
4 cos(πk/n) cos(π/n)

∈ K.

Putting ϕ(x) = κx+ λ, we complete the proof in the case (35).

Step 8. Now assume that

(36) both k and n are even.

The group G ≤ MonK f stabilizing K(x0) ∩K(x1) is generated by σ and
σ′ = τστ . The order of σσ′ = (στ)2 is m = n/2. Proposition 2.2 implies
that G ∼= Dm, whence [(K(x0)∩K(x1)) : K(t)] = 2. Therefore n ≡ 2 mod 4
by the second assertion of Proposition 3.10.

Thus, m is odd. It follows from (33) that 2 cos(π/m) ∈ K and if a = 0
then e2πi/m 6∈ K. Also, since k is even, 2 cos(πk/n) ∈ K. Hence we can
rewrite (34) as g(x) = κDn((αx+ γ) · 2 cos(π/m), a) + λ, where

α = ε
α1

4 cos(πk/n) cos(π/m)
∈ K∗, γ = ε

γ1 + 2β
4 cos(πk/n) cos(π/m)

∈ K,

and ε ∈ {1,−1} is to be defined later. Thus,

f(x)− g(y) = κ(f1(x)− g1(y))(f1(x) + g1(y)),

where

f1(x) = Dm(x+ β, a), g1(x) = −Dm((αx+ γ) · 2 cos(π/m), a).

Now we can define ε so that q(x, y) divides f1(x)− g1(x). Putting ϕ(x) =
κD2(x, am) + λ, we complete the proof also in the case (36).

Proof of Theorem 1.2. If f(x)− g(y) has a linear factor then there is
nothing to prove. Hence we may assume that it has no linear factors, but
has an absolutely irreducible quadratic factor. Theorem 1.3 implies that
f = ϕ0 ◦ f0 and g = ϕ0 ◦ g0, where either max(deg f0, deg g0) = 2 or

(37) f0(x) = Dn(α1x+ β1, a), g0(x) = −Dn(γ1x+ δ1, a).

In the former case the proof is complete. Now assume (37). Since f(x)− g(x)
has no linear factors, a 6= 0. Hence f0 = 2b−nTn(αx + β) and g0 =
−2b−nTn(γx+ δ), where b =

√
a and α = α1/(2b), β = β1/(2b), etc.

Write n = m · 2k, where m is odd. Putting ϕ(x) = ϕ0(2b−nTm(x)), we
complete the proof.
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[15] C. L. S iege l, Über einige Anwendungen Diophantischer Approximationen, Abh.

Preuss. Akad. Wiss. Phys.-Math. Kl. 1929, Nr. 1.
[16] G. Turnwald, On Schur’s conjecture, J. Austral. Math. Soc. 58 (1995), 312–357.
[17] —, Some notes on monodromy groups of polynomials, in: Number Theory in Pro-

gress (Zakopane, 1997), de Gruyter, 1999, 539–552.
[18] H. A. Tverberg, A study in irreducibility of polynomials, Ph.D. thesis, Department

of Mathematics, University of Bergen, 1968.

Mathematisches Institut
Universität Basel
Rheinsprung 21
4051 Basel, Switzerland
E-mail: yuri@math.unibas.ch

Institut für Mathematik (A)
Technische Universität Graz

Steyrergasse 30,
8010 Graz, Austria

Received on 28.8.1998
and in revised form on 12.3.1999 (3454)


