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The Lifted Root Number Conjecture
for some cyclic extensions of Q
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Jürgen Ritter (Augsburg) and Alfred Weiss (Edmonton, Alta.)

1. Introduction. This paper gives first evidence for the Lifted Root
Number Conjecture [GRW1] which refines Chinburg’s Root Number Con-
jecture [Ct]. The general setting has also been described in [GRW2]. Here,
we observe that the root number conjecture in its lifted form makes predic-
tions about the relations between the global units and the ideal class group
which go beyond what Euler systems or the Main Conjecture of Iwasawa
theory are known to imply (1).

This is discussed in the simplest case, namely when K/Q is a cyclic
extension of odd prime degree l and squarefree conductor n = p1 . . . pr with
all primes pj 6= l. Note that K ⊂ Q(ζn) where, for a natural number m, ζm
always denotes a primitive mth root of unity.

Let G = 〈g0〉 be the Galois group of K/Q and clK the group of ideal
classes in K. Then there is a ZlG-module isomorphism

(1.1) Zl ⊗Z clK '
r−1⊕
i=1
ZlG/〈1 + g0 + . . .+ gl−1

0 , (g0 − 1)hi〉

with unique natural numbers hi (see the proof of Lemma 2.1). We fix classes
Ci in clK , 1 ≤ i ≤ r − 1, of order a power of l, so that the image of Ci in
Zl⊗clK generates the ith component under this isomorphism. Let pj be the
prime of K above pj and write

(1.2) [pj ] =
r−1∏

i=1

C
bij(g0−1)hi−1

i , 1 ≤ j ≤ r,

in Zl ⊗ clK . Define Bk to be (−1)k+1 times the determinant of the matrix
(bij) with the kth column deleted (1 ≤ k ≤ r) (2) . These elements Bk serve
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(1) At the same time, it fits into a more general setting (see [Bu]).
(2) If r = 1, we must set B1 = 1.
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as a bridge between clK and the cyclotomic unit group EK in the unit group
EK of K. Indeed, set

ξK =
∏

1 6=d|n
NQ(ζn)/K(1− ζn/dn ).

Then

(1.3) ξg0−1
K = α(g0−1)h+1

∞
with a unique α∞ ∈ K (up to rational factors) such that the normNK/Q(α∞)
of α∞ is not an lth power. It is readily seen that Bj and the pj-value vpj (α∞)
of α∞ are proportional modulo l, independent of j. The Lifted Root Num-
ber Conjecture now predicts this ratio to equal a certain number c defined
in Lemma 2.3 (and is, in this case, equivalent to that equality). In Sec-
tion 2 we also review the classical material that has been referred to here.
To get a clear picture of what is going on, note that the above h is such that
|Zl ⊗ clK | = lh and that ξg0−1

K generates Zl ⊗ EK in Zl ⊗ EK = 〈αg0−1
∞ 〉.

The actual connection to the Lifted Root Number Conjecture is ex-
plained in Section 3. However, it would go beyond the scope of this paper to
go into detail here, so the reader is referred to [GRW1] (3). In this section
we characterize certain maps ∆S′

ϕ→ ES′ which when injective have coho-
mologically trivial cokernel. Here, K/Q may be replaced by an arbitrary
cyclic extension K/k of number fields, and S′ is a finite, sufficiently large
Gal(K/k)-set of primes of K, ∆S′ the augmentation submodule in the free
G-module ZS′ on the Z-basis p ∈ S′, and finally ES′ the group of S′-units
in K. We close Section 3 by restating the Lifted Root Number Conjecture
in terms of the cokernel of an injective ϕ.

The next section recalls the notion of a Ramachandra map ϕ∞ : ∆S∞ →
EK , where S∞ is the set of all infinite primes of K. The Ramachandra ϕ∞
has been used in [RW] to prove the so-called Strong Stark Conjecture for
absolutely abelian K (in which 2 is unramified). Here we now extend it to
a ϕ as in Section 3 and show that, for our purposes, it suffices to work with
a G-set S of primes which is large in the restricted sense that the order of
the S-class group of K is prime to |G|.

Section 5 then gives the construction of an isomorphism ϕ : Zl ⊗∆S →
Zl ⊗ ES in our example. This ϕ extends ϕ∞, with S the set generated
by {∞, p1, . . . , pr, q1, . . . , qr−1, q0}, where ∞ is a fixed infinite prime, qi ∈
Ci (1 ≤ i ≤ r−1) and q0 a suitably chosen prime which is inert over Q. The
Lifted Root Number Conjecture amounts to certain l-adic congruences be-
tween the Tate–Stark numbers Aϕ(χ), where χ runs through the characters
of G.

(3) In fact, only the second part of the proof of Proposition 3.2 requires more than is
in [GRW2].
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We need to insert a short section, §6, on Euler systems before we can
complete the calculation in a restricted situation.

Theorem. The Lifted Root Number Conjecture holds true for K/Q when
r ≤ 2.

Section 6 recalls some basic facts regarding the Euler system

Q 7→ ξQ = NQ(ζn,ζQ)/K(ζQ)(1− ζnζQ)

withQ running through the squarefree products of rational primes q splitting
in K. We employ it, in Section 7, to get a prime q1 ∈ C1 for which the
corresponding Kolyvagin number κq1 provides congruences modulo pj (j =
1, 2) that lead to the proof of the theorem.

In the case r = 2 we can arrange that κq1 has norm 1 and so a (g0−1)th
root of it is an αq1 in the sense of Section 5. By means of local symbols we
relate the pj-value of αq1 and the congruence class mod pj of κq1 . For r ≥ 3
it seems necessary to take repeated (g0−1)th roots and so such congruences
on κ-values would not be decisive.

2. Conjecture (C). We maintain the notation of the introduction and
set

• Ĝ = ĝ0 =
∑l−1
ν=0 g

ν
0 ,

• PK = group of principal ideals of K,
• IK = group of all ideals of K,

and correspondingly with K replaced by Q.

Lemma 2.1 (4). (a) Zl ⊗ EK ' ZlG/Ĝ.
(b) The pj , 1 ≤ j ≤ r, constitute an Fl-basis of IGK/IQ.
(c) PGK/PQ has order l.
(d) (1.1) holds.

For the proof observe that ZlG/Ĝ ' Zl[ζl] is a discrete valuation ring
with prime element the image of g0 − 1. As l 6= 2, K is totally real and Ĝ
annihilates Zl ⊗EK . Thus (a) is a consequence of Dirichlet’s unit theorem.
Therefore H1(G,EK) = Fl and H2(G,EK) = 0. Thus, from EK ½ K× ³
PK , we see that H1(G,PK) = 0 and PGK/PQ has order l, proving (c); (b)
is obvious. For (d) use PK ½ IK ³ clK in order to arrive at PGK/PQ ½
IGK/IQ ³ clGK , whence clGK ' F r−1

l by (b) and (c). Since Ĝ annihilates clK
there exist unique numbers s and h1 ≥ . . . ≥ hs ≥ 1 such that Zl ⊗ clK '⊕s

i=1 ZlG/〈Ĝ, (g0 − 1)hi〉. Taking fixed points shows s = r − 1.

(4) The lemma collects well-known facts (see e.g. [Cc] or [La, XIII,4]), which also
follow from the theory of genus fields [Fr].
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Lemma 2.2 (5). There exists h ≥ 0 so that ξg0−1
K = α

(g0−1)h+1

∞ with
α∞ ∈ K× satisfying :

(i) αĜ∞ 6∈ Q×
l

.
(ii) supp(α∞) ⊂ {p1, . . . , pr} and (α∞) generates PGK/PQ.

(iii) α∞ is unique up to rational factors.

Above, supp(α∞) is the set of prime divisors of the principal ideal (α∞)
generated by α∞.

The proof of the lemma is based on the fact that ξg0−1
K 6= 1, which is

due to Ramachandra [Wa, Theorem 8.3]. Since ξg0−1
K ∈ EK , there is, by

Lemma 2.1(a), a maximal h ≥ 0 with ξg0−1
K = v(g0−1)h and v ∈ EK . As

ξg0−1
K has norm 1 and l is odd, we may assume that v has norm 1. Hence

there exists α∞ ∈ K× with αg0−1
∞ = v. In particular (α∞) ∈ PGK . Suppose

that (α∞) is in the image of PQ in PGK , i.e., α∞ = a · v1 with a ∈ Q× and
a unit v1. Then v = vg0−1

1 contradicts the maximality of h. Consequently,
(α∞) generates PGK/PQ and is a product of the pj times a rational number.
Modifying α∞ by the inverse of this rational number proves (i) and (ii).

If h = 0, then (iii) is obvious. If h > 0, then α
(g0−1)h+1

1 = α
(g0−1)h+1

∞
leads to α(g0−1)h

1 = α
(g0−1)h
∞ · a for some a ∈ Q×, and taking norms yields

al = 1, hence a = 1. This argument can be repeated.

As in the introduction (see (1.2)), we write [pj ] =
∏r−1
i=1 C

bij(g0−1)hi−1

i

in Zl ⊗ clK with integers bij . The proof of Lemma 2.1 shows that the ma-
trix (bij) 1≤i≤r−1

1≤j≤r
has rank r − 1 over Fl, whence the row vector Bk =

(−1)k+1 det(bij) is non-zero modulo l (6). It satisfies (bij) · (B1, . . . , Br)T =
(0, . . . , 0). Since, by (1.2), (bij) is the matrix of the Fl-linear map IGK/IQ ³
clGK , the ideal pB1

1 . . . pBrr is principal. By Lemma 2.2(ii) we see that there is
a c̃ ∈ Z, c̃ 6≡ 0 mod l such that

−vpj (α∞) ≡ c̃ ·Bj mod l

for 1 ≤ j ≤ r, where vp(x), for a prime ideal p of K and an x ∈ K, denotes
the p-value of x.

Lemma 2.3. Let qi ∈ Ci, 1 ≤ i ≤ r−1, be primes of prime absolute norm
qi which are different from p1, . . . , pr. Furthermore, let q0 be a rational prime
with Artin symbol (q0,K/Q) = g0. Form the matrix (cij) by means of the
local norm residue symbols

(5) Compare (1.3) in Section 1.
(6) Recall that B1 = 1 if r = 1.
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(qi,Kpj/Qpj ) = g
cij
0 , 0 ≤ i ≤ r − 1, 1 ≤ j ≤ r (7).

Define c = det cij. Then c 6≡ 0 mod l.

Note that due to Chebotarev’s density theorem such prime ideals qi exist.
Note also that the cij , and equally well the bij and the Bj , depend on the
choice of the Ci.

Before turning to the proof of Lemma 2.3 we specify the conjecture that
has been indicated in the introduction:

(C) c̃ ≡ c mod l.

P r o o f (of Lemma 2.3). Define K̃ to be the Hilbert l-class field of K
and let K̂/Q be the maximal abelian subextension of K̃/Q (8). The Artin
symbol ( , K̃/K) : Zl⊗clK → Gal(K̃/K) is an isomorphism and so provides
the exact sequence Zl ⊗ clK ½ Gal(K̃/Q) ³ G. Since G is cyclic, it follows
that also Zl ⊗ clK/clg0−1

K ½ Gal(K̂/Q) ³ G is exact, whence ( , K̃/K) :
Zl ⊗ clK/clg0−1

K
∼→Gal(K̂/K).

Set σi = (qi, K̂/Q), 0 ≤ i ≤ r − 1. The choice of the qi guarantees
that σi = (qi, K̂/K), 1 ≤ i ≤ r − 1, is an Fl-basis of Gal(K̂/K). Observe
here that l annihilates Zl ⊗ clK/clg0−1

K because the ideals 〈g0 − 1, Ĝ〉 and
〈g0 − 1, l〉 coincide. In particular, Gal(K̂/Q) has order lr. Since K̂ contains
the composite of the subextensions of degree l of all Q(ζpj ), 1 ≤ j ≤ r, it
therefore coincides with it and Gal(K̂/Q) is l-elementary. As a consequence,
σ0, σ1, . . . , σr−1 is an Fl-basis of Gal(K̂/Q) because σ0 restricts to g0 on K,
and the map

r∏

j=1

Upj/U
l
pj → Gal(K̂/Q), (uj) 7→

r∏

j=1

(uj , K̂p̂j/Qpj )

is an isomorphism. Here, Upj is the unit group in Qpj and p̂j a prime of K̂
above pj . Note that the 1-units in Qpj are all lth powers, so [Upj : U lpj ] = l.

The isomorphism takes qi, viewed in
∏r
j=1 Upj/U

l
pj on the diagonal, to

r∏

j=1

(qi, K̂p̂j/Qpj ) = (qi, K̂q̂i/Qqi)
−1 = σ−1

i , 0 ≤ i ≤ r − 1,

by reciprocity. This shows that q0, . . . , qr−1 is an Fl-basis of
∏r
j=1 Upj/U

l
pj .

(7) For a number field L and a prime p of L, Lp denotes the completion of L at p.
(8) K̂ is the genus field of K/Q.
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Since
∏r
j=1( ,Kpj/Qpj ) :

∏r
j=1 Upj/U

l
pj → Gr is an isomorphism, the

standard basis of Gr is the image of certain
∏r−1
s=0 q

xis
s , i.e.,

( r−1∏
s=0

qxiss ,Kpj/Qpj
)

=
{
g0 if i = j,
1 if i 6= j.

This implies
r−1∏
s=0

(qs,Kpj/Qpj )xis = g
∑r−1
s=0 xiscsj

0 = g
δij
0

and finishes the proof (9).

3. The Lifted Root Number Conjecture for K. In this section
K/k is a cyclic extension of number fields with group G = 〈g0〉 where g0

is the Frobenius automorphism of some fixed prime q0 of K which is inert
over k. We let S′ denote a finite G-set of primes of K containing q0, all
infinite primes, all ramified primes for the extension K/k, and enough primes
to generate the class group clK . Our aim is to characterize certain maps
∆S′

ϕ→ES′ , which whenever injective have cohomologically trivial cokernel,
and to restate the Lifted Root Number Conjecture in terms of them.

Lemma 3.1. Let p be a prime of K, gp a generator of its decomposition
group Gp (with respect to k) and ap ∈ k×p so that (ap,Kp/kp) = gp (with kp

denoting the completion of k in Kp). Then the extension class of the bottom
row sequence in the push-out diagram

Z
Ĝp½ ZGp

gp−1
³ ∆Gp

↓ ↓ ‖
K×p ½ Vp ³ ∆Gp

, with respect to the map 1 7→ ap,

corresponds to the local fundamental class of Kp/kp under the canonical
isomorphisms

Ext1
Gp

(∆Gp,K
×
p ) ' H1(Gp,Hom(∆Gp,K

×
p )) ' H2(Gp,K

×
p ).

For a proof see [Sn, pp. 52–53].

The exact sequence Z
Ĝ½ ZG

g0−1
³ ∆G tensored with ∆S′ yields the new

exact sequence

(∆) ∆S′ ½ ∆S′ ⊗ ZG ³ ∆S′ ⊗∆G.
Let S′∗ be a set of G-representatives for S′ and set gp = g

[G:Gp]
0 for p ∈ S′∗,

so 〈gp〉 = Gp.

(9) δij is the Kronecker symbol.
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Proposition 3.2. Assume that for each p ∈ S′∗, p 6= q0, we are given
an element αp ∈ KGp ∩ ES′ satisfying

(αp,Kp′/(KGp)p′) =
{
gp for p′ = p,
1 for p′ 6= p, q0,

where p′ runs through the primes of K. Then the G-map ϕ : ∆S′ → ES′

defined by p − q0 7→ αp for p ∈ S′∗, p 6= q0, takes the extension class in
Ext1

G(∆S′⊗∆G,∆S′) of (∆) to the Tate class τS′ ∈ Ext1
G(∆S′⊗∆G,ES′).

Remark. More precisely, tensoring the augmentation sequence ∆G ½
ZG ³ Z with ∆S′ induces an isomorphism

Ext1
G(∆S′ ⊗∆G,ES′)→ Ext2

G(∆S′, ES′)

sending τS′ to what is usually regarded as the Tate class [GRW1].

P r o o f (of Proposition 3.2). We begin by picking for each p ∈ S′∗ an
element ap in (KGp)p so that (ap,Kp/(KGp)p) = gp. To ap we then assign
the idèle a(p) in the S′-idèle group JKGp ,S′ of KGp , which has component 1
everywhere except at the prime p ∩KGp where the component shall be ap.
The element αp viewed as principal idèle will be denoted by α(p).

We claim:

a(p) ≡ a(q0)α(p) mod NK/KGpJK .

This is checked for each prime p′ ∩KGp at a time. Note that p and q0 are
non-split in K/KGp .

At p′ 6= p, q0 the two idèles a(p) and a(q0) are 1, and α(p) is a local norm.
At p′ = p the two idèles a(p) and α(p) differ by a local norm and a(q0) is 1.
At p′ = q0 the reciprocity law implies (αp,Kq0/(K

Gp)q0) = g−1
p , a(p) is 1,

and (aq0 ,Kq0/(K
Gq0 )q0) = g0 becomes g[G:Gp]

0 = gp in Gal(Kq0/(K
Gp)q0)

as follows from the commutativity of

k×q0

( ,Kq0/kq0 )−−−−−−−−→ Gal(Kq0/kq0)

↓ ↓ [G:Gp]=t

(KGp)×q0

( ,Kq0/(K
Gp )q0 )−−−−−−−−−−→ Gal(Kq0/(K

Gp)q0)

with t denoting the transfer map [Se, VII,8].
Since outside of S′ the extension K/k is unramified and since local units

are norms in local unramified extensions, we will even find β(p) ∈ JK,S′ such
that

a(p)NK/KGp (β(p)) = a(q0)α(p).

Recall that here p ∈ S′∗, p 6= q0. We temporarily set α(q0) = β(q0) = 1.
The rest of the proof of the proposition consists of combining these data

with the construction of a Tate sequence (see e.g. [We, Chapter 5]).
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For each p ∈ S′∗ we take the diagram of Lemma 3.1 with the middle
vertical map denoted by µp. Inducing these up to G and building the direct
sum over S′∗ we get

ZS′ ½
⊕

S′∗
indGGp

ZGp ³
⊕

S′∗
indGGp

∆Gp

↓ ↓ ‖
JK,S′ ½ V ³

⊕
S′∗

indGGp
∆Gp

where we have glued on the unit idèles outside S′ in J and V . We modify the
left vertical map by sending p ∈ S′∗ to a(p)NK/KGpβ(p), and the middle one

by sending the free G-module generator ind(1p) of indGGp
ZGp to µp(1p)β(p),

where now β(p) ∈ JK,S′ is read in V . Then the new diagram still commutes.
It is the top face in

(D)

ZS → ⊕
indZGp −→ ⊕

ind∆Gp

↙ | ↙ | ↙=

JK,S′ → V → ⊕
ind∆Gp ↓

↓ | ↓ |
↓ Z → ZG → ∆G
↙ ↓ ↙ ↓ ↙=

CK → V −→ ∆G

The bottom face of (D) is the diagram of Lemma 3.1 for p = q0 composed
with the push-out diagram along the natural map from K×q0

into the idèle
class group CK of K:

K×q0
½ Vq0 ³ ∆Gq0

↓ ↓ ‖
CK ½ V ³ ∆G

Remember that Gq0 = G.
By the compatibility of local and global fundamental classes the bottom

row has extension class corresponding to the global fundamental class.
The commutative diagram

Z
Ĝp½ ZGp

gp−1−→ ∆Gp

‖ ↓ ↓
Z

Ĝ½ ZG g0−1−→ ∆G

with middle arrow x 7→ x(1 + g0 + . . .+ g
[G:Gp]−1
0 ) induces the back face in

(D). The right face of (D) clearly commutes. The left face commutes because
the idèle class of a(p)NK/KGpβ(p), for p ∈ S′∗, p 6= q0, is the same as that of
a(q0).

On observing that the left half of the top face in (D) is a push-out square
for V we obtain a unique map V → V making the whole diagram commute.
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As S′ is sufficiently large, JK,S′ → CK is surjective; since q0 ∈ S′∗,⊕
S′∗

indGGp
∆Gp → ∆G is surjective. The kernels of the vertical arrows in

(D) fit into

∆S′ ½ B ³ L
↓ ϕ ↓ ‖
ES′ ½ A ³ L

and ϕ takes p−q0 to a(p)NK/KGpβ(p)/a(q0) which is the principal idèle α(p).
We now compare this with the kernels of the vertical maps in
⊕

S′∗
indGGp

Z ½
⊕

S′∗
indGGp

ZGp ³
⊕

S′∗
indGGp

∆Gp

↙ | ↙ | ↙
ZS′ ½ ZS′ ⊗ ZG ³ ZS′ ⊗∆G ↓
↘ ↓ ↘ ↓ ↘

Z ½ ZG ³ ∆G

with outer southwest arrows g ⊗Gp 1 7→ gp and middle one g ⊗Gp x 7→
gp⊗ gxyp where yp = 1 + g0 + . . .+ g

[G:Gp]−1
0 .

This is
∆S′ ½ B ³ L
‖ ↓ ↓
∆S′ ½ ∆S′ ⊗ ZG ³ ∆S′ ⊗∆G

and we regard the two vertical isomorphisms as identifications. Then

(T)
∆S′ ½ ∆S′ ⊗ ZG ³ ∆S′ ⊗∆G
↓ ϕ ↓ ‖
ES′ ½ A ³ ∆S′ ⊗∆G

and the bottom row is the τS′ of the proposition.

Remark. 1. There always exist such ϕ which are injective. We omit the
proof.

2. If Gp = 1, then the only restriction on αp is to belong to ES′ .

If the ϕ in Proposition 3.2 is injective, we can build the Ωϕ as in
[GRW1,2] and express the Lifted Root Number Conjecture in terms of a
conjectural representing homomorphism for the finite cohomologically triv-
ial module cokerϕ.

This is carried out next. Observe that cokerϕ then coincides with the
cokernel of the middle map in diagram (T), in which ∆S′ ⊗ ZG and A are
cohomologically trivial, so it is so itself as well.

The map ϕ induces ϕ̃ : B
β−→L ⊕∆S′ 1⊕ϕ−−→L ⊕ ES′ α→ A. Now B and L

are just abbreviations for ∆S′ ⊗ ZG and ∆S′ ⊗∆G. The auxiliary maps β
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and α can be any maps resulting from commuting diagrams

L ½ B ³ ∆S′

↓ |G| ↓ β ‖
L ½ L⊕∆S′ ³ ∆S′

ES′ ½ L⊕ ES′ ³ L
‖ ↓ α ↓ |G|
ES′ ½ A ³ L

Ωϕ is defined as the element [coker ϕ̃] − 2∂(L, |G|) in the Grothendieck
group K0T (ZG) of finite cohomologically trivial ZG-modules (see [GRW1
or GRW2]).

Analogously we obtain a map 1̃ : B
β1→ L⊕∆S′ 1⊕1−−−→L⊕∆S α1→ B and

define

f1 = [coker 1̃]− 2∂(L, |G|),
i.e., we have replaced ϕ : ∆S′ → ES′ by the identity map 1 : ∆S′ = ∆S′

and the Tate sequence ES′ ½ A → B ³ ∆S′ by ∆S′ ½ ∆S′ ⊗ ZG →
∆S′ ⊗ZG ³ ∆S′, which, as before, is Z

Ĝ½ZG g0−1−−→ZG ³ Z tensored with
∆S′.

Lemma 3.3. Ωϕ − f1 = [cokerϕ].

This follows from the commutativity of a diagram

B
β1→ L⊕∆S′ 1⊕1−−−→ L⊕∆S′ α1→ B

‖ ‖ ↓ 1⊕ϕ ↓ ϕ0

B
β→ L⊕∆S′ 1⊕ϕ−−−→ L⊕ ES′ α→ A

with suitably chosen β1, α1, β, α, and in which ϕ0 is the middle map of
diagram (T). For it implies

B
1̃½ B ³ coker 1̃

‖ ½

ϕ0

½

B
ϕ̃
½ A ³ coker ϕ̃

so the snake lemma proves the assertion because cokerϕ0 = cokerϕ.
In order to see the above claimed commutativity we now define particular

maps β = β1 : B → L ⊕∆S′, α : L ⊕ ES′ → A and α1 : L ⊕∆S′ → B. To
this end, we label, as shown, our maps in the diagrams

∆S′
µ1½ B

µ2³ L
↓ ϕ ↓ ϕ0 ‖
ES′

µ3½ A
µ4³ L

∆S′
µ1½ B

µ2³ L
↓ 1 ↓ ‖
∆S′

µ1½ B
µ2³ L

and in the right end of the Tate sequence L
ρ1½B

ρ2³∆S′.
Choose Z-maps µ′2, ρ

′
1 with µ2µ

′
2 = idL = ρ′1ρ1 and build the G-maps

µ̃2 = Ĝµ′2, ρ̃1 = Ĝρ′1.
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The left diagram then gives µ4ϕ0µ
′
2 = idL. We set µ̃4 = ϕ0µ̃2 and

β(b) = (ρ̃1(b), ρ2(b)), α(y, e) = µ̃4(y) + µ3(e), α1(y, d) = µ̃2(y) + µ1(d)

for b ∈ B, y ∈ L, e ∈ ES′ , d ∈ ∆S′. Then

ϕ0α1(y, d) = ϕ0µ̃2(y) + ϕ0µ1(d) = µ̃4(y) + µ3ϕ(d) = α(1⊕ ϕ)(y, d).

Passing to the Hom description of K0T (ZG) (see Appendix A in [GRW1]),
we now have

Lemma 3.4. f1 is represented by

aS′(χ) = |G|(χ,θ)
∏

ψ 6=1

(ψ(g0)− 1)−(χψ−1,θ) (10)

with ψ running through the irreducible characters of G and θ denoting the
character of ∆S′.

The proof starts out from the two diagrams
Z ½ ∆G⊕ Z ³ ∆G
‖ ↓ α0 ↓ |G|
Z ½ ZG ³ ∆G

∆G ½ ZG ³ Z
↓ |G| ↓ β0 ‖
∆G → ∆G⊕ Z ³ Z

in which

α0(d, z) = d

|G|−1∑

i=1

igi0 + zĜ (d ∈ ∆G, z ∈ Z) and β0(1) = (|G| − Ĝ, 1).

The identity

(g0 − 1)
|G|−1∑

i=1

igi0 = |G| − Ĝ

shows the commutativity.
Now,

(α0β0)(1) = (|G| − Ĝ)
|G|−1∑

i=1

igi0 + Ĝ = x, say.

Before proceeding, we note that

ψ

(
x

|G|2
)

=
{

1/|G|, ψ = 1,
1/(ψ(g0)− 1), ψ 6= 1.

The following computations (including notation) are based on Appendix A
in [GRW1]. Tensor the diagrams with ∆S′. Then we have

f1 = [∆S′ ⊗ ZG/∆S′ ⊗ ZG · x]− 2∂(∆S′ ⊗∆G, |G|)
= ∂(∆S′ ⊗ ZG, x)− 2∂(∆S′ ⊗ ZG, |G|) + 2∂(∆S′, |G|)
= ∂(∆S′ ⊗ ZG, x/|G|2) + 2∂(∆S′, |G|).

(10) (χ1, χ2) denotes the scalar product of the characters χ1, χ2 of G.



324 J. Ritter and A. Weiss

The first term has representing homomorphism

χ 7→ det(x/|G|2 | HomFG(Vχ, F ⊗ (∆S′ ⊗ ZG)))
.= det(x/|G|2 | HomFG(Vχ ⊗ (F ⊗∆S′)∨, FG))

= det(x/|G|2 | Vχ ⊗ (F ⊗∆S′)∨)

by Lemma A.1 in [GRW1]. The equality .= holds because of the isomorphism

HomF (V,W ⊗ Z) ' HomF (V ⊗W∨, Z), t 7→ [v ⊗ ω 7→ (ω̃t)v],

where ω ∈W∨ = HomF (W,F ) induces ω̃ : W ⊗ Z → Z,w ⊗ z 7→ ω(w) ·z.
This isomorphism respects the G-structure and composition by a G-endo-
morphism of Z.

Now,

det(x/|G|2 | Vχ ⊗ (F ⊗∆S′)∨) =
∏

ψ

det(x/|G|2 | Vψ)(χθ∨,ψ)

=
∏

ψ

ψ

(
x

|G|2
)(χ,θψ)

= |G|−(χ,θ)
∏

ψ 6=1

(ψ(g0)− 1)−(χψ∨,θ).

The second term is represented by

χ 7→ det(|G| | HomFG(Vχ, F ⊗∆S′))2 = |G|2(χ,θ).

Multiplying the two gives the result.

Corollary. The Lifted Root Number Conjecture holds for K/k if , and
only if , [Zl ⊗ cokerϕ] is represented by χ 7→ A

(l)
ϕ (χ̌)/a(l)

S′ (χ) for all (finite)
primes l.

The Lifted Root Number Conjecture asserts that χ 7→ Aϕ(χ̌) represents
Ωϕ, which by Lemmas 3.3 and 3.4 is equivalent to χ 7→ Aϕ(χ̌)/aS′(χ) repre-
senting [cokerϕ]. This is then restated one prime l at a time by considering
the idèlic component above l in the representing homomorphisms [GRW1,
Appendix A].

4. Adapting S to the local nature of the Lifted Root Number
Conjecture. In the previous section we required S′ to be sufficiently large
in order to have the Tate class τS′ ∈ Ext1

G(∆S′ ⊗∆G,ES′) at our disposal.
In this section we restrict K to be absolutely abelian and real, but work
with a finite G-set S of primes of K containing the set S∞ of infinite primes
as well as all ramified primes of the extension K/k and just enough primes
to generate the l-part of clK for the given prime l.
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Let n denote the conductor of K, so K ⊂ Q(ζn)+, and let∞ be a distin-
guished infinite prime of K. We use the letter σ to denote automorphisms
of K/Q, so each infinite prime of K is some ∞σ.

Recall from the introduction the Ramachandra number

ξK =
∏

1 6=d‖n
NQ(ζn)/K(1− ζn/dn ),

with d ‖n meaning d |n & (d, n/d) = 1, and define an S-unit α∞ in K× by

ξg0−1
K = α(g0−1)h+1

∞

with some h ≥ 0 (as in Lemma 2.2). Moreover, define ϕ∞ : ∆S∞ → EK by
ϕ∞(∞σ − ∞) = ασ−1

∞ . The comparison of the notation here and in [RW,
§10] is done by means of the dictionary below.

[RW] is here

ξK ξ2
K

ϕ∞ 2(g0 − 1)hϕ∞

Having thus taken care of all infinite primes of K we get from elements
αp (p ∈ S∗ (11), p 6∈ S∞, p 6= q0), as appearing in Proposition 3.2 with S′

replaced by S, a map ϕ : ∆S → ES making the left square of the diagram

∆S∞ ½ ∆S ³ ZSf
↓ ϕ∞ ↓ ϕ ↓ ϕ̃
EK ½ ES ³ ES/EK

commute by sending p − q0 to αp and ∞ − q0 to α∞. In the diagram,
Sf = S \ S∞, ∆S → ZSf is given by

p′ −∞ 7→
{

p′, p′ finite,
0, p′ infinite,

and the right vertical map ϕ̃ is the induced one, whence

ϕ̃(p) = ϕ(p−∞)EK = ϕ(p− q0 + q0 −∞)EK = αp/α∞ · EK
for p ∈ S∗, p 6∈ S∞, p 6= q0. Similarly, ϕ̃(q0) = α−1

∞ EK .
We define the Dirichlet map λ as in [GRW1]: λS : C ⊗ ES → C ⊗ ∆S

sends u ∈ ES to −∑p∈S log |u|pp (12). Recall that, for a character χ of G,

Aϕ(χ̌) =
det(λS ◦ ϕ | HomCG(Vχ,C⊗∆S))

cS(χ̌)

is the Tate–Stark number [Ta, p. 27]. We compute it by exploiting our

(11) The ∗ indicates again that S is replaced by a set S∗ of G-representatives.
(12) Observe that this is −λS in [RW].
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diagram above which induces

(4.1)

C⊗∆S∞ ½ C⊗∆S ³ CSf
↓ ϕ∞ ↓ ϕ ↓ ϕ̃

C⊗ EK ½ C⊗ ES ³ C⊗ ES/EK
↓ λ∞ ↓ λS ↓ λ̃

C⊗∆S∞ ½ C⊗∆S ³ CSf

This implies the factorization

(4.2) Aϕ(χ̌) =
det(λ∞ϕ∞ | HomCG(Vχ,C⊗∆S∞))

cS∞(χ̌)
· detf (χ) · cS∞(χ̌)

cS(χ̌)
,

with detf (χ) short for det(λ̃ϕ̃ | HomCG(Vχ,CSf )).
The first and third factor have been studied in [RW].
To compute the middle one we use the non-zero elements in {eχp |

p ∈ S∗, p 6∈ S∞} as a basis of HomCG(Vχ,CSf ) = eχCSf . Here eχ is the
primitive idempotent corresponding to χ. We have

(4.3) λ̃ϕ̃(eχp) = −
∑

p′∈Sf
log
∣∣∣∣
αp

α∞

∣∣∣∣
p′
eχp′

and will evaluate such determinants in Section 5 by applying the

Lemma 4.1. If Sf∗ is a set of G-representatives in Sf , and if (α) =∏
p∈Sf∗ pxp with xp ∈ ZG, then

−
∑

p∈Sf
log |α|peχp =

∑

p∈Sf∗
χ(xp) log(Np)eχp.

For the proof pick a p ∈ Sf∗ and consider the orbit sum

−
∑

p′∈G·p
log |α|p′eχp′ = − 1

|Gp|
∑

g∈G
log |αg−1 |pχ(g)eχp.

With κ : CG → C denoting the C-linear map taking g to 1 or 0 according
as g ∈ Gp or g 6∈ Gp we deduce from vp(αg

−1
) = κ(g−1xp) that the above

orbit sum equals

− 1
|Gp|

∑

g∈G
(−κ(g−1xp) log(Np))χ(g)eχp

=
log(Np)
|Gp| κ

(∑

g∈G
χ(g)g−1xp

)
eχp =

log(Np)
|Gp| κ(|G|eχxp)eχp
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=
log(Np)
|Gp| κ(χ(xp)|G|eχ)eχp

=
log(Np)
|Gp| χ(xp)

( ∑

g∈Gp

χ(g)
)
eχp

=
log(Np)
|Gp| χ(xp)|Gp|eχp,

since eχp = 0 whenever resGGp
χ is non-trivial.

Lemma 4.2. Even though S does not satisfy the hypothesis of Proposi-
tion 3.2, the Corollary at the end of Section 3 remains true for S with respect
to the given prime l.

To see this, let S′ be a finite G-set containing S and G-orbits of split
primes r (over k) so that the S′-class group of K vanishes. The existence of
an S′ follows from the Chebotarev density theorem.

Assume now that we have a map ϕ : ∆S ½ ES satisfying ϕ(p−q0) = αp

for p ∈ S∗, p 6= q0, where the αp are as above (p = ∞ included). With h′

denoting the l-prime part of |clK |, we pick generators αr ∈ K of the principal
ideals rh

′
and extend ϕ to ϕ′ : ∆S′ → ES′ by mapping r − q0 to αr. Then

ϕ′ is a map as described in Proposition 3.2, because the r split over k and
since the αr are S′-units.

We first compare cokerϕ and cokerϕ′. To do so build

∆S ½ ∆S′ ³ Z[S′ \ S]
↓ ϕ ↓ ϕ′ ↓
ES ½ ES′ ³ ES′/ES

↓
Z[S′ \ S]

analogous to the earlier diagram (with S∞, S instead of S, S′) and with
ES′/ES → Z[S′ \ S] taking u ∈ ES′ to

∑
r vr(u)r. The composite right

vertical map is then multiplication by h′ : r 7→ αr 7→ h′r. Hence Zl ⊗
cokerϕ = Zl ⊗ cokerϕ′.

We next turn to the numerators of the A-numbers. We tensor the above
diagram with C and get a diagram similar to (4.1) with maps ϕ, ϕ′, ϕ′′ and
λ, λ′, λ′′, say. Thus

det(λϕ) = det(λ′ϕ′)/det(λ′′ϕ′′) = det(λ′ϕ′)
/∏

r

(h′ logNr)

by λ′′ϕ′′(r) = h′(logNr)r.
Now,

Aϕ′(χ̌)
Aϕ(χ̌)

=
cS(χ̌)
cS′(χ̌)

·
∏

r

h′ log(Nr) =
∏

r

h′

by [RW, Lemma 7 with Gr = Ir = 1, fr = 1].
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Finally we look at aS′(χ)/aS(χ). As the character of Z[S′ \ S] is a mul-
tiple of the regular character %, we get from Lemma 3.4, for irreducible χ,

aS′(χ)
aS(χ)

=
∏

r

(
|G|(χ,%)

∏

ψ 6=1

(ψ(g0)− 1)−(χψ−1,%)
)

=
∏

r

(−1)|G|−1,

because the multiplicity in % of every irreducible character is 1.
Putting things together, we see that Aϕ′(χ)/aS′(χ) and Aϕ(χ̌)/aS(χ)

differ by a constant b ∈ Z×l which is independent of the irreducible character
χ. Since χ 7→ bχ(1) ∈ Det(ZlG) represents the trivial element in K0T (ZlG),
the lemma is proved.

5. Calculation of Aϕ. We go back to our initial situation in which K
is as in the introduction.

With a choice of q0, . . . , qr−1 as in Lemma 2.3, suppose that ai, 1 ≤
i ≤ r − 1, are ideals supported in {p1, . . . , pr} such that ai · q(g0−1)hi−1

i are
principal. Let αqi be the corresponding generators.

Lemma 5.1. The r × r matrix



−vp1(α∞) . . . −vpr (α∞)
−vp1(αq1) . . . −vpr (αq1)

... . . .
...

−vp1(αqr−1) . . . −vpr (αqr−1)




is non-singular modulo l. Moreover , its determinant c′ satisfies −vpj (α∞) ≡
c′Bj mod l for 1 ≤ j ≤ r. In other words, c′ ≡ c̃ mod l.

In fact, (αqi) = q
(g0−1)hi−1

i

∏r
s=1 p

vps (αqi
)

s and (1.2) imply
r∑
s=1

(−vps(αqi))bjs ≡ δij mod l, 1 ≤ i, j ≤ r − 1.

Since the Bj and vpj (α∞) are proportional modulo l, we also have
r∑
s=1

(−vpj (α∞))bjs ≡ 0 mod l for 1 ≤ j ≤ r − 1.

With
[
z
bij

]
denoting the matrix

(
z1 . . . zr

bij

)
1≤j≤r

1≤i≤r−1

,

where (z1, . . . , zr) is any row vector, we see that the matrix in the statement
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of the lemma times the transpose of
[
z
bij

]
is




∑r
j=1(−vpj (α∞))zj 0 . . . 0

∗ 1
...
∗ 1


 .

Taking determinants yields c′ · (∑r
j=1 zjBj) ≡

∑r
j=1(−vpj (α∞))zj mod l

by the definition of the Bj . The second assertion of Lemma 5.1 follows by
varying z and then the first assertion from Lemma 2.2.

In the vacuous case r = 1 we see that we had to set B1 = 1.

Corollary. For each 1 ≤ j ≤ r, pj is in the ZlG-span of the qi and
the αqi , α∞.

For αĜqi = qδii p
vp1 (αqi

)
1 . . . p

vpr (αqi
)

r in Zl⊗ES , with δi = 0 or 1 according
as hi > 1 or hi = 1, and similarly for α∞.

We use the αqi and α∞ together with an integer matrix (xij) con-
gruent modulo l to the inverse of the matrix (cij) of Lemma 2.3 in or-
der to define a G-map ϕ : ∆S → ES , where S is the G-set generated
by {∞, p1, . . . , pr, q0, . . . , qr−1}. Here, ∞ is the infinite prime defined by
K ⊂ Q(ζn) ↪→ C, ζn 7→ e2πi/n.

∆S is spanned over ZG by

pj − q0, 1 ≤ j ≤ r, qi − q0, 1 ≤ i ≤ r − 1, ∞− q0.

G acts trivially on the pj − q0; the other generators are free over ZG. The
map ϕ is defined by

pj − q0 7→
r−1∏

i=0

q
xji
i =: αpj , qi − q0 7→ αqi , ∞− q0 7→ α∞.

Lemma 5.2. ϕ satisfies the conditions of Proposition 3.2 and induces an
ZlG-isomorphism Zl ⊗∆S → Zl ⊗ ES.

P r o o f. Because q1, . . . , qr−1,∞ are split over Q there is no condition
on the αqi and on α∞ in Proposition 3.2. Concerning the αpj we have

(αpj ,Kp′j/Qp′j ) =
r−1∏

i=0

(qi,Kp′j/Qp′j )
xji = g

∑
i xjicij′

0 = g
δjj′
0 .

Moreover, (αpj ,Kp/Qp) = 1 for all p 6= q0, p1, . . . , pr, since either p splits or
αpj is a unit in the unramified extension Kp/Qp.

To see that ϕ is an l-adic isomorphism we show first that q0, q1, . . . , qr−1,
α∞, αq1 , . . . , αqr−1 generate Zl⊗ES as ZlG-module. Pick u ∈ ES . Then, by
definition of S,

(u) = pb11 . . . pbrr qc00 . . . q
cr−1
r−1
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with bj ∈ Z and ci ∈ ZG. Because q0 is inert and q0 ∈ ES , we may assume
c0 = 0. Reading then the above equation in clK shows Cc11 . . .C

cr−1
r−1 ∈ clGK

and so ci = c′i(g0 − 1)hi−1 + c′′i Ĝ with c′i ∈ ZG and c′′i ∈ Z.
It follows from the definition of the αqi that

(
u

r−1∏

i=1

α
−c′i
qi

)
= p

b′1
1 . . . p

b′r
r

r−1∏

i=1

q
c′′i
i .

So p
b′1
1 . . . p

b′r
r is principal, whence (pb

′
1

1 . . . p
b′r
r )N = (αd∞a) with d ∈ Z, a

a product of the pj and with a suitable N 6≡ 0 mod l. Therefore uN and

αd∞a
∏r−1
i=1 (αNc

′
i

qi q
Nc′′i
i ) differ by a unit. Read in Zl ⊗ ES , this unit becomes

a ZlG-power of αg0−1
∞ by Lemma 2.2. Because of the above corollary and

since l -N , our generation claim is proved.
The non-degeneracy of the matrix (xij) modulo l then implies that ϕ is

surjective modulo l, so l-adically as well. This finishes the proof by Dirichlet’s
unit theorem.

We now turn to the computation of Aϕ(χ̌). Because of (4.2) this amounts
to computing the three quantities

det(λ∞ϕ∞ | HomG(Vχ,∆S∞))
cS∞(χ̌)

, detf (χ) and
cS∞(χ̌)
cS(χ̌)

,

where ϕ is decomposed according to the diagram

∆S∞ ½ ∆S ³ ZSf
↓ ϕ∞ ↓ ϕ ↓ ϕ̃
EK ½ ES ³ ES/EK

with ϕ∞(∞g −∞) = αg−1
∞ (g ∈ G), and where detf (χ) is the determinant

of the map eχCSf → eχCSf taking:

• eχpj (1 ≤ j ≤ r) to

−
∑

p∈Sf

(
log
∣∣∣∣
αpj

α∞

∣∣∣∣
p

)
eχp = −

r∑

j=1

vpj (α∞)(log pj)eχpj

+
r−1∑

i=0

χ(Ĝ)xji(log qi)eχqi

by Lemma 4.1, since αpj =
∏r−1
i=0 q

xji
i , qi = qĜi (1 ≤ i ≤ r − 1), N(q0) = ql0

and eχq0 = 0 if χ 6= 1, and since α∞ is supported in {p1, . . . , pr};
• eχq0 to

−
∑

p∈Sf
(log |α−1

∞ |p)eχp = −
r∑

j=1

vpj (α∞)(log pj)eχpj ;



The Lifted Root Number Conjecture 331

• eχqi (1 ≤ i ≤ r − 1) to

r∑

j=1

vpj (αqiα
−1
∞ )(log pj)eχpj + (χ(g0)− 1)hi−1(log qi)eχqi,

since (αqi) = q
(g0−1)hi−1

i ai.

Regarding the first quantity we have

(5.1)
detχ(λ∞ϕ∞)
cS∞(χ̌)

=
{−2 if χ = 1,

2/(χ(g0)− 1)h if χ 6= 1.

This follows from e1∆S∞ = 0, cS∞(1) = −1/2 and from Proposition 12
of [RW] adjusted appropriately (see §4); in particular, the λ∞ there is here
−λ∞.

The quantity cS∞(χ̌)/cS(χ̌) is given by [RW, Lemma 7] on observing

V̌ Gpj = 0 = V̌ Ipj (1 ≤ j ≤ r), V̌ Gqi = V̌ = V̌ Iqi (1 ≤ i ≤ r − 1),

V̌ Gq0 = 0, V̌ Iq0 = V̌ ,

where V̌ is a CG-module affording the character χ̌ 6= 1, and where Ip, for a
prime p, is the inertia group of p. Thus

(5.2)
cS∞(χ̌)
cS(χ̌)

=





r∏

j=1

(log pj)−1
r−1∏

i=0

(log qi)−1 for χ = 1,

(( r−1∏

i=1

log qi
)

(1− χ̌(g0))
)−1

=
χ(g0)

χ(g0)− 1

r−1∏

i=1

(log qi)−1 for χ 6= 1.

We are left with computing detf (χ). Assume first χ 6= 1. Then eχpj =
0 = eχq0, 1 ≤ j ≤ r, and our map eχCSf → eχCSf is diagonal with diagonal
entries (χ(g0)− 1)hi−1(log qi), so

detf (χ) = (χ(g0)− 1)
∑r−1
i=1 hi−(r−1)

r−1∏

i=1

(log qi).

Assume next that χ = 1. We label the row and columns of the matrix
of e1CSf → e1CSf by e1pj (1 ≤ j ≤ r), e1qi (0 ≤ i ≤ r − 1) starting at
the top and on the left, respectively. Then we view it as having the form(
A11 A12
A21 A22

)
with r × r matrices Aνµ. Subtracting row e1q0 from all the other

rows changes A11 into the zero matrix but does not affect A12 as follows
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from the description of the map eχCSf → eχCSf . However, A21 becomes

A′21 =




−vp1(α∞) log p1 . . . −vpr (α∞) log pr
vp1(αq1) log p1 . . . vpr (αq1) log pr

...
...

vp1(αqr−1) log p1 . . . vpr (αqr−1) log pr


 .

Hence

detf (1) = (−1)r detA12 detA′21

= (−1)r detA12 ·
( r∏

j=1

log pj
)
· (−1) · det(vpj (αqi)),

where in accordance with our usual numbering we better read α∞ as αq0 .

As for detA12, we remember that

A12 =



lx10 log q0 . . . lx1,r−1 log qr−1

...
...

lxr0 log q0 . . . lxr,r−1 log qr−1


 ,

so

detA12 = lr
( r−1∏

i=0

log qi
)

det(xji).

Taking everything into account we arrive at

(5.3) detf (χ)

=





(−1)lr
( r∏

j=1

log pj
)( r−1∏

i=0

log qi
)

det(−vpj (αqi)) det(xji) if χ = 1,

( r−1∏

i=1

log qi
)

(χ(g0)− 1)
∑r−1
i=1 hi−(r−1) if χ 6= 1.

(5.1)–(5.3) together yield

Aϕ(χ̌)

=





2lr det(−vpj (αqi)) det(xji) if χ = 1,
2

(χ(g0)− 1)h
· χ(g0)
χ(g0)− 1

(χ(g0)− 1)
∑r−1
i=1 hi/(χ(g0)− 1)r−1 if χ 6= 1.

Using the decomposition C ⊗ ∆S = Cr ⊕ (CG)r we quickly evaluate the
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representing homomorphism a(χ) from Lemma 3.4:

a(χ) =





l2r
∏

ψ 6=1

(ψ(g0)− 1)−(ψ−1,∆S) =
l2r∏

ψ 6=1(ψ(g0)− 1)r
= lr, χ = 1,

lr(χ(g0)− 1)−2r
∏

ψ 6=1,χ

(ψ(g0)− 1)r =
lr(χ(g0)− 1)−r∏
ψ 6=1(ψ(g0)− 1)r

= (χ(g0)− 1)−r, χ 6= 1.

Therefore,

Aϕ(χ̌)
a(χ)

=





2 det(−vpj (αqi)) det(xji) if χ = 1,
2

(χ(g0)− 1)h
(χ(g0)− 1)

∑r−1
i=1 hi · χ(g0) if χ 6= 1.

As has been pointed out at the end of Section 3, χ 7→ A
(l)
ϕ (χ̌)/a(l)(χ) is to

represent Zl⊗cokerϕ = 0 by the Lifted Root Number Conjecture. The main
result in [RW] confirms this modulo DT (ZlG), i.e., all Aϕ(χ̌)/a(χ) generate
the same ideal in Zl[ζl]. In particular,

(\)
r−1∑

i=1

hi = h,

since det(−vpj (αqi)) · det(xji) 6≡ 0 mod l by Lemmas 2.3 and 5.1. Conse-
quently, the Lifted Root Number Conjecture amounts to

Aϕ(χ̌)/a(χ) ≡ Aϕ(1)/a(1) mod χ(g0)− 1

(for all χ 6= 1), by [GRW1, Proposition 8(iii)], that is

(LC) det(−vpj (αqi)) ≡ det(cij) mod l

by Lemma 2.3. This is indeed conjecture (C), by Lemma 5.1.

We quickly dispose of the case r = 1, whence h = 0 by (\). First of all,
c01 = −1 by the reciprocity law. In fact, (q0,Kp1/Qp1) = gc01

0 , (q0,Kq0/Qq0)
= g0, and (q0,Kp/Qp) = 1 for all other primes p, since these are unramified.
Moreover, K is the subfield of Q(ζp1) of degree l over Q and so ξK is a prime
element for p1. By Lemma 2.2 we can take α∞ = ξK . Hence, (C) and (LC)
both say −1 ≡ −1 mod l.

From now on, we assume that r ≥ 2.
We close this section with an observation concerning the pj-value of an

element α ∈ K× and the congruence class of αg0−1 modulo pj . To do so, we
first define

mj =
pj − 1
l

, 1 ≤ j ≤ r,
and recall that (q0,Kpj/Qpj ) = g

c0j
0 .
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Lemma 5.3. The pj-value aj of an element α ∈ K× is determined modulo
l by the congruence

αc0j(g0−1) ≡ q−mjaj0 mod pj .

For the proof we view all occurring quantities as elements of the com-
pletion Kpj , which is a totally, tamely ramified extension of Qpj . Thus
Kpj = Qpj ( l

√
pjvj) with a unit vj ∈ Qpj . Abbreviate πj = l

√
pjvj , so πj

is a prime element in Kpj , and write α = π
aj
j · v with a unit v. Then

(αg0−1)c0j ≡ (αg0−1)1+g0+...+g
c0j−1
0 = αg

c0j
0 −1 = (πajj v)g

c0j
0 −1 ≡ (πajj )g

c0j
0 −1

= π
aj((q0,Kpj

/Qpj )−1)
j

(1)
= (pjvj , q0)ajQpj,l = (pj , q0)ajQpj,l(vj , q0)ajQpj,l

(2)≡ q
−mjaj
0 · 1,

with the equality (1) and congruence (2) coming from [Se, pp. 215–217].

6. Euler systems. The purpose of this section is to recall some basic
properties of Euler systems. The general reference is [Ru].

Let K ⊂ Q(ζn)+, with n denoting the conductor of K, and let Q abbre-
viate squarefree products of rational primes q splitting in K. For each such
q we fix a generator σq of Gal(Q(ζq)/Q) which whenever convenient is also
regarded as a generator of the Galois group Gq of the extension K(ζq)/K.
With this notation we have

(6.1) Dq :=
q−1∑

i=1

iσiq ∈ Z[Gq] satisfying (σq − 1)Dq = q − 1− σ̂q.

Set DQ =
∏
q|QDq ∈ Z[GQ] where GQ = Gal(K(ζQ)/K) is identified with∏

q|QGq in the usual way.
Our Euler system is Q 7→ ξQ = NQ(ζn,ζQ)/K(ζQ)(1−ζnζQ). It satisfies ES

1–4 in [Ru]. We now fix an odd prime l - n and a high power L of it and use
the notation b1 =L b2 for ideals b1, b2 of K in order to indicate that b1b

−1
2

is an Lth power of an ideal in K. In what follows the primes q not only split
in K but also satisfy q ≡ 1 mod L.

Assume that α ∈ K× is prime to q. Then there is a β ∈ K(ζq)× such
that α ≡ β1−σq mod Q for all prime ideals Q | q of K(ζq). We define the
ideal ϕq(α) by

(6.2) ϕq(α) =L

∏

q|q
qvq(β) (13).

So ϕq is a Gal(K/Q)-homomorphism taking values in the ideals of K sup-

(13) vq(β) is the Q-value of β for the unique prime Q | q in K(ζq).
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ported in q, modulo Lth powers of ideals; it is in fact the precise analogue
of the ϕq in the situation of [Ru].

The following holds:

(6.3) ξ
DQ(σ−1)
Q is an Lth power in K(ζQ) for all σ ∈ GQ.

(6.4) σ 7→ L

√
ξ
DQ(σ−1)
Q is a split 1-cocycle, so yields a unique κQ ∈

K×/K×L with κQ ≡ ξDQQ mod K(ζQ)×L.

As in [Ru], we set κ1 = ξ1.

(6.5) The q-part (κQ)q in the principal ideal (κQ) is

=L

{
(1) if q -Q,
ϕq(κQ/q) if q |Q.

(6.6) Set G = Gal(K/Q). Let W be a finite G-submodule of K×/K×L

and ψ : W → Z/L[G] a G-homomorphism. Then, to a given ideal
class C of K, there exist a unit u ∈ (Z/L)× and infinitely many
primes q of K such that q ∈ C, the rational prime q ∈ q splits in K
and is ≡ 1 mod L, (w)q =L 1 and ϕq(w) =L quψ(w) for all w ∈W .

The following lemma concentrates on the unit u in (6.6). Again, G =
Gal(K/Q).

Lemma 6.1. Let q0 be a rational prime which is unramified in K. Assume
that we are given a triple L, W , ψ as in (6.6) with q0 ∈W , ψ(q0) = Ĝ and
that in accordance with these data and a given ideal class C in K a prime q
has been picked. Then

(i) (q0,Q(ζq)/Q) generates Gal(Q(ζq)/Q) modulo Lth powers.
(ii) If the restriction of σq to Q(ζq) and (q0,Q(ζq)/Q)−1 differ by an Lth

power , then the corresponding ϕq satisfies ϕq(w) =L qψ(w) for all w ∈W .
(iii) Assuming σq chosen as in (ii) and ψ(a) = tĜ for a rational a ∈W ,

the automorphisms σtq|Q(ζq) and (a,Q(ζq)/Q)−1 differ by an Lth power.

P r o o f. For the chosen generator σq of Gq define s ∈ Z/(q − 1) by

(q0,Q(ζq)/Q)−1 = σsq |Q(ζq).

Then ϕq(q0) =L quψ(q0) = quĜ = (qu) and so, by (6.2),
∏

all q|q
qvq(β) =L (qu) for any β ∈ K(ζq)×

with q0 ≡ β1−σq mod Q for all Q | q. Now,

(1− ζq)(q0,Q(ζq)/Q)−1 =
1− ζq0q
1− ζq = 1 + ζq + . . .+ ζq0−1

q ≡ q0 mod (1− ζq)
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implies

[(1− ζq)s]1−σq ≡ (1− ζq)(1−σq)(1+σq+...+σs−1
q ) = (1− ζq)1−σsq

= [(1− ζq)(q0,Q(ζq)/Q)−1](q0,Q(ζq)/Q)−1 ≡ q0 mod (1− ζq).
Hence we may take β = (1− ζq)s and obtain

(qs) =
∏

all q|q
qs·vq(1−ζq) =L (qu)

and then s ≡ u mod L. Thus s is a unit mod L and (i) is proved.
Letting s′ ∈ (Z/(q − 1))× satisfy s′ ≡ s mod L, we arrive at a new

generator σ′q = σs
′
q of Gq and at a corresponding ϕ′q with ϕ′q(α

s′) = ϕq(α)

for all α ∈ K× prime to q. Indeed, β1−σq ≡ α mod Q implies β1−σ′q =

(β1−σq )1+σq+...+σs
′−1
q ≡ (β1−σq )s

′ ≡ αs
′

mod Q. Thus, for w ∈ W , ϕ′q(w)s
′

=L quψ(w) =L qs
′ψ(w), which gives (ii).

In order to see (iii) we go back to the beginning of our proof and replace
q0 by a, s by t′ and assume u = 1. Then ϕq(a) =L qtĜ = (qt) and we
conclude that t′ ≡ t mod L. Observe that (iii) implies that, modulo q, a and
qt0 only differ by an Lth power.

7. The case r = 2. In this section we turn to the special case

K ⊂ Q(ζn), n = p1p2, [K : Q] = l -n

and prove conjecture (LC) as stated in Section 5 (and thus, at the same
time, (C)). The notation is the one of the previous sections with

• q0 chosen to simultaneously generate the Sylow l-subgroups of the
multiplicative residue groups modulo p1 and p2, and to be inert in K (14),
• L a power of l which is greater than the power of l in p1−1 and p2−1.

Set W = 〈α∞, q0, p1, p2〉K×Llh and let ψ : W → Z/Llh[G] be the G-map
assigning α∞ to 1, q0 to Ĝ and pj to tjĜ (j = 1, 2) where the integers tj are
chosen to satisfy

t1vp1(α∞) + t2vp2(α∞) ≡ 1 mod Llh.

This congruence ensures that ψ respects every relation αx∞q
z0
0 p

z1
1 p

z2
2 ∈ K×Ll

h

with x ∈ ZG and integers z0, z1, z2. In fact, first of all α(g0−1)x
∞ is an Llhth

power in K× and, being a unit, therefore in EK . Read in Zl⊗EK , the proof

of Lemma 2.2 yields an x1 ∈ ZlG such that α(g0−1)x
∞ = α

(g0−1)x1Ll
h

∞ , i.e.,

(14) The compositum K̂ of the extensions Kj ⊂ Q(ζj) of degree l over Q contains a
field K0 of degree l which is different from K1, K, K2 as l 6= 2, and we choose q0 so that
the Frobenius automorphism at q0 generates Gal(K̂/K0).
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x− x1Ll
h = x2Ĝ, x2 ∈ ZlG. It follows that

αĜx2∞ qz00 p
z1
1 p

z2
2 = p

x2vp1 (α∞)+z1
1 p

x2vp2 (α∞)+z2
2 qz00 ∈ K×Ll

h ∩Q× = Q×Ll
h

,

so Llh | z0, Ll
h |x2vpj (α∞) + zj and the above relation is a consequence of

αĜ∞p
−vp1 (α∞)
1 p

−vp2 (α∞)
2 ∈ K×Llh ,

which is respected by ψ.
In accordance with the data Llh,W and ψ we employ (6.6) and choose a

prime q1 ∈ C1 so that NK/Qq1 = q1 ≡ 1 mod Llh splits in K and (κq1) =Llh

ϕq1(κ1) =Llh q
ψ(κ1)
1 , by (6.5) and Lemma 6.1 with an appropriate choice of

σq1 .

Now, κ1 = ξ1 = α
(g0−1)h
∞ . This is seen as follows. First, ξg0−1

1 = ξg0−1
K

because
ξK = ξ1 ·NQ(ζn)/K((1− ζp1

n )(1− ζp2
n ))

with

NQ(ζn)/K(1− ζpjn ) = NQ(ζn)/K(1− ζpj′ )
= NK(ζp

j′ )/K
NQ(ζn)/K(ζp

j′ )
(1− ζpj′ ) = p

mj
j′

where {j, j′} = {1, 2} and mj = (pj − 1)/l. Second, by Lemma 2.2, ξg0−1
1 =

α
(g0−1)h+1

∞ , which gives the assertion as ξ1 and α
(g0−1)h
∞ both have norm 1.

We therefore get (κq1) = q
(g0−1)h

1 · rLlh for some ideal r. Since rLl
h

is
principal, rl

h

is principal, rl
h

= (ρ) say. Replacing κq1 by κq1ρ
−L we may

assume
(κq1) = q

(g0−1)h

1 .

It is important to note that this κq1 is obtained as a splitting of a cocycle
as in (6.4), although with L and no longer with Llh.

The element κq1 has norm 1 in Q (after multiplying it with −1 = (−1)L

if necessary), so there exists an αq1 ∈ K× such that αg0−1
q1 = κq1 . Then

(αq1) = q
(g0−1)h−1

1 a1 with a1 (after multiplying αq1 by a rational number)
supported on p1, p2. The notation αq1 can now be interpreted in the sense
of Section 5.

Proposition 7.1. κq1 ≡ q
mjtj′
1 mod pj , where j′ 6= j.

Recall that mj = (pj − 1)/l. The proof of the proposition is delayed to
the end of this section.

Because (q1,Kpj/Qpj )c0j = (q0,Kpj/Qpj )c1j , q
c0j
1 and q

c1j
0 differ by a

norm, so by an lth power modulo pj , and we deduce qmjc0j1 ≡ qmjc1j0 mod pj .
Substituting this in Proposition 7.1 we have

α
c0j(g0−1)
q1 ≡ qmjtj′c1j0 mod pj .
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We compare this congruence with the one given in Lemma 5.3:

α
c0j(g0−1)
q1 ≡ q−mjvpj

(αq1 )
0 mod pj .

By the choice of q0, q
mj
0 6≡ 1 mod pj , whence

−vpj (αq1) ≡ tj′c1j mod l.

The reciprocity law gives
2∑

j=1

cij ≡
{−1, i = 0,

0, i 6= 0,

thus

−c12 ≡ det
(
c01 c02

c11 c12

)
≡ c11 mod l

and

det
(−vp1(α∞) −vp2(α∞)
−vp1(αq1) −vp2(αq1)

)
≡ det

(−vp1(α∞) −vp2(α∞)
t2c11 t1c12

)

≡ c11 det
(−vp1(α∞) −vp2(α∞)

t2 −t1

)

≡ c11(t1vp1(α∞) + t2vp2(α∞))

≡ c11 ≡ det
(
c01 c02

c11 c12

)
mod l,

which proves (LC).

P r o o f (of Proposition 7.1). Fix a generator σq1 of Gq1 , as in Lem-

ma 6.1(ii). Then σ
t̃j
q1 |Q(ζq1 ) = (pj ,Q(ζq1)/Q)−1 for a unique t̃j mod (q1 − 1)

and we have t̃j ≡ tj mod L by Lemma 6.1(iii). The Euler system in Section 6
has

ξq1 = NQ(ζn,ζq1 )/K(ζq1 )(1− ζnζq1)

≡ NQ(ζn,ζq1 )/K(ζq1 )(1− ζpj′ ζq1) mod (1− ζpj )
= NK(ζp

j′ ,ζq1 )/K(ζq1 )NQ(ζn,ζq1 )/K(ζp
j′ ,ζq1 )(1− ζpj′ ζq1)

= NK(ζp
j′ ,ζq1 )/K(ζq1 )(1− ζpj′ ζq1)mj

=
(

1− ζpj′q1
1− ζq1

)mj
= (1− ζq1)mj((pj′ ,Q(ζq1 )/Q)−1)

= (1− ζq1)mj(σ
−t̃
j′

q1 −1)

and thus

(7.1) ξq1 ≡ (1− ζq1)mj(σq1−1)(1+σq1+...+σ
−t̃
j′−1

q1 ) mod (1− ζpj ).
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On applying Dq1 this implies, by (6.1),

ξ
Dq1
q1 ≡ (1− ζq1)mj(1+σq1+...+σ

−t̃
j′−1

q1 )(q1−1−σ̂q1 )(7.2)

= (1− ζq1)mj(q1−1)(1+σq1+...+σ
−t̃
j′−1

q1 )q
−mj(1+σq1+...+σ

−t̃
j′−1

q1 )
1

≡ (1− ζq1)mj(q1−1)(1+σq1+...+σ
−t̃
j′−1

q1 ) · qmjtj′1 mod (1− ζpj ).

By (6.4), with βq1 ∈ K(ζq1) satisfying βσ−1
q1 =

L

√
ξ
Dq1 (σ−1)
q1 we have

(7.3) κq1 = ξ
Dq1
q1 /βLq1 .

Because of (κq1) = q
(g0−1)h

1 and since ξq1 is a unit, it follows that βq1 is

supported in the orbit of q1 (in K(ζq1)). And we have ξ
σ̂q1
q1 =ES3 ξ

Frob(q1)−1
1

= 1, as q1 splits in K.
Thus ξ

Dq1 (σq1−1)
q1 = ξ

q1−1−σ̂q1
q1 = ξq1−1

q1 and so β
σq1−1
q1 = ξ

(q1−1)/L
q1 which,

by (7.1), gives

β
σq1−1
q1 ≡ (1− ζq1)

q1−1
L mj(1+σq1+...+σ

−t̃
j′−1

q1 )(σq1−1) mod (1− ζpj ).
Since βq1 and 1− ζq1 are in K(ζq1) this congruence can be read modulo the
product p̃j of the primes of K(ζq1) above pj , which implies

(7.4) βq1 ≡ (1− ζq1)
q1−1
L mj(1+σq1+...+σ

−t̃
j′−1

q1 )γq1 mod p̃j

with γq1 in K(ζq1) so that γ
σq1−1
q1 ≡ 1 mod p̃j . As pj is unramified in K(ζq1)

this means that γq1 may be taken to be in K, hence

(7.5) γpj−1
q1 ≡ 1 mod pj .

Therefore, by (7.3), (7.2), (7.4),

κq1 ≡ q
mjtj′
1 · γ−Lq1 mod pj .

Since κq1 has norm 1, its lth power is congruent to 1 modulo pj , as is the
lth power of q

mjtj′
1 . So γLlq1 ≡ 1 mod pj . By (7.5) and the choice of L thus

γLq1 ≡ 1 mod pj . This finishes the proof.

References

[Bu] D. Burns, Equivariant Tamagawa numbers and Galois module theory, I , pre-
print, King’s College London, 1997.
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