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1. Introduction. The interest in curves (projective, nonsingular and
geometrically irreducible) over finite fields with many rational points was
renewed after Goppa’s construction of codes from curves. Particularly inter-
esting is the case of maximal curves over K = Fq2 , i.e., curves C defined over
K such that the number #C(K) of K-rational points attains the Hasse–Weil
upper bound:

(1.1) #C(K) = q2 + 1 + 2gq,

where g = g(C) is the genus of the curve C.
Ihara [I] showed that the genus g of a maximal curve over K satisfies

(1.2) g ≤ q(q − 1)/2.

Rück and Stichtenoth [R-S] showed that there is a unique maximal curve
over K with genus g = q(q−1)/2. Its associated function field is the so-called
Hermitian function field H which is given by

(1.3) H = K(x, y) with yq + y = xq+1.

In [G-S-X] we have determined the genera of several subfields of the
Hermitian function field H (it is well known that they also correspond to
maximal curves).

In order to have an explicit description of codes arising from curves one
frequently needs that the curves (or their associated function fields) are
explicitly given by equations. The subfields of H we are interested in here
are among those appearing in [G-S-X, Theorem 5.4]. It will turn out that
they can be described by using Chebyshev polynomials (see Remarks 4.4 and
5.2). Chebyshev polynomials are special cases of Dickson polynomials which
have been intensively studied in connection with the theory of permutation
polynomials over a finite field Fq, the main result being that a Dickson
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polynomial is a permutation polynomial over Fq if and only if its degree is
relatively prime to q2−1 (see [L-N, Theorem 7.16]). However, the Chebyshev
polynomials that will be considered here have degrees dividing q − 1.

The connection between Chebyshev polynomials and certain subfields of
the Hermitian function field is explored here in both ways, i.e., we derive
properties of these function fields from properties of Chebyshev polynomials
(see Theorems 3.1 and 4.1) and conversely, we get properties of certain
Chebyshev polynomials from the function fields considered (see Section 6).
We also give alternate proofs for the genus formulas in [G-S-X, Example 5.5]
(see Theorems 4.1 and 5.1).

2. Preliminaries. As before we denote by K = Fq2 the finite field with
q2 elements and by H the Hermitian function field given in (1.3). We will
always assume that charK = p 6= 2.

For a generator a of K× = K \ {0} (i.e., a is a (q2 − 1)th root of unity),
let C be the group of automorphisms of H with 2(q2−1) elements generated
as below:

(2.1) C = 〈ε, ω〉
with ε(x) = ax, ε(y) = aq+1y and ω(x) = x/y, ω(y) = 1/y.

For a divisor m of q2 − 1 we denote by G the subgroup of C with 2m
elements given by

(2.2) G = 〈λ, ω〉 with λ = ε(q2−1)/m.

The subfields of the Hermitian function field we are interested in here
are the fixed fields HG under the automorphism group G in the following
two cases:

Case 1: m is a divisor of q − 1.
Case 2: m is a divisor of q + 1.

It will turn out that in both cases the field HG can be described by
equations involving Chebyshev polynomials.

Definition 2.1. For a natural number n ∈ N, the nth Chebyshev poly-
nomial Φn(T ) ∈ Z[T ] is the polynomial (monic of degree n) expressing
Xn+X−n in the variable T = X+X−1, where X denotes a transcendental
element over Q.

3. Chebyshev polynomials. The relation between the polynomials
defined above and the classical ones (i.e., the ones expressing cosnθ as a
polynomial in cos θ) is clear; just set X = exp(iθ) (see [R]). We have Φ1(T ) =
T , Φ2(T ) = T 2 − 2, Φ3(T ) = T 3 − 3T and Φ4(T ) = T 4 − 4T 2 + 2. We have
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the following recursion formula:

(3.1) Φn(T ) = TΦn−1(T )− Φn−2(T ) for n ≥ 3.

From (3.1) it follows that

(3.2) Φn(T ) = (T 2 − 2)Φn−2(T )− Φn−4(T ) for n ≥ 5.

The polynomials which will play a role in the next sections are Φn(T )−2
and Φn(T ) + 2. From (3.2) one derives the following recursion formulas:

(3.3) Φn(T )− 2

= (T 2 − 2)(Φn−2(T )− 2)− (Φn−4(T )− 2) + 2(T − 2)(T + 2)

and

(3.4) Φn(T ) + 2

= (T 2 − 2)(Φn−2(T ) + 2)− (Φn−4(T ) + 2)− 2(T − 2)(T + 2).

From (3.3) one sees that T − 2 divides Φn(T ) − 2 if n is odd, and T 2 − 4
divides Φn(T )− 2 if n is even.

From (3.4) one sees that T + 2 divides Φn(T ) + 2 if n is odd. Clearly, if
n is even then Φn(T ) + 2 is a square of a polynomial in T since

Xn +X−n + 2 = (Xn/2 +X−n/2)2.

Our aim is to determine the quotient in all the cases above. It will turn
out that these quotients are squares of polynomials in Z[T ]. To prove this we
consider a much more general situation. For three polynomials A(T ), P0(T )
and P1(T ) with integer coefficients we define

Ψ0(T ) = A(T )P0(T )2, Ψ1(T ) = A(T )P1(T )2,

F (T ) = P0(T )2 + P1(T )2 − TP0(T )P1(T ).

For each k ≥ 1 we define recursively

(3.5) Ψk+1(T ) = (T 2 − 2)Ψk(T )− Ψk−1(T ) + 2A(T )F (T ).

It then follows from (3.5) that A(T ) divides Ψk(T ) for all k ≥ 0. The
next theorem determines the quotient.

Theorem 3.1. With notations as above we have

Ψk(T ) = A(T )Pk(T )2,

where Pk(T ) ∈ Z[T ] is determined recursively by

(3.6) Pk+1(T ) = TPk(T )− Pk−1(T ) for k ≥ 1.

P r o o f. Factoring out A(T ) in (3.5), we have to prove that the polyno-
mials defined in (3.6) satisfy

(3.7) Pk+1(T )2 = (T 2 − 2)Pk(T )2 − Pk−1(T )2 + 2F (T ).
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Substituting (3.6) in (3.7), we need to show that for all k ≥ 1,

(3.8) TPk(T )Pk−1(T ) = Pk−1(T )2 + Pk(T )2 − F (T ).

We will prove that (3.8) holds by induction on k, the case k = 1 following
from the very definition of the polynomial F (T ). Now we want to prove that

(3.9) TPk+1(T )Pk(T ) = Pk(T )2 + Pk+1(T )2 − F (T ).

Again substituting (3.6) in (3.9), we need to prove that

TPk(T )Pk−1(T ) = Pk−1(T )2 + Pk(T )2 − F (T ).

The theorem then follows from the induction hypothesis.

Remark 3.2. For Chebyshev polynomials (shifted by ± 2) Theorem 3.1
applies with the following particular choices of the polynomials A(T ), P0(T )
and P1(T ).

Case Φn(T ) − 2: If n = 2k + 1 is an odd integer, we set Ψk(T ) =
Φ2k+1(T )− 2 and we choose A(T ) = T − 2, P0(T ) = 1 and P1(T ) = T + 1.
If n = 2k + 2 is an even integer, we set Ψk(T ) = Φ2k+2(T )− 2 and we take
A(T ) = T 2 − 4, P0(T ) = 1 and P1(T ) = T .

Case Φn(T ) + 2: If n = 2k + 1 is an odd integer, we set Ψk(T ) =
Φ2k+1(T )+2 and we choose A(T ) = T +2, P0(T ) = 1 and P1(T ) = T −1. If
n = 2k + 2 is an even integer, we set Ψk(T ) = Φ2k+2(T ) + 2 and we choose
A(T ) = 1, P0(T ) = T and P1(T ) = T 2 − 2.

Of course, in all cases above one has to compute the corresponding func-
tion F (T ) and to show that (3.5) coincides with (3.3) or (3.4).

4. The case m divides q − 1. We denote F = K(xq−1, yq−1). Clearly,
the extension H|F is cyclic of degree q−1. For a divisor m of q−1 we denote
by E1 the unique intermediate field of H|F satisfying [H : E1] = m. The
genus g(E1) of this intermediate field is given by (see [G-S-X, Corollary 4.9])

(4.1) g(E1) = 1
2n(q + 1− d),

where n = (q − 1)/m and d = gcd(m, q + 1).
Since m is a divisor of q − 1, we have d = 1 if m is odd, and d = 2 if m

is even.
We denote by Eω1 the fixed subfield of E1 under ω, where ω is the auto-

morphism given in (2.1) (i.e., Eω1 = HG). The genus g(Eω1 ) is given by (see
[G-S-X, Theorem 5.4])

(4.2) g(Eω1 ) = 1
4n(q + 1− d−m),

with notations as in (4.1).
Applying the Riemann–Hurwitz formula to the degree 2 extension E1|Eω1

and using (4.1) and (4.2), we conclude that there are exactly q+1 places that
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ramify in the extension E1|Eω1 . The next theorem gives an alternate proof
that exactly q + 1 places ramify in E1|Eω1 (by describing them explicitly)
and hence we also have an alternate proof of the genus formula in (4.2). This
new approach will be based on the property of (shifted by two) Chebyshev
polynomials given in Theorem 3.1 (see Remark 3.2).

Theorem 4.1. With notations as at the beginning of this section, there
are exactly q + 1 places of Eω1 that ramify in the extension E1|Eω1 . These
places are the zeros in Eω1 (each of them simple) of the function ym+y−m−2.

P r o o f. For brevity we will prove the theorem only in the case where
n = (q − 1)/m is an odd integer. We start with two lemmas (case n = 1).

Lemma 4.2. Let F = K(xq−1, yq−1) and let Fω be its fixed subfield under
the automorphism ω. Then Fω is a rational function field and we have Fω =
K(x2/y).

P r o o f. It is easily verified that the function x2/y is invariant under
the group G described in (2.2) with m = q − 1; i.e., we have x2/y ∈ Fω.
Computing the pole divisor of x2/y in the Hermitian function field H, we
get

div∞(x2/y) = (q − 1)P∞ + (q − 1)P0,

where P∞ is the unique pole of x in H and P0 is the unique common zero
in H of the functions x and y.

Hence [H : K(x2/y)] = 2(q− 1) and since [H : Fω] = 2(q− 1), the result
follows.

The next lemma proves Theorem 4.1 for the case m = q − 1 (i.e., for
n = 1).

Lemma 4.3. There are exactly q + 1 places of Fω that ramify in the
extension F |Fω and they are the zeros in Fω (each of them simple) of the
function yq−1 + y−(q−1) − 2.

P r o o f. From (4.1) and Lemma 4.2, we have

g(F ) = (q − 1)/2 and g(Fω) = 0.

The assertion on the number of ramified places then follows from Hurwitz’s
formula for the extension F |Fω (although we prove this assertion also below
while describing the ramified places explicitly).

The extension Fω|K(yq−1 + y−(q−1)) is a Kummer extension of degree
q + 1 with generator x2/y satisfying

(4.3) (x2/y)q+1 = yq−1 + y−(q−1) + 2.



306 A. Garcia and H. Stichtenoth

We set t = yq−1+y−(q−1) and consider the degree 2 extension K(yq−1)|K(t).
It is easily seen that

(4.4) (2yq−1 − t)2 = (t+ 2)(t− 2).

From (4.4) we see that ramification in the extension K(yq−1)|K(t) occurs
exactly at the zero of t + 2 and at the zero of t − 2. Now from (4.3) we
see that the zero of t+ 2 is fully ramified in Fω|K(t) and hence unramified
in the extension F |Fω. Again from (4.3), the zero of t − 2 is unramified in
Fω|K(t) and hence we have q+1 places of Fω that are zeros of the function
t − 2 and all of them are simple. Clearly, these are the places of Fω that
ramify in F |Fω.

We will use lower-case letters to denote reduction mod p = charK; i.e.,
ϕn(T ) and pk(T ) ∈ Fp[T ] are the reductions of Φn(T ) and Pk(T ), respec-
tively.

Now we return to the proof of Theorem 4.1. As already mentioned we
will restrict ourselves to the case where n = (q − 1)/m is an odd inte-
ger. As before we denote by Φn(T ) the Chebyshev polynomial of degree n.
A generating equation for the extension Eω1 |Fω of degree n is

(4.5) ϕn(u) = yq−1 + y−(q−1), where u = ym + y−m.

From (4.5) and Remark 3.2, we get

(4.6) yq−1 + y−(q−1) − 2 = (u− 2)pk(u)2 with k = (n− 1)/2.

From Remark 3.2 and the recursion formula (3.6) one has Pj(2) = 2j + 1
for all j. In particular for k = (n− 1)/2 we have

Pk(2) = n 6≡ 0 (mod p).

This shows that u = 2 is a simple root of the right hand side in (4.6).
It follows from Lemma 4.3 that the places of Eω1 that ramify in the

extension E1|Eω1 are among the zeros of the function yq−1 + y1−q − 2. The
theorem now follows from equation (4.6).

Remark 4.4. As before we assume that n is odd. From (4.3) and (4.5) one
sees that the field Eω1 can be generated by two functions u and v satisfying
the irreducible equation (i.e., the curve given below is a maximal curve
having Eω1 as its function field)

(4.7) vq+1 = ϕn(u) + 2.

An explicit description of the field E1 was already obtained in [G-S-X, Ex-
ample 6.3].

5. The case m divides q + 1. We denote here by E2 the unique inter-
mediate field of the extension H|K(y) such that [H : E2] = m, m being a
divisor of q+1, and by Eω2 the fixed subfield of E2 under the automorphism
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ω (i.e., Eω2 = HG). It is easily seen that G is an abelian group in this case.
The extension Hω|K(z), with z = y + y−1, is a Kummer extension of de-
gree q + 1 having x + ω(x) as a Kummer generator. We have the following
equations:

(5.1) (x+ ω(x))q+1 = (y(q−1)/2 + y−(q−1)/2)(z + 2)(q+1)/2

and

(5.2) (x+ ω(x))q+1 = (z + 2) + (z + 2)q + (yq−1 + y−(q−1) − 2).

Equation (5.1) follows from

(x+ ω(x))q+1 =
xq+1

y(q+1)/2

(
(y + 1)2

y

)(q+1)/2

and (5.2) follows from

(x+ ω(x))q+1 = (yq + y)(1 + y−1 + y−q + y−(q+1)).

We now consider the extension K(y)|K(z) of degree 2. This extension is
described by

(5.3) (2y − z)2 = (z + 2)(z − 2).

Equation (5.3) shows that the ramified places in the extension K(y)|K(z)
are exactly the zero of z+ 2 and the zero of z− 2. The places of K(y) above
these two places are the zero of y + 1 and the zero of y − 1, respectively.
From the generating equation of H|K(y),

xq+1 = y + yq,

we see that these two places of K(y) are unramified in the extension H|K(y).
The next theorem gives an alternate proof for the genus formula in

[G-S-X, Example 5.5].

Theorem 5.1. With notations as at the beginning of this section, we
have

g(Eω2 ) =
{

(q − 3)(q + 1−m)/(4m) if m is even,
((q − 3)(q + 1−m) + (q + 1))/(4m) if m is odd.

P r o o f. We first determine some of the ramified places in the extension
Eω2 |K(z) of degree (q+ 1)/m. We have exactly q+ 1 places of K(y) that are
ramified in the extension H|K(y) and all of them are fully ramified. Those
places of K(y) are the zero of y, the pole of y and the zero of y − α, where
αq−1 = −1. This gives us (q + 1)/2 fully ramified places in the extension
Eω2 |K(z), since we have the identification of the zero of y with the pole of y
(both being the places of K(y) above the pole of z) and also the identification
of the zero of y−α with the zero of y−α−1 (both being the places of K(y)
above the zero of z−(α+α−1)). It follows from equation (5.1) that the zero of
z−2 is unramified in Eω2 |K(z). Apart from the (q+1)/2 fully ramified places
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mentioned before, the other possible ramification in the extension Eω2 |K(z)
must then occur over the zero of the function z + 2 (see (5.3)). Again, from
(5.1) we deduce the following Kummer equation for the extension Eω2 |K(z):

[(x+ ω(x))m](q+1)/m = (y(q−1)/2 + y−(q−1)/2)(z + 2)(q+1)/2.

From the theory of Kummer extensions [S, Prop. III.7.3] we then find
that the ramification index e of the zero of z + 2 in the extension Eω2 |K(z)
is given by

e =
(q + 1)/m

gcd((q + 1)/m, (q + 1)/2)
=
{

1 if m is even,
2 if m is odd.

Now the theorem follows from the Hurwitz genus formula applied to the
extension Eω2 |K(z).

We conclude this section with a remark describing the field Eω2 explicitly.

Remark 5.2. From (5.2) we see that the field Eω2 can be generated by
two functions v and u satisfying the irreducible equation (i.e., the curve
given below is a maximal curve having Eω2 as its function field)

v(q+1)/m = u+ uq + ϕq−1(u− 2)− 2,

where ϕq−1(T ) is the reduction modulo p of the Chebyshev polynomial.

An explicit description of the field E2 was already obtained in [G-S-X,
Example 6.3].

6. Properties of (reduced) Chebyshev polynomials. We will use
here the function fields of Sections 4 and 5 to derive certain properties of the
associated Chebyshev polynomials. We start with a separability property:

Theorem 6.1. With notations as before, we have:

(a) If n is an odd divisor of q − 1 then

ϕn(T ) + 2 = (T + 2)p(T )2,

where p(T ) ∈ Fp[T ] is a separable polynomial of degree (n− 1)/2 having all
roots in Fq2 such that p(−2) 6= 0.

(b) The polynomial ϕ(q−1)/2(T ) is a separable polynomial having all roots
in Fq2 such that ϕ(q−1)/2(−2) 6= 0.

P r o o f. (a) The polynomial p(T ) is just the polynomial pk(T ) with k =
(n− 1)/2 obtained from the recursion formula (3.6) with the choice P0(T ) =
1 and P1(T ) = T − 1 (see Remark 3.2). From (3.6) and the choices of P0(T )
and P1(T ) above one deduces that

pk(−2) = (−1)k(2k + 1) = (−1)kn 6= 0.

Now we are going to show that p(T ) is indeed separable. Equation (4.7)
shows that Eω1 |K(u) is a Kummer extension of degree q + 1 and the genus
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g(Eω1 ) is given by (4.2) with d = 2, since m is even in our case. Computing
also the genus of Eω1 using [S, Prop. III.7.3], we conclude that pk(T ) is a
separable polynomial.

(b) From (5.1) we have the following equation for the maximal curve
associated with field Hω (notations as in Remark 5.2):

vq+1 = u(q+1)/2ϕ(q−1)/2(u− 2).

From Theorem 5.1 with m = 1, we have g(Hω) = (q − 1)2/4 . Again,
computing also the genus of Hω using [S, Prop. III.7.3], we get the desired
result on the separability of ϕ(q−1)/2(T ).

The assertions on the roots belonging to Fq2 follow since no place of
degree 3 of H ramifies in the extensions considered (see [G-S-X]). They also
follow from Sections 4 and 5 here.

For a polynomial ϕ(T ) we set

N(ϕ) = #{α ∈ Fq2 | ϕ(α) ∈ Fq}.
Clearly we have N(ϕ) ≤ q degϕ(T ). The next theorem determines N(ϕ) for
certain Chebyshev polynomials and it turns out that this number is about
half the upper bound q degϕ(T ).

Theorem 6.2. With notations as above, we have:

(a) If n is an odd divisor of q − 1 then

N(ϕn) =
q(n+ 1)− (n− 1)

2
.

(b) For the Chebyshev polynomial ϕq−1(T ) we have

N(ϕq−1) = (q2 + 1)/2.

P r o o f. (a) Equation (4.7) is the equation of a maximal curve over K
whose function field is Eω1 . Its number N(K) of rational points over K is
given by

N(K) = q2 + 1 + 2 · 1
4n(q − 1−m)q.

Using Theorem 6.1(a) and (4.7) one sees that the number of ramified places
in the extension Eω1 |K(u) is exactly n+ 1. Simple computations give

N(K)− (n+ 1)
q + 1

=
qn+ q − 2n

2
.

Since all the k + 1 zeros of ϕn(T ) + 2 belong to K, we have

N(ϕn) =
qn+ q − 2n

2
+ k + 1 =

q(n+ 1)− (n− 1)
2

.

(b) The proof here is similar to the one in part (a) above, using the fact
that the field Hω has genus (q−1)2/4 and that it can be given by (notations
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as in Remark 5.2)

vq+1 = u+ uq + ϕq−1(u− 2)− 2.

Notice that α+ αq has values in Fq for α ∈ Fq2 .

Remark 6.3. For an odd divisor n of q− 1 or for n = q− 1, we consider
the curve given by

vq + v = ϕn(u).
Its genus g and its number N of K-rational points (which is roughly half of
Weil’s upper bound) are

g =
(q − 1)(n− 1)

2
and N = 1 + qN(ϕn),

where N(ϕn) is given in Theorem 6.2.

Theorem 6.4. Let p be an odd prime number and q be a power of p.
Then the polynomial

Φq−1(T − 2) ∈ Z[T ]
is such that all coefficients of the monomials T j , with 1 < j < (q + 1)/2,
are multiples of the prime number p.

P r o o f. From (5.1) and (5.2) we get

(y(q−1)/2 +y−(q−1)/2)(z+2)(q+1)/2 = (z+2)+(z+2)q+(yq−1 +y−(q−1)−2).

Equivalently (with the notations of Remark 5.2) we have

(y(q−1)/2 + y−(q−1)/2)u(q+1)/2 = u+ uq + ϕq−1(u− 2)− 2.

Hence ϕq−1(u− 2) as a polynomial in u has the form

ϕq−1(u− 2) = 2− u+ (−1)(q−1)/22u(q+1)/2 + . . . ,

where the dots stand for higher degree terms.
This finishes the proof of the theorem.

Remark 6.5. Using the explicit description of Dickson polynomials given
in [L-N, (7.6), p. 355], one can write the assertion of Theorem 6.4 purely in
terms of binomial coefficients.
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