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A note on the generalized 3n+ 1 problem
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Introduction. We will study here some features of the generalized Col-
latz problem, i.e., given two natural numbers d, m with m > d ≥ 2 and
gcd(d,m) = 1, let Rd be a complete system of non-zero residues modulo d
and ϕ : N → Rd the canonical projection of N in Rd. Then we define the
Hasse function H : N→ N by (1)

(1) H(x) =
{
x/d if x ≡d 0,
(mx− ϕ(mx))/d otherwise,

and we investigate the dynamics of the orbits of x by H.
We will consider here the case m < dd/(d−1). An old conjecture states

that, in this situation, for all x ∈ N the orbit of x is bounded.
We remember that if d = 2 and Rd = {0,− 1} then we have the classical

Collatz problem, also called the Syracuse problem, or 3n+1 problem. In this
case we call H the Collatz function and denote it by T .

A very good recent review of the state of art in this problem can be
found in Chapter 1 of Wirsching’s book [Wir98]. We will present here only
a brief discussion of some questions related to our work.

Two natural problems arise:

(i) How “large” can the set of all “different” orbits of H be?
(ii) If the conjecture is false, how can an unbounded trajectory of H grow?

In a classical 1985 paper, Lagarias [Lag85] shows that (for the 3n + 1
case) there exist c1 > 0 and η ∈ (0, 1) such that

#{n ∈ N : n ≤ x, T k(n) > n, ∀k ≥ 1} ≤ c1x1−η.

From this result, it is reasonable to claim that if there exists an un-
bounded trajectory for this case then it cannot grow too slowly. In fact, in
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(1) In this note we use N to denote the set of non-negative integers (including 0) and

N∗ = N \ {0}.
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Corollary 1 of Section 2, we show that this is true, in the sense of Banach
density (for the definitions of density and Banach density of a subset of N
see Section 1).

In another work related to the second question, Korec [Kor94] proved,
also for the Collatz function, that the set

Mc = {y ∈ N : ∃n ∈ N, Tn(y) < yc}
has density one for all c > log4 3.

For the Hasse function H, when m < dd/(d−1), the important result of
Heppner [Hep78], which we will state in Section 1, shows that Korec’s result
is true in this situation for some c0 ∈ (0, 1). However, unlike Korec’s result,
we do not have an estimate for c0 in this case.

As to the first question, Korec and Znám in [KZ87] defined an equivalence
relation in N by

a ∼1 b iff there are integers n and m such that Tn(a) = Tm(b),

and showed that a complete set of representatives of N/∼1 has density zero.
Although this was proved for the 3n+ 1 context, it is not difficult to extend
it to the general situation of the Hasse function H, when m < dd/(d−1).

In our work we shall consider this general situation, i.e., the function
H when m < dd/(d−1), and we will improve the result of Korec and Znám;
precisely, we consider a stronger relation in N,

a ∼ b iff there is an integer k such that Hk(a) = Hk(b),

and we prove that a complete set of representatives of N/∼ has density zero.
Moreover, we show (Theorem 1) that such a set has Banach density zero.

A direct consequence is that any orbit O(n) under H has Banach density
zero (Corollary 1). This gives a more precise answer to question (ii) above
as we give here a direct measure of the orbits of H.

This paper comprises this introduction and 2 more sections. In Section 1
we shall state the basic definitions and state some fundamental results that
we will need later in the text. In Section 2 we will develop the necessary
tools to prove Theorem 1.

1. Basic results. Consider, as in the introduction, integers m, d with
m > d ≥ 2. Suppose that gcd(m, d) = 1 and m < dd/(d−1). Let Rd be
a complete system of non-zero residues modulo d and ϕ : N → Rd the
canonical projection of N in Rd.

We will study the dynamics induced in the set N∗ of positive integers by
Hasse’s function H : N∗ → N∗ defined by (1).

Since we are interested in studying “how large some subsets of N are”
(or “how small they are”), we introduce the concept of Banach density of a
subset of N. First, consider the simpler (and more usual) concept of density.
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Definition 1. A subset B ⊂ N has density µ if

lim
n→∞

#(B ∩ {1, . . . , n})
n

= µ.

When this limit exists it will be denoted by %(B). Although this concept
is very “natural”, we will use in this article a more subtle concept, which
gives a more uniform measure of the “size” of B.

Definition 2. The Banach density of a subset B ⊂ N is

lim sup
n→∞

(
max
a∈N∗

#(B ∩ {a, . . . , a+ n− 1})
n

)
.

The Banach density of B will be denoted by %b(B).

Of course, the Banach density of B always exists and if %(B) and %b(B)
exist then %(B) ≤ %b(B). Therefore, in order to show that B is “small” the
information %b(B) = 0 is more significant than %(B) = 0.

We now start the study of the dynamics of H.
The following function ` : N× N∗ → N will play an important role in

this note:

(2) `(n, k) = #{0 ≤ s ≤ k − 1 : Hs(n) ≡ 0 (mod d)}.
Lemma 1. If n, k and r are positive integers then

Hk(n+ rdk) = Hk(n) + rmk−`(n,k).

P r o o f. We proceed by induction in k. The case k = 0 is obvious. Assume
the result for k − 1. Then

Hk(n+ sdk) = H(Hk−1(n+ dsdk−1))(3)

= H(Hk−1(n) + dsmk−1−`(n,k−1)).

Now we note that Hk−1(n) ≡ Hk−1(n) + dsmk−1−`(n,k−1) (mod d), so
we have:

(i) If Hk−1(n) ≡ 0 (mod d) then Hk(n) = Hk−1(n)/d and `(n, k) =
`(n, k − 1) + 1, and, by the definition of H,

Hk(n+ sdk) =
Hk−1(n)

d
+ smk−1−`(n,k−1) = Hk(n) + smk−`(n,k).

(ii) If Hk−1(n) 6≡ 0 (mod d) then `(n, k) = `(n, k − 1) and a simple
calculation shows that

Hk(n+ sdk) = Hk(n) + smk−`(n,k).

As a direct consequence we have

Lemma 2. If Hk(n) = Hk(r) and `(n, k) = `(r, k) then for all s

Hk(n+ sdk) = Hk(r + sdk).
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Now we state an important result of Heppner.

Proposition 1 (Heppner). Let m, d,Rd and H be as above, with m <
dd/(d−1). There exist δ1 = δ1(m, d) and δ2 = δ2(m, d) in (0, 1) such that , if
N(k) = blogd(k)c and g(k) = #{n ≤ k : HN(k)(n) ≥ nk−δ1}, then g(k) is
O(kδ2).

The reader can find the proof of this proposition in [Hep78].

We will use this result on several occasions in this paper, the first time
to obtain

Proposition 2. Let B be a subset of {1, . . . , k} such that #B > k1−δ1 +
g(k) where δ1 and g are given by Heppner’s result. Then there are r1 and r2

in B, r1 6= r2, such that Hblogd(k)c(r1) = Hblogd(k)c(r2).

P r o o f. By Proposition 1, there is B1 ⊂ B such that #B1 > k1−δ1 and

Hblogd(k)c(s) < sk−δ1 ≤ k1−δ1 , ∀s ∈ B1.

Then, it follows from the pigeonhole principle that there are r1 and r2 in
B1 with r1 6= r2 and Hblogd(k)c(r1) = Hblogd(k)c(r2).

Note that if A is a subset of N which does not have zero Banach density
then there is a k ∈ N such that, for all x ∈ N∗, #(A∩ {x, . . . , x+ k − 1}) >
k1−δ1 + g(k), because g(k) is O(kδ2) and δ1 and δ2 lay in (0, 1).

We will use this observation in the next section.

2. Main results

Lemma 3 (Fundamental Lemma). Let A be a subset of N∗ and let x and
k in N∗ be such that

(4) #(A ∩ {x, x+ 1, . . . , x+ k − 1}) > 2(blogd(k)c+ 1)(k1−δ1 + g(k))

where δ1 and g(k) are given by Heppner’s result (Proposition 1). Then there
exist r1 6= r2 in A ∩ {x, x+ 1, . . . , x+ k − 1} such that Hblogd(k)c(r1) =
Hblogd(k)c(r2).

P r o o f. Put β = dblogd(k)c. Let z1 ∈ N∗ be such that z1β < x ≤ (z1+1)β.
Then y ∈ {x, . . . , x+ k − 1} clearly implies that either y−z1β or y−(z1+1)β
belongs to {1, . . . , k}.

Therefore, it follows from (4) and the pigeonhole principle that we can
choose z ∈ {z1, z1 + 1} such that if

B = B(k, z) = {1 ≤ s ≤ k : ∃q ∈ A, q − zdblogd(k)c = s}
then

#B > (blogd(k)c+ 1)(k1−δ1 + g(k)).
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Since `(·, blogd(k)c) ∈ {0, . . . , blogd(k)c}, we can apply once again the
pigeonhole principle to find a subset B1 of B with strictly more than k1−δ1 +
g(k) elements such that if u and v are in B1 then

`(u, blogd(k)c) = `(v, blogd(k)c).
Now, apply Proposition 2 in order to obtain s1 6= s2 in B1 such that

Hblogd(k)c(s1)=Hblogd(k)c(s2). Then, since `(s1, blogd(k)c)=`(s2, blogd(k)c),
it follows from Lemma 2 that

Hblogd(k)c(s1 + zβ) = Hblogd(k)c(s2 + zβ).

By the definition of B it is obvious that ri = si + zβ ∈ A for i = 1, 2,
and this concludes the demonstration.

Now we are ready to state and prove our main result.
Consider in N∗ the equivalence relation

(5) a ∼ b⇔ ∃k ∈ N, Hk(a) = Hk(b).

Let P be a complete set of representatives of N∗/∼.
It seems natural to consider P as a set of all the different orbits of H.

Now we show that this set is “small”.

Theorem 1. The Banach density of P is zero.

P r o o f. It is obvious that if u1 and u2 are distinct elements of P then
Hk(u1) 6= Hk(u2) for all k ∈ N. Thus, by the Fundamental Lemma, for all
a and k in N∗, we have

(6) #(P ∩ {a, . . . , a+ k − 1}) ≤ 2(blogd(k)c+ 1)(k1−δ1 + g(k)).

Since, by Proposition 1, g(k) is O(kδ2) and δ1 and δ2 belong to (0, 1) the
result follows when we take the limit k →∞ in (6).

An important, now trivial, consequence is

Corollary 1. The Banach density of the orbit O(n) under H is zero.

P r o o f. If O(n) is finite the result is obvious. If O(n) is infinite then, for
all u1 and u2 in O(n), with u1 6= u2, and for all k ∈ N, Hk(u1) 6= Hk(u2)
(otherwise, O(n) would be periodic). Then we can choose a complete set of
representatives P of N∗/∼ such that O(n) ⊂ P. Since %b(P) = 0 the result
follows.
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