A note on the generalized 3n + 1 problem

by

MANUEL V. P. GARCIA and FABIO A. TAL (São Paulo)

Introduction. We will study here some features of the generalized Collatz problem, i.e., given two natural numbers d, m with $m > d \ge 2$ and gcd(d,m) = 1, let R_d be a complete system of non-zero residues modulo dand $\varphi : \mathbb{N} \to R_d$ the canonical projection of \mathbb{N} in R_d . Then we define the Hasse function $H : \mathbb{N} \to \mathbb{N}$ by (¹)

(1)
$$H(x) = \begin{cases} x/d & \text{if } x \equiv_d 0, \\ (mx - \varphi(mx))/d & \text{otherwise} \end{cases}$$

and we investigate the dynamics of the orbits of x by H.

We will consider here the case $m < d^{d/(d-1)}$. An old conjecture states that, in this situation, for all $x \in \mathbb{N}$ the orbit of x is bounded.

We remember that if d = 2 and $R_d = \{0, -1\}$ then we have the classical Collatz problem, also called the *Syracuse problem*, or 3n + 1 problem. In this case we call H the Collatz function and denote it by T.

A very good recent review of the state of art in this problem can be found in Chapter 1 of Wirsching's book [Wir98]. We will present here only a brief discussion of some questions related to our work.

Two natural problems arise:

- (i) How "large" can the set of all "different" orbits of H be?
- (ii) If the conjecture is false, how can an unbounded trajectory of H grow?

In a classical 1985 paper, Lagarias [Lag85] shows that (for the 3n + 1 case) there exist $c_1 > 0$ and $\eta \in (0, 1)$ such that

 $\#\{n \in \mathbb{N} : n \le x, \ T^k(n) > n, \ \forall k \ge 1\} \le c_1 x^{1-\eta}.$

From this result, it is reasonable to claim that *if* there exists an unbounded trajectory for this case then it cannot grow too slowly. In fact, in

¹⁹⁹¹ Mathematics Subject Classification: 11B37, 11B05.

The second author supported by CNPq-Brazil.

^{(&}lt;sup>1</sup>) In this note we use \mathbb{N} to denote the set of non-negative integers (including 0) and $\mathbb{N}^* = \mathbb{N} \setminus \{0\}.$

^[245]

Corollary 1 of Section 2, we show that this is true, in the sense of Banach density (for the definitions of density and Banach density of a subset of \mathbb{N} see Section 1).

In another work related to the second question, Korec [Kor94] proved, also for the Collatz function, that the set

$$M_c = \{ y \in \mathbb{N} : \exists n \in \mathbb{N}, \ T^n(y) < y^c \}$$

has density one for all $c > \log_4 3$.

For the Hasse function H, when $m < d^{d/(d-1)}$, the important result of Heppner [Hep78], which we will state in Section 1, shows that Korec's result is true in this situation for some $c_0 \in (0, 1)$. However, unlike Korec's result, we do not have an estimate for c_0 in this case.

As to the first question, Korec and Znám in [KZ87] defined an equivalence relation in \mathbb{N} by

 $a \sim_1 b$ iff there are integers n and m such that $T^n(a) = T^m(b)$,

and showed that a complete set of representatives of \mathbb{N}/\sim_1 has density zero. Although this was proved for the 3n + 1 context, it is not difficult to extend it to the general situation of the Hasse function H, when $m < d^{d/(d-1)}$.

In our work we shall consider this general situation, i.e., the function H when $m < d^{d/(d-1)}$, and we will improve the result of Korec and Znám; precisely, we consider a stronger relation in \mathbb{N} ,

 $a \sim b$ iff there is an integer k such that $H^k(a) = H^k(b)$,

and we prove that a complete set of representatives of \mathbb{N}/\sim has density zero. Moreover, we show (Theorem 1) that such a set has Banach density zero.

A direct consequence is that any orbit $\mathcal{O}(n)$ under H has Banach density zero (Corollary 1). This gives a more precise answer to question (ii) above as we give here a direct measure of the orbits of H.

This paper comprises this introduction and 2 more sections. In Section 1 we shall state the basic definitions and state some fundamental results that we will need later in the text. In Section 2 we will develop the necessary tools to prove Theorem 1.

1. Basic results. Consider, as in the introduction, integers m, d with $m > d \ge 2$. Suppose that gcd(m, d) = 1 and $m < d^{d/(d-1)}$. Let R_d be a complete system of non-zero residues modulo d and $\varphi : \mathbb{N} \to R_d$ the canonical projection of \mathbb{N} in R_d .

We will study the dynamics induced in the set \mathbb{N}^* of positive integers by Hasse's function $H : \mathbb{N}^* \to \mathbb{N}^*$ defined by (1).

Since we are interested in studying "how large some subsets of \mathbb{N} are" (or "how small they are"), we introduce the concept of Banach density of a subset of \mathbb{N} . First, consider the simpler (and more usual) concept of density.

DEFINITION 1. A subset $B \subset \mathbb{N}$ has density μ if

$$\lim_{n \to \infty} \frac{\#(B \cap \{1, \dots, n\})}{n} = \mu.$$

When this limit exists it will be denoted by $\rho(B)$. Although this concept is very "natural", we will use in this article a more subtle concept, which gives a more uniform measure of the "size" of B.

DEFINITION 2. The Banach density of a subset $B \subset \mathbb{N}$ is

$$\limsup_{n \to \infty} \left(\max_{a \in \mathbb{N}^*} \frac{\#(B \cap \{a, \dots, a+n-1\})}{n} \right).$$

The Banach density of B will be denoted by $\rho_b(B)$.

Of course, the Banach density of *B* always exists and if $\rho(B)$ and $\rho_b(B)$ exist then $\rho(B) \leq \rho_b(B)$. Therefore, in order to show that *B* is "small" the information $\rho_b(B) = 0$ is more significant than $\rho(B) = 0$.

We now start the study of the dynamics of H.

The following function $\ell:\mathbb{N}\times\mathbb{N}^*\to\mathbb{N}$ will play an important role in this note:

(2)
$$\ell(n,k) = \#\{0 \le s \le k-1 : H^s(n) \equiv 0 \pmod{d}\}.$$

LEMMA 1. If n, k and r are positive integers then

$$H^k(n+rd^k) = H^k(n) + rm^{k-\ell(n,k)}.$$

Proof. We proceed by induction in k. The case k = 0 is obvious. Assume the result for k - 1. Then

(3)
$$H^{k}(n+sd^{k}) = H(H^{k-1}(n+dsd^{k-1}))$$
$$= H(H^{k-1}(n) + dsm^{k-1-\ell(n,k-1)}).$$

Now we note that $H^{k-1}(n)\equiv H^{k-1}(n)+dsm^{k-1-\ell(n,k-1)}\pmod{d},$ so we have:

(i) If $H^{k-1}(n) \equiv 0 \pmod{d}$ then $H^k(n) = H^{k-1}(n)/d$ and $\ell(n,k) = \ell(n,k-1) + 1$, and, by the definition of H,

$$H^{k}(n+sd^{k}) = \frac{H^{k-1}(n)}{d} + sm^{k-1-\ell(n,k-1)} = H^{k}(n) + sm^{k-\ell(n,k)}.$$

(ii) If $H^{k-1}(n) \not\equiv 0 \pmod{d}$ then $\ell(n,k) = \ell(n,k-1)$ and a simple calculation shows that

$$H^k(n+sd^k) = H^k(n) + sm^{k-\ell(n,k)}. \blacksquare$$

As a direct consequence we have

LEMMA 2. If
$$H^k(n) = H^k(r)$$
 and $\ell(n,k) = \ell(r,k)$ then for all s
 $H^k(n + sd^k) = H^k(r + sd^k).$

Now we state an important result of Heppner.

PROPOSITION 1 (Heppner). Let m, d, R_d and H be as above, with $m < d^{d/(d-1)}$. There exist $\delta_1 = \delta_1(m, d)$ and $\delta_2 = \delta_2(m, d)$ in (0, 1) such that, if $N(k) = \lfloor \log_d(k) \rfloor$ and $g(k) = \#\{n \le k : H^{N(k)}(n) \ge nk^{-\delta_1}\}$, then g(k) is $O(k^{\delta_2})$.

The reader can find the proof of this proposition in [Hep78].

We will use this result on several occasions in this paper, the first time to obtain

PROPOSITION 2. Let B be a subset of $\{1, \ldots, k\}$ such that $\#B > k^{1-\delta_1} + g(k)$ where δ_1 and g are given by Heppner's result. Then there are r_1 and r_2 in B, $r_1 \neq r_2$, such that $H^{\lfloor \log_d(k) \rfloor}(r_1) = H^{\lfloor \log_d(k) \rfloor}(r_2)$.

Proof. By Proposition 1, there is $B_1 \subset B$ such that $\#B_1 > k^{1-\delta_1}$ and

 $H^{\lfloor \log_d(k) \rfloor}(s) < sk^{-\delta_1} \le k^{1-\delta_1}, \quad \forall s \in B_1.$

Then, it follows from the pigeonhole principle that there are r_1 and r_2 in B_1 with $r_1 \neq r_2$ and $H^{\lfloor \log_d(k) \rfloor}(r_1) = H^{\lfloor \log_d(k) \rfloor}(r_2)$.

Note that if A is a subset of N which does not have zero Banach density then there is a $k \in \mathbb{N}$ such that, for all $x \in \mathbb{N}^*$, $\#(A \cap \{x, \ldots, x + k - 1\}) > k^{1-\delta_1} + g(k)$, because g(k) is $O(k^{\delta_2})$ and δ_1 and δ_2 lay in (0, 1).

We will use this observation in the next section.

2. Main results

LEMMA 3 (Fundamental Lemma). Let A be a subset of \mathbb{N}^* and let x and k in \mathbb{N}^* be such that

(4)
$$\#(A \cap \{x, x+1, \dots, x+k-1\}) > 2(\lfloor \log_d(k) \rfloor + 1)(k^{1-\delta_1} + g(k))$$

where δ_1 and g(k) are given by Heppner's result (Proposition 1). Then there exist $r_1 \neq r_2$ in $A \cap \{x, x+1, \ldots, x+k-1\}$ such that $H^{\lfloor \log_d(k) \rfloor}(r_1) = H^{\lfloor \log_d(k) \rfloor}(r_2)$.

Proof. Put $\beta = d^{\lfloor \log_d(k) \rfloor}$. Let $z_1 \in \mathbb{N}^*$ be such that $z_1\beta < x \leq (z_1+1)\beta$. Then $y \in \{x, \ldots, x+k-1\}$ clearly implies that either $y-z_1\beta$ or $y-(z_1+1)\beta$ belongs to $\{1, \ldots, k\}$.

Therefore, it follows from (4) and the pigeonhole principle that we can choose $z \in \{z_1, z_1 + 1\}$ such that if

$$B = B(k, z) = \{1 \le s \le k : \exists q \in A, \ q - zd^{\lfloor \log_d(k) \rfloor} = s\}$$

then

$$#B > (\lfloor \log_d(k) \rfloor + 1)(k^{1-\delta_1} + g(k)).$$

Since $\ell(\cdot, \lfloor \log_d(k) \rfloor) \in \{0, \ldots, \lfloor \log_d(k) \rfloor\}$, we can apply once again the pigeonhole principle to find a subset B_1 of B with strictly more than $k^{1-\delta_1} + g(k)$ elements such that if u and v are in B_1 then

$$\ell(u, |\log_d(k)|) = \ell(v, |\log_d(k)|).$$

Now, apply Proposition 2 in order to obtain $s_1 \neq s_2$ in B_1 such that $H^{\lfloor \log_d(k) \rfloor}(s_1) = H^{\lfloor \log_d(k) \rfloor}(s_2)$. Then, since $\ell(s_1, \lfloor \log_d(k) \rfloor) = \ell(s_2, \lfloor \log_d(k) \rfloor)$, it follows from Lemma 2 that

$$H^{\lfloor \log_d(k) \rfloor}(s_1 + z\beta) = H^{\lfloor \log_d(k) \rfloor}(s_2 + z\beta).$$

By the definition of B it is obvious that $r_i = s_i + z\beta \in A$ for i = 1, 2, and this concludes the demonstration.

Now we are ready to state and prove our main result.

Consider in \mathbb{N}^* the equivalence relation

(5)
$$a \sim b \Leftrightarrow \exists k \in \mathbb{N}, \ H^k(a) = H^k(b).$$

Let \mathcal{P} be a complete set of representatives of \mathbb{N}^*/\sim .

It seems natural to consider \mathcal{P} as a set of all the different orbits of H. Now we show that this set is "small".

THEOREM 1. The Banach density of \mathcal{P} is zero.

Proof. It is obvious that if u_1 and u_2 are distinct elements of \mathcal{P} then $H^k(u_1) \neq H^k(u_2)$ for all $k \in \mathbb{N}$. Thus, by the Fundamental Lemma, for all a and k in \mathbb{N}^* , we have

(6)
$$\#(\mathcal{P} \cap \{a, \dots, a+k-1\}) \le 2(\lfloor \log_d(k) \rfloor + 1)(k^{1-\delta_1} + g(k)).$$

Since, by Proposition 1, g(k) is $O(k^{\delta_2})$ and δ_1 and δ_2 belong to (0, 1) the result follows when we take the limit $k \to \infty$ in (6).

An important, now trivial, consequence is

COROLLARY 1. The Banach density of the orbit $\mathcal{O}(n)$ under H is zero.

Proof. If $\mathcal{O}(n)$ is finite the result is obvious. If $\mathcal{O}(n)$ is infinite then, for all u_1 and u_2 in $\mathcal{O}(n)$, with $u_1 \neq u_2$, and for all $k \in \mathbb{N}$, $H^k(u_1) \neq H^k(u_2)$ (otherwise, $\mathcal{O}(n)$ would be periodic). Then we can choose a complete set of representatives \mathcal{P} of \mathbb{N}^*/\sim such that $\mathcal{O}(n) \subset \mathcal{P}$. Since $\varrho_b(\mathcal{P}) = 0$ the result follows. \blacksquare

References

- [Hep78] E. Heppner, Eine Bemerkung zum Hasse-Syracuse Algorithmus, Arch. Math. (Basel) 31 (1978), 317–320.
- [Kor94] I. Korec, A density estimate for the 3x + 1 problem, Math. Slovaca 44 (1994), 85–89.

[KZ87] I. Korec and Š. Znám, A note on the 3x + 1 problem, Amer. Math. Monthly 94 (1987), 771–772.

 $[{\tt Lag85}] \quad {\tt J. Lagarias}, \ The \ 3x+1 \ problem \ and \ its \ generalizations, \ ibid. \ 92 \ (1985), \ 1-23.$

Manuel V. P. Garcia Inst. Mat. e Est. -USP CP 66281 CEP 05315-970 São Paulo, SP - Brazil E-mail: mane@ime.usp.br Fabio A. Tal C. de C. Moleculares - USP CP 66281 CEP 05315-970 São Paulo, SP - Brazil E-mail: fabiotal@ime.usp.br

Received on 9.11.1998 and in revised form on 19.3.1999

(3503)