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Elliptic curves with non-trivial 2-adic Iwasawa µ-invariant

by

Kenneth Kramer (Flushing, NY)

1. Introduction. Ralph Greenberg [1] has explained a very general
framework for Iwasawa theory which includes as a special case the study of
Selmer groups of elliptic curves over cyclotomic towers initiated by Barry
Mazur in [3]. Suppose that E is an elliptic curve defined over Q, and let p
be a prime at which E has height 1 (i.e. good ordinary, or multiplicative)
reduction. Write Q∞ for the cyclotomic Zp-extension of Q. The p∞-Selmer
group Sel(Q∞, E[p∞]) is a subgroup of H1(Q∞, E[p∞]) defined by imposing
certain local conditions at each completion of Q∞. Like the classical Selmer
group to which it is closely related [1, §2], the p∞-Selmer group serves to
control the Mordell–Weil group E(Q∞) of Q∞-rational points on E via the
inclusion

E(Q∞)⊗Qp/Zp ↪→ Sel(Q∞, E[p∞]).
The Pontryagin dual XE(Q∞) = Hom(Sel(Q∞, E[p∞]),Qp/Zp) is a

module over the Iwasawa algebra Λ = Zp[[T ]], where as usual the action
of T is given by the action of γ − 1 for a choice of topological generator γ
of Gal(Q∞/Q). A conjecture of Mazur implies that XE(Q∞) is a finitely
generated torsion Λ-module; it is known to hold when E is modular, and in
particular when E is semistable ([2, §1]). If so, we have

XE(Q∞) ∼ Λ/(pm)×
t∏

i=1

Λ/(fi(T )ai),

up to finite kernel and cokernel, where each fi(T ) ∈ Λ is an irreducible
polynomial of positive degree, and µp(E) = m defines the p-adic Iwasawa
µ-invariant of E.

In the course of preparing the survey article on Iwasawa theory of elliptic
curves cited above, Greenberg observed [2, Prop. 5.13] that if E admits a
Q-isogeny φn of degree 2n whose kernel is cyclic as an abelian group and
satisfies certain 2-adic and archimedean conditions, then µ2(E) ≥ n. These
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conditions require that upon extension of the base to Ql for l = 2 or l =∞,
the kernel of φn be contained in a special subgroup W (n)

l of E[2n] which we
define more precisely in Sections 2 and 3 below. For n ≤ 4, it is well known
that the modular curve X0(2n) has genus zero, and therefore gives rise to
a family of infinitely many elliptic curves defined over Q, each admitting a
cyclic Q-isogeny of degree 2n. Greenberg found examples of such isogenies
satisfying the additional 2-adic and archimedean conditions. There are no
cyclic Q-isogenies of degree 32, in view of the fact that the only rational
points on X0(32) are the cusps.

In this note, we modify the standard family of elliptic curves arising from
X0(2n) for 1 ≤ n ≤ 4, to impose the desired 2-adic and archimedean be-
havior. Thus we obtain (see Section 5) a family of semistable elliptic curves
E such that µ2(E) ≥ n. It would follow from [2, Conjecture 1.11] that this
family includes all semistable curves with µ2(E) ≥ n, and moreover that
µ2(E) ≤ 4. Some elementary observations about the construction of cyclic
isogenies make the computational task quite manageable. An amusing con-
sequence of these observations is that for n = 2, 3, 4, the relevant isogenies
occur in pairs. We have checked our computations with the help of the
symbolic algebra program, Maple.

We are indebted to the referee for raising the question of whether or not
these families admit additional sections beyond those already imposed. In
Section 6, we show that there are essentially no additional sections, thanks
to a suggestion by Armand Brumer that the rank formulas of T. Shioda
[4, §1, §2] should apply.

It is a pleasure to thank Ralph Greenberg for bringing his criterion
for large µ-invariant to our attention, and for generously sharing his ideas
about it.

2. The 2-adic condition. Let GQ = Gal(Q/Q) be the absolute Galois
group of Q, and write Dp = D(P/p) ⊂ GQ for the decomposition group
at p, depending on the choice of a prime P over p in Q. We may identify
Dp with the absolute Galois group of the completion Qp. Suppose that E
is an elliptic curve over Q having height 1 reduction at p. The kernel of
reduction E1(QP) admits an action of Dp, and its Tate module Tp(E1) is a
free Zp-module of rank 1. With respect to a generating set for Tp(E) created
by extension from a generator for Tp(E1), the action of the inertia group
I(P/p) takes the form

(1)
(
χp ∗
0 1

)
,

where χp is the cyclotomic character giving the action of Galois on p-power
roots of unity. Let Wp denote the Dp-module Tp(E1), and write W (n)

p =
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E1[pn] for the nth layer of Wp. In particular, W (n)
2 is the special subgroup

of E[2n] over Q2 which must contain Kerφn in Greenberg’s criterion for
µ2(E) ≥ n.

Consider a minimal model for E over Z in generalized Weierstrass form,

(2) E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

and let E1 be the kernel of reduction modulo 2. In order that E have height
1 reduction modulo 2, it is necessary and sufficient that the Hasse invariant
a1 (mod 2) not vanish. Indeed, in terms of a parameter z for the formal
group associated with E1, multiplication by 2 is given by

[2]z = 2z − a1z
2 − 2a2z

3 + . . .

(See [5, Chap. IV] for standard formulas.) If a1 is odd, there is a non-zero
solution to [2]z = 0 in Z2, satisfying z ∈ 2a−1

1 + 8Z2. Furthermore, the
x-coordinate of the corresponding point of order 2 has the form

x0 =
1
z2 −

a1

z
− a2 + . . . ∈ −b2

4
+ 2Z2,

where b2 = a2
1 + 4a2 ≡ 1 (mod 4).

Given that a1 is odd, we may arrange by suitable translation of variables
in (2) that a3 = 0, as we now assume. Then the x-coordinates of the points
of order 2 are the roots of the cubic on the right side of the model

(3) y2 = x3 +
b2
4
x2 + a4x+ a6.

Suppose there is in fact a Q-rational point of order 2 with trivial reduction
modulo 2. Its abscissa has the form x0 = α/4, with α ∈ Z and α ≡ −1
(mod 4). Matching coefficients in the integral factorization

4x3 + b2x
2 + 4a4x+ 4a6 = (4x− α)(x2 + βx+ γ),

we find that β, γ ∈ 4Z. It follows that by further translation of x if necessary,
the model (3) may be brought to the form

(4) E : y2 = (x− a/4)(x2 − 4b),

with a, b ∈ Z and a ≡ −1 (mod 4). Although this last model is not integral,
it is easily transformed to an integral model by any substitution of the form
y 7→ y+sx/2, with s an odd integer. The resulting integral model is minimal
at least over Z2. For odd primes l this model is semistable if and only if l does
not divide both a and b. Then the model is also minimal over Zl. To save
space later on, models are given in the form (4), leaving it to the interested
reader to transform them to integral models.

3. The archimedean condition. We conform to the notation at the
start of Section 2, but with p = ∞ and P a place of Q over ∞. Denote by
τ a generator for the decomposition group D∞ = D(P/∞) ≈ Gal(C/R).
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Consider a model for E in Weierstrass form y2 = f(x). Because τ2 = 1 and
det τ = −1, there is a choice of generating set for T2(E) with respect to
which τ has a matrix representation of the form

(5) τ ∼
(−1 β

0 1

)
∈ GL2(Z2),

analogous to (1). Considering T2(E) as a D∞-module, let W∞ be the sub-
module belonging to the eigenvalue −1. Its nth layer W (n)

∞ is the special
subgroup of E[2n] over R which must contain Kerφn in Greenberg’s crite-
rion for µ2(E) ≥ n.

Lemma 1. The point of order 2 in W
(1)
∞ corresponds to the smallest real

root of f(x).

P r o o f. Consider the curve E(−1) : y2 = −f(−x), obtained from E
upon twisting by the quadratic character χ∞. Because W∞(E) ⊗ χ∞ is
fixed by τ , the point of order 2 in its first layer is arbitrarily divisible by 2
in E(−1)(R). It therefore lies on the connected component of the identity,
and its x-coordinate is the largest real root of f(−x). (Of course this is the
only real root when the discriminant ∆E is negative.) The result follows by
twisting back to E.

Remark. The matrix in (5) can be diagonalized over Z2 precisely when
β is even; that is, when τ acts trivially on E[2]. Equivalent conditions are
that f(x) have 3 real roots, or that ∆E be positive. Thus, sign(∆E) =
(−1)β . Using this point of view, one may determine the change in sign of
discriminant under an R-isogeny of degree 2, say φ : E → E′. Indeed, ∆E′

is negative if and only if ∆E > 0 and the x-coordinate of the point of order
2 in Kerφ is the middle root of f(x). However, we do not make any further
use of this information.

4. Lifting isogenies. Suppose that F and G are elliptic curves defined
over a field K of characteristic 0, related by an isogeny φF : F → G whose
kernel is a cyclic group of order pn, with n ≥ 1. Let us say that φE : E → G
is a lift of φF if φE is a cyclic isogeny of degree pn+1 defined over K, and
there exists an isogeny λ : E → F such that φE = φF ◦ λ.

Lemma 2. There is a one-to-one correspondence between pairs (E, φE)
such that E admits a cyclic isogeny φE of degree pn+1, and triples (F, φF , γ)
such that F admits cyclic isogenies φF and γ of degree pn and p, respectively ,
with KerφF ∩Ker γ = 0. Under this correspondence φE is the unique lift of
φF determined by γ.

P r o o f. We briefly describe the correspondence (E, φE) ↔ (F, φF , γ).
Given (E, φE), the isogeny φE determines a unique isogeny of degree p, say
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λ : E → F , whose kernel is the subgroup of order p in KerφE . Take γ to
be the dual of λ and φF to be the isogeny of F whose kernel is λ(KerφE).
Verify that φE is a lift of φF and KerφF ∩ Ker γ = 0. Conversely, given
(F, φF , γ), let λ : F → E be the dual of γ and define φE by φE = φF ◦ λ.
Check that KerφE is cyclic, using the fact that KerφF ∩Ker γ = 0.

Corollary 1. A cyclic isogeny φF : F → E of degree 2n admits a lift
of degree 2n+1 if and only if the discriminant ∆F of the curve F is a square
in K. If so, there are precisely two such lifts.

P r o o f. The curve F has at least one K-rational point of order 2, namely
the one in KerφF . In order that F admit an isogeny γ of degree 2 such that
KerφF ∩ Ker γ = 0, it is necessary and sufficient that all points of order 2
on F be K-rational. Equivalently, ∆F is a square in K. If so, there are two
choices for γ, each of which gives rise to a lift.

Assume now that E is defined over Q, and write Wl(E) for the special
submodule of the Tate module of E defined earlier. That is, if l = p is
non-archimedean, then E has height 1 reduction at p and Wp(E) = Tp(E1),
where E1 is the kernel of reduction; if l = ∞, then W∞(E) is the −1-
eigenspace for the action of complex conjugation on T2(E). We use the
notation PE = limP

(j)
E for an element of Tp(E) with P

(j)
E ∈ E[pj ] and

pP
(j+1)
E = P

(j)
E .

Lemma 3. Let φE be a cyclic isogeny of degree pn+1 which is a lift of the
isogeny φF of degree pn. In the non-archimedean case, KerφE = W

(n+1)
p (E)

if and only if KerφF = W
(n)
p (F ). In the archimedean case, suppose also that

p = 2. Then KerφE = W
(n+1)
∞ (E) if and only if KerφF = W

(n)
∞ (F ).

P r o o f. First we consider the non-archimedean case. Let λ be the isogeny
of degree p dual to γ in the correspondence of Lemma 2. Suppose that
KerφE = W

(n+1)
p (E), and choose a generator PE = limP

(j)
E for Wp(E).

Then Kerλ is generated by P (1)
E . If we define P (j)

F = λ(P (j+1)
E ), then P (j)

F ∈
F [pj ]. Let PF = limP

(j)
F ∈ Tp(F ). Clearly PF ∈ Wp(F ) because reduction

commutes with λ. Thus KerφF = λ(KerφE) = W
(n)
p (F ).

Assume, conversely, that KerφF = W
(n)
p (F ) and let PF = limP

(j)
F gen-

erate Wp(F ). Define P (j)
E = γ(P (j)

F ). Under the assumption that Ker γ ∩
KerφF = 0, the point P (j)

E has order pj . Because γ commutes with reduc-
tion, we find that PE = limP

(j)
E generates Wp(E), as above. But KerφE =

λ−1(KerφF ) is generated by γ(P (n+1)
F ) = P

(n+1)
E , and therefore equals

W
(n+1)
p (E).
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The argument above is easily modified to treat the archimedean case.
Note that W∞ is a submodule of T2, and that complex conjugation com-
mutes with the isogenies λ and γ.

5. The families. In this section, we arrive at families of semistable
elliptic curves defined over Q whose Selmer groups have non-trivial Iwasawa
µ2-invariant. Proposition 4 below, giving the family with µ2 ≥ 1, is obtained
by applying the archimedean condition of Lemma 1 to the family (4), thereby
guaranteeing the existence of a point of order 2 which is in the first layer of
W∞ and which is trivial modulo 2.

Proposition 1. A family of semistable curves defined over Q, such that
µ2 ≥ 1, has the form

(6) D : y2 = (x− a/4)(x2 − 4b),

with a, b ∈ Z, gcd(a, b) = 1, a ≡ −1 (mod 4), and either b < 0, or else
b > 0 and a < −8

√
b. The discriminant of D is ∆D = b(a2 − 64b)2, and is

minimal.

To create the families with larger µ2, we construct successive lifts of
the isogeny of degree 2 admitted by (6). Let us describe the strategy for
constructing these lifts. Suppose given a curve

(7) F : y2 = (x− an/4)(x2 − 4bn),

which admits a cyclic isogeny φn of degree 2n satisfying the desired 2-adic
and archimedean conditions; namely, Kerφn = W

(n)
l for l = 2,∞. According

to Corollary 1, we may lift φn to an isogeny of degree 2n+1 if and only if the
discriminant of F is a square. It is equivalent to make bn a square, which
can be done as long as n ≤ 3. If so, we choose a suitable parametrization for
all cases wherein bn is a square. By a simple modification of the standard
formulae for curves related by an isogeny of degree 2 in [5, Chap. III, ex.
4.5], we find an equation for the lifted curve E, as given by the following
lemma.

Lemma 4. Suppose that bn = β2 in the model (7) for F and let γ : F → E
be the isogeny of degree 2 whose kernel is generated by the point (2β, 0).
Then E has a model of the form y2 = (x − an+1/4)(x2 − 4bn+1), with
an+1 = an − 24β and bn+1 = β(8β − an).

The curve E admits an isogeny φn+1 which is a lift of φn and, under
the correspondence of Lemma 2, we have (E, φn+1)↔ (F, φn, γ). Replacing
β by −β provides the companion lift (E′, φ′n+1) promised by Corollary 1.
According to Lemma 3, both (E, φn+1) and (E′, φ′n+1) fulfill the desired
2-adic and real conditions.
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In each of the following families, we assume without further reminder
that the parameters are integers. To lift the curve of Proposition 1, we use
the parametrization a = c + 24d, b = d2 in (6) and apply Lemma 4 to find
the isogenous curve.

Proposition 2. A family of semistable curves C defined over Q, such
that ∆C > 0 and µ2 ≥ 2, has the form

(8) C : y2 = (x− c/4)(x2 + 4d(c+ 16d)),

with gcd(c, d) = 1, c ≡ −1 (mod 4), d > 0 and c+32d < 0. The discriminant
of C is ∆C = −d(c+16d)(c+32d)4, and is minimal. To obtain the companion
curve C ′, such that ∆C′ < 0, change the sign of d and replace c by c+ 48d
in the model for C.

An obvious choice of parametrization to make the discriminant of (8) a
square is c = −S2 − 16T 2, d = T 2. Applying Lemma 4 yields the isogenous
curve

(9) y2 =
(
x+

S2 + 24ST + 16T 2

4

)
(x2 − 4ST (S + 4T )2).

Its discriminant is ST (S+4T )2(S−4T )8. A model which perhaps is simpler
may be obtained by the further substitution S = (s+ t)/2, T = (s− t)/8.

Proposition 3. A family of semistable curves B defined over Q, such
that ∆B > 0 and µ2 ≥ 3, has the form

B : y2 =
(
x− t2 − 2s2

4

)(
x2 − s2(s2 − t2)

4

)
,

with s, t odd , gcd(s, t) = 1, s ≡ t (mod 8), and s > t > 0. The discriminant
of B is ∆B = s2t8(s2 − t2)/16, and is minimal. To obtain the companion
curve B′, such that ∆B′ < 0, interchange s and t in the model for B.

Necessary and sufficient conditions for the discriminant of (9) to be a
square are that S and T be squares. The substitution S = (m+ n)2/4, T =
(m − n)2/16 seems to yield a nice model for the isogenous curve resulting
from Lemma 4.

Proposition 4. A family of semistable curves A defined over Q, such
that ∆A > 0 and µ2 ≥ 4, has the form

A : y2 =
(
x− n4 − 2m4

4

)(
x2 − m4(m4 − n4)

4

)
,

with m,n odd , gcd(m,n) = 1, m ≡ n (mod 4), and m > n > 0. The
discriminant of A is ∆A = m4n16(m4 − n4)/16, and is minimal. To obtain
the companion curve A′, such that ∆A′ < 0, interchange m and n in the
model for A.
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6. Mordell–Weil groups. Let L1 = C(a, b) be the field of rational func-
tions in two variables, viewed as a parameter space for the curves in Propo-
sition 1. Similarly denote the parameter spaces L2 = C(c, d), L3 = C(s, t)
and L4 = C(m,n) for the curves in Propositions 2, 3 and 4 respectively. By
construction, each family may be viewed as a subset of the previous family.
We then have containments of the corresponding parameter spaces. Indeed,
L1 ⊂ L2 via the substitution a = c, b = −4d(c + 16d); L2 ⊂ L3 via the
substitution c = t2−2s2, d = (s2− t2)/16; and L3 ⊂ L4 via the substitution
s = m2, t = n2.

Proposition 5. The Mordell–Weil groups of these curves over their
parameter fields are finite, namely : D(L1) ≈ C(L2) ≈ Z/2 and B(L3) ≈
A(L4) ≈ Z/4.

First we determine the 2-power torsion in each of our families. The 2-
division field of C is the quadratic extension L2(θ), with θ2 = −4d(c+ 16d).
According to the Kummer theory of elliptic curves (see [5, Ch. X, Prop.
1.4]), there is an injection

∂ : C(L2)/2C(L2) ↪→ L2(θ)×/L2(θ)× 2

induced from the map (x, y) 7→ x + θ modulo squares. Applying ∂ to the
point of order 2 in C(L2), we have ∂(c/4, 0) = c + 4θ modulo squares.
But it is easy to check that c + 4θ is not a square in L2(θ). Therefore
C(L2)[2∞] ≈ Z/2. Because C is a form of D over L2, it also follows that
D(L1)[2∞] ≈ Z/2. There is a point of order 4, namely (−s2/2, st2i/4) in
B(L3) which propagates to the point P = (−m4/2,m2n4i/4) ∈ A(L4).
Using Kummer theory as above, one checks that P is not twice a point.
Therefore, B(L3)[2∞] and A(L4)[2∞] are cyclic groups of order 4.

Let α = m/n and consider the field of rational functions in one variable
K = C(α). We may descend the field of definition for A from L4 to K via
the model

(10) y2 =
(
x− 1− 2α4

4

)(
x2 − α4(α4 − 1)

4

)
.

In this form, the discriminant of A is ∆A = α4(α4−1)/16 and the j-invariant
is

jA =
16(16α8 − 16α4 + 1)3

α8 − α4 .

To control the rank of A(K), we restate some results of [4] in a convenient
form for our applications.

Lemma 5. Suppose more generally that K is the function field of tran-
scendence degree 1 over C belonging to a Riemann surface S of genus g,
and that A is an elliptic curve over K with non-constant j-invariant. De-
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note by deg jA the degree of the map jA : S → P1. Let B be the set of bad
places of A, and assume that each bad place is of multiplicative type. Then
rankA(K) ≤ 2g − 2 + |B| − 1

6 deg jA.

P r o o f. Let X denote the Neron model of A/K , viewed as an elliptic
fibration X → S with general fiber A. Let pg be the geometric genus of X.
Under the assumption that all places of bad reduction are multiplicative,
the inequality of [4, Cor. 2.7] gives rankA(K) ≤ 4g−4+|B|−2pg. According
to Kodaira’s formula [4, (2.10)], we have 12(pg − g + 1) = deg jA when all
places of bad reduction are multiplicative. Our form of the rank bound easily
follows.

For the model (10) over K = C(α), we have g = 0, and deg jA =
24. The bad places B = {0,∞,±1,±i} are of multiplicative type. Hence
rankA(K) = 0.

To study the torsion of odd order in A(K), let Gs denote the group of
components of multiplicity one in the fiber Xs over s ∈ S. As a consequence
of [4, Prop. 1.6], the exponent of

⊕
s∈S Gs annihilates the torsion subgroup

of A(K). For the model (10), we have Gs = 0 if s ∈ {±1,±i}, G∞ = Z/16,
and G0 = Z/4. Therefore A(K) has no torsion of odd order.

From the obvious transformation between the models in Proposition 4
and (10), we may conclude that A has no torsion of odd order and rank 0
over the field L4. In view of the fact that A is a form of the curves B, C,
and D over L4, the latter curves also have no torsion of odd order and rank
0 over L4. This completes the proof of Proposition 5.

One might reasonably guess that elliptic curves obtained by specializa-
tion of the families of Section 5 using integer values of the parameters exhibit
whatever the usual phenomena for the rank of elliptic curves over Q may
be. For example, assume that Am,n is an elliptic curve over Q obtained by
fixing m,n ∈ Z in the family of Proposition 4. Write ν(n) for the number
of distinct primes dividing the integer n, and ν+(n) for the number of dis-
tinct primes congruent to 1 modulo 4 dividing n. The sign in the functional
equation for the Hasse–Weil L-function of E is (−1)e(m,n) with

e(m,n) = 1 + ν+(mn) + ν((m4 − n4)/16).

It is easy to arrange for the sign to be −1, so that at least conjecturally the
rank of Am,n(Q) is odd. An amusing example involving bad reduction at the
first few odd primes is the following curve of conductor 3 · 5 · 7 · 11 · 13 · 17,
which occurs for m = 21, n = 1:

A21,1 : y2 = (x+ 388961/4)(x2 − 4 · 5 · 11 · 13 · 17 · 214).

Its Mordell–Weil group over Q has rank 1, generated by the point of order 2
at x = −388961/4 and the point of infinite order at x = 23331751/36. The
2-primary part of the Tate–Shafarevich group of A21,1 over Q is Z/4⊕Z/4.
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