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Nonanalytic automorphic integrals on the Hecke groups
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1. Introduction. Since its genesis over a century ago in work of Jacobi,
Riemann, Poincaré and Klein [Ja29, Ri53, Le64], the theory of automor-
phic forms has burgeoned from a branch of analytic number theory into
an industry all its own. Natural extensions of the theory are to integrals
[Ei57, Kn94a, KS96, Sh94], thereby encompassing Hurwitz’s prototype, the
analytic weight 2 Eisenstein series [Hu81], and to nonanalytic forms [He59,
Ma64, Sel56, ER74, Fr85]. A generalization in both directions at once has
also been the subject of some scrutiny. In the present study, inspired by un-
published work of Knopp [Kn94], we consider the nonanalytic automorphic
integral.

2. Some definitions. We will use standard notation: Z, R, and C are
the sets of integer, real, and complex numbers, respectively; H denotes the
upper half-plane {z ∈ C : Im z > 0}; and SL(2;R) is the group of real
invertible 2× 2 matrices. An action of SL(2;R) on H is defined by

V z =
αz + β

γz + δ
, V =

[
α β
γ δ

]
∈ SL(2;R).

(Thus V z = (−V )z.) We will be concerned with a special family of subgroups
of SL(2;R): For λ > 0, the Hecke group is Gλ = 〈Sλ, T 〉, where

Sλ =
[

1 λ
0 1

]
and T =

[
0 −1
1 0

]
.

Observe that Sλ = z + λ, Tz = −1/z. It is a well-known fact that Gλ is
(topologically) discrete if and only if λ ≥ 2 or λ = 2 cos(π/n), n = 3, 4, 5, . . .
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[He38, Ha99]. Special cases: G1 is called the modular group, G2 the theta
group.

For z, w ∈ C, z 6= 0, define exponentiation by zw = ew log z; here log z =
log |z|+ i arg z, where log |z| represents the principal branch (log 1 = 0), and
arg z is taken in the interval [−π, π). We will make exceptions to this “uni-
tary” argument convention in certain circumstances where it will be carefully
noted that we observe a “binary” convention, to be explained presently.

It will be convenient for us to consider certain functions on the Hecke
groups which are analogous to a group character. We call υ : Gλ → C a
multiplier system on Gλ of coweights α, β ∈ C if |υ(Sλ)| = 1, υ(T ) 6= 0 and
υ satisfies the consistency condition

υ(M3)(c3z + d3)α(c3z + d3)β

= υ(M1)(c1M2z + d1)α(c1M2z + d1)βυ(M2)(c2z + d2)α(c2z + d2)β

for all M1,M2 ∈ Gλ, M1M2 = M3, Mj =
[
aj
cj

bj
dj

]
for j = 1, 2, 3, z ∈ H, where

we interpret the consistency condition according to the binary argument
convention:

−π ≤ arg(cz + d) < π, −π < arg(cz + d) ≤ π,
for z ∈ H, c, d not both zero.

The binary convention guarantees that whenever c, d ∈ R and z ∈ H, it
follows that arg(cz + d) = − arg(cz + d) and therefore that log(cz + d) +
log(cz + d) ∈ R. The seemingly cumbersome dichotomy, which derives from
the Petersson–Maass tradition (e.g. [Ma64]), will prove convenient in many
instances. For example, it implies that υ is a multiplier system on Gλ of
coweights α, β if and only if υ is a multiplier system on Gλ of coweights
α+ ω + 2k, β + ω + 2l for all k, l ∈ Z, ω ∈ C [Pa98].

For the remainder of this work we focus mainly on the case υ(Sλ) = 1.

Definition 2.1. Let {an}∞n=0 be a sequence of complex numbers with
(at worst) polynomial growth in n. Put

f(z) =
∞∑
n=0

ane
2πinz/λ

for z ∈ H. Let υ be a multiplier system on Gλ of real coweights k, 0 with
υ(Sλ) = 1. If f satisfies the transformation law

z−kf(−1/z) = υ(T )f(z) + q(z)

for all z ∈ H, where

q(z) =
J∑

j=1

zαj
T∑
t=0

βj,t(log z)t,
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αj , βj,t ∈ C, we say that f is an automorphic integral of coweights k, 0 and
multiplier system υ on Gλ. The function q(z) is called a log-polynomial sum
(term coined by D. Zeilberger).

An analytic automorphic integral is thus defined as a Fourier series,
which may be viewed instead as a power series in an exponential variable.
Often one allows a Laurent expansion here, at least in the case q ≡ 0, so
that there are poles at the cusps of the fundamental region (e.g. Klein’s
J [Ap90]), and some authors define a form so as to allow poles in H (e.g.
[Kn93]), but we will generalize in a different direction. Instead we shall relax
the analyticity condition entirely.

Definition 2.2. Let {an1,n2,m | 0 ≤ n1, n2 < ∞, 1 ≤ m ≤ M} be a
sequence of complex numbers satisfying

∑
n1+n2=n

an1,n2,m = O(nγ), γ > 0, as n→∞.

Put

f(z) =
M∑
m=1

∞∑
n1,n2=0

ywman1,n2,me
(2πi/λ)(n1z−n2z),

z = x + iy ∈ H. (Here w1, . . . , wM are complex numbers.) Let υ be a
multiplier system on Gλ of coweights α, β ∈ C, with υ(Sλ) = 1. If

z−αz−βf(−1/z) = υ(T )f(z) + q(z)

for all z ∈ H, where

q(iy) =
J∑

j=1

(iy)αj
T∑
t=0

βj,t[log(iy)]t, y > 0,

we call f a nonanalytic automorphic integral of coweights α, β and multiplier
system υ on Gλ. The function q(z) is called an axial log-polynomial sum.

This reduces to the previous definition when M = 1, ω1 = 0, β = 0,
α = k ∈ R, and an1,n2,m = 0 for n2 6= 0. In fact, we will see in Section 5
that if f is analytic, β must be zero.

Remark 2.1. The case α = −β ∈ Z, {ωm} ⊆ Z, an1,n2,m supported only
when n1 or n2 = 0 appears in [Kn94], where a direct Hecke theorem was
obtained for such functions. There, a smaller class of period functions was
allowed.

Remark 2.2. If λ = 1 in either of the preceding two definitions, replace
automorphic by modular ; if q(z) = 0 for all z ∈ H, replace integral with
form. There are several excellent contemporary expositions on the theory of
forms [Kn93, Le64, Le66, Ap90, Gu63, Ra77, Sc74, Iw97].
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Remark 2.3. Definition 2.2 is motivated in part by certain differential
operators to be introduced in the next section. In short, if f is an analytic
integral and η is such an operator (appropriately chosen), then ηf is a
nonanalytic integral. Also, the class of nonanalytic integrals is itself closed
under the application of these operators. Aside from this invariance, the
definition is also natural from the point of view of the Hecke correspondence
[Pa99]. Finally, our notion of nonanalytic integral encompasses such oft-
studied examples as the nonanalytic Eisenstein series which we will describe
in Section 4.1.

Remark 2.4. It might seem that we should define an intermediate class
of functions, midway between the analytic and nonanalytic automorphic
integrals. Namely, insist on the shape of an analytic integral (exponential
series) but allow complex first coweight, nonzero second coweight and an
axial log-polynomial period function. However, we shall show in Theorem 5.1
that this simply results in Definition 2.1 again, albeit with complex weight.
In particular, we will show that if

f(z) =
∞∑
n=0

ane
2πinz/λ

and

z−αz−βf(−1/z) = Cf(z) + q(z),

where q is an axial log-polynomial sum, then either f is constant or β = 0. In
either case, then, f is simply an “automorphic integral of complex weight”.

3. Weight-changing operators. This study of nonanalytic automor-
phic integrals is motivated in large part by properties of functions obtained
when one applies certain linear differential operators to analytic integrals.
Let us survey these operators briefly.

We begin with the well-known weight-raising operator

δk =
d

dz
+

k

2iy
, k ∈ Z.

If f is an (analytic) modular integral of weight k and identity multiplier
system with rational period function q, then δkf is a nonanalytic modular
integral of weight k + 2 with axial rational period function, that is, a real-
analytic function of z and z whose restriction to the imaginary axis is a
rational function of z = iy. To be more precise, the period function of δkf
is δkq. Also, the Mellin transforms of f and δkf are closely related [Kn83].

In fact, the restrictions on weight, group, multiplier system and analyt-
icity are unnecessary. Accordingly, for α, β ∈ C we define the first coweight-
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raising operator :

δα,β =
∂

∂z
+

α

2iy
.

Observe that if f is a nonanalytic automorphic integral with axial log-
polynomial period function q on G

λ
of coweights α, β and multiplier system υ,

then δα,βf is a nonanalytic automorphic integral of coweights α + 2, β and
multiplier system υ with axial log-polynomial period function δα,βq on Gλ.

There is also a weight-lowering operator :

∂k = y2 ∂

∂z
,

which (together with δk) is applied to nonanalytic forms in [Fr85]. Unlike δk,
however, ∂k does not work on nonanalytic integrals if the second coweight is
nonzero. To adapt ∂k to the present circumstances we will put ∂α,β = y2 ∂

∂z+
βiy
2 . (Compare this with the definition of δα,β .) ∂α,β lowers the first coweight

by 2; if f is a nonanalytic automorphic integral with axial log-polynomial
period function q on Gλ of coweights α, β and multiplier system υ, then
∂α,βf is a nonanalytic automorphic integral with axial log-polynomial period
function ∂α,βq on Gλ of coweights α− 2, β and multiplier system υ.

Both δk and ∂k can be traced back ultimately to Maass’s classic work
[Ma64]. The operators which will be useful for our purposes are summarized
in Table 1. Proofs of the various rules stated therein follow from straight-
forward calculations based on

∂

∂z
=

1
2

(
∂

∂x
− i ∂

∂y

)
and

∂

∂z
=

1
2

(
∂

∂x
+ i

∂

∂y

)
,

together with the binary argument convention and the consistency condition.
As usual, y = Im z.

Table 1

Operator Definition α, β → υ → If f is analytic, Φf →
δα,β

∂
∂z + α

2iy α+ 2, β υ p(s+ α)Φf (s− 1)

∂α,β y2 ∂
∂z + βiy

2 α− 2, β υ βi
2 Φf (s+ 1)

δ̃α,β
∂
∂z − β

2iy α, β + 2 υ βi
2 Φf (s− 1)

∂̃α,β y2 ∂
∂z − αiy

2 α, β − 2 υ p(s+ 1)Φf (s+ 1)

Sw y−w α+ w, β + w υ Φf (s+ w)

Ç f → f β, α υ Φf (s)

ç z → −z β, α υ1 Φf (s)

Here, α, β, w are arbitrary complex numbers; p(s) = i(s − 1 − α/2);
υ1 = υ ◦ ς, where ς is the involution which negates the off-diagonal elements
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of M =
[
a
c
b
d

]
; Φg denotes the Mellin transform of g:

Φg(s) =
∞\
0

[
g(iy)−

M∑
m=1

a0,0,my
ωm
]
ys−1 dy, Re s large,

where g(z) =
∑M
m=1 y

ωm
∑∞
n1,n2=0 an1,n2,m exp[2πiλ−1(n1z − n2z)]. (The

connection between the Mellin transforms of these functions, which are sum-
marized in the last column of the table, has several applications. Among
these: a Hecke correspondence for analytic integrals with a restricted set of
rational period functions [Kn83], and a growth estimate on the Mellin trans-
forms of analytic integrals [Pa99].) It is important to interpret exponents
according to the binary argument convention here, in order that we have

|cz + d|2w = (cz + d)w(cz + d)w

for all z ∈ H, w ∈ C and c, d ∈ R such that |c|+ |d| 6= 0.
Note that the first five operators in Table 1 have infinite order, while Ç

and ç have order 2. Also, these five operators preserve both υ and the set
α−β+2Z. This is no coincidence, in light of the remarks preceding Definition
2.1; for the multiplier system to be preserved, the coweight-difference can
change only by an even integer.

Analyticity is not, in general, preserved by these operators, the only
nontrivial exception being the composition Ç · ç.

As far as we know, ∂α,β , ∂̃α,β , δ̃α,β and Sw appear here for the first time,
except for S−k, k ∈ Z, which was applied to analytic integrals of weight 2k
to construct nonanalytic integrals of coweights k,−k and identity multiplier
system in [Kn94]. Ç, ç have been used previously with nonanalytic integrals
of real coweights α, β, with β = −α [ibid.], in which case each operator pre-
serves both coweights; and Ç has been applied to forms with real coweights
in [Ma64].

Each operator in Table 1 preserves the shape of axial log-polynomial
sums, and therefore the coweights of a nonanalytic automorphic integral
change as described in the third column of the table.

It would appear that, armed with Table 1, we might generate an infinite
supply of nonanalytic examples by applying δ, ∂, etc. to analytic integrals;
however, it is appropriate to note first the limitations of such an approach,
because of certain algebraic relations. For example, if f is an (analytic)
integral of coweights α, β and multiplier system υ on Gλ, then apparently
we have (at least) two constructions of a nonanalytic integral of coweights
α+2, β : δα,βf and Sα+2∂̃0,β−αS−αf . Unfortunately, both constructions re-
sult in the same function; δα,β = Sα+2∂̃0,β−αS−α. More generally, nontrivial
relations among the operators are summarized below.
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Table 2

Relation α, β →
∂α,β = Sα−2δ̃0,β−αS−α α− 2, β

∂̃α,β = Sβ−2δα−β,0S−β α, β − 2

δα,β = Sα+2∂̃0,β−αS−α α+ 2, β

δ̃α,β = Sβ+2∂α−β,0S−β α, β + 2

δα,β−2∂̃α,β = ∂̃α+2,βδα,β α+ 2, β − 2

δ̃α−2,β∂α,β = ∂α,β+2δ̃α,β α− 2, β + 2

δα−2,β∂α,β = ∂α+2,βδα,β + (α− β)/4 α, β

∂̃α,β+2δ̃α,β = δ̃α,β−2∂̃α,β + (α− β)/4 α, β

δα,β+2δ̃α,β = δ̃α+2,βδα,β + (α− β)S2/4 α+ 2, β + 2

∂̃α−2,β∂α,β = ∂α,β−2∂̃α,β + (α− β)S−2/4 α− 2, β − 2

δα,β = Sγ+2∂̃α−γ,εS−γ α+ 2, β

δ̃α,β = Sγ+2∂ε,β+γS−γ α, β + 2

(α, β, γ, ε are arbitrary complex numbers.) Fortunately, as we will show in
the next section, these relations do not impose a significant limitation on
our ability to generate a large and interesting class of examples.

4. Examples

4.1. Analytic integrals, weight-changing operators and Eisenstein series.
The space of nonanalytic automorphic integrals contains the subspace of
analytic integrals, so immediately we have a wealth of examples to draw
on which have been much-discussed in the literature [Ei57, Kn83, Kn89a].
From these, one obtains many more examples by application of the coweight-
changing operators described in the previous section, and still further by
taking certain linear combinations or (in the case of forms) products of
these.

Another example is the nonanalytic Eisenstein series of integer co-
weights, defined by

Gα,β(z) =
∑′

c,d∈Z
(cz + d)−α(cz + d)−β ,

where α, β ∈ Z, α + β > 2,
∑′ excludes the term (c, d) = (0, 0) and we

interpret c = 0 terms according to the binary argument convention. This is
a nonanalytic modular form of coweights α, β and identity multiplier system
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[Ma64]. (Note that when α+β = 2, we may write a conditionally convergent
Eisenstein series which is a modular integral , unless α = β = 1, in which
case the series is divergent for any particular ordering [Hu81]. In particular,
Hurwitz’s work demonstrates that

G2,0(z) =
∑
c

{∑′

d

(cz + d)−2
}

has identity multiplier system, coweights 2, 0 and period function −2πi/z.
It follows that

G0,2(z) =
∑
c

{∑′

d

(cz + d)−2
}

is conditionally convergent as well, and has identity multiplier system,
coweights 0, 2 and period function 2πi/z. It also follows that

G1,1(z) =
∑
c

{∑′

d

|cz + d|−2
}

diverges.)

4.2. Dimensionality. Most treatments of modular or automorphic forms
begin with the analytic Eisenstein series or its cousin, the Poincaré se-
ries. Unfortunately, this approach fails when one allows arbitrary complex
coweights, since there are convergence problems when α − β 6∈ R [Pa98].
Instead we use a different approach which utilizes the discriminant function
∆(z), a modular form of weight 12 and identity multiplier system, defined
by

∆(z) = e2πiz
∞∏
n=1

(1− e2πinz)24, Im z > 0.

In the classical theory of (analytic) modular forms, one can show that
if k ∈ 2Z+, then the space of entire forms of coweights k, 0 and identity
multiplier system on the full modular group has dimension

dk =
{ bk/12c if k = 2 (mod 12),
bk/12c+ 1 if k 6= 2 (mod 12)

(see [Ser70, Ap90]; bxc denotes the greatest integer less than or equal to x).
In fact, for arbitrary real weight the space of entire forms is finite-dimensio-
nal and the dimension is known [Le64].

In stark contrast to this cozy scene, the space of nonanalytic modular
forms for these same coweights and multiplier system is infinite-dimensional.
We will prove this in an even more general situation, by way of an explicit
construction which uses the weight-changing operators ∂, ∂̃, and Ç.

Let M+{λ, α, β, υ} be the space of nonanalytic automorphic forms on
Gλ of coweights α, β ∈ C and multiplier system υ, and let M0{λ, α, β, υ} be
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the subspace of forms which vanish as z → i∞ in |Re z| ≤ T , with T > 0
fixed. (In the analytic case, these are called cusp forms.)

Theorem 4.1. If M+{1, α, β, υ} 6= {0}, then dimCM0{1, α, β, υ} =∞.

The theorem follows from the next lemma.

Lemma 4.2. For l ∈ Z+ ∪ {0}, put hl(z) = ∂̃6∂l+2[G2l+4,0(z)(Ç∆)(z)].
A linearly independent set of nonanalytic modular forms of coweights 0, 0
and identity multiplier system is given by {hl(z)}∞l=0. Moreover , hl(z) → 0
as z → i∞, |Re z| ≤ T .

P r o o f. For l ∈ Z+ ∪{0}, G2l+4,0(z)∆(z) is a nonanalytic modular form
of coweights 2l+ 4, 12 and multiplier system υ ≡ 1. By Table 1, then, hl(z)
is a nonanalytic form of coweights 0, 0.

In the present context,

∂̃6 = ∂̃0,2 · ∂̃0,4 · . . . · ∂̃0,12 =
(
y2 ∂

∂z

)6

= y12 ∂
6

∂z6 +
5∑

j=1

cjy
6+j ∂

j

∂zj

and

∂l+2 = ∂2,12 · ∂4,12 · . . . · ∂2l+2,12 · ∂2l+4,12 =
(
y2 ∂

∂z
+ 6iy

)l+2

= y2l+4 ∂
l+2

∂zl+2 +
2l+3∑
m=1

ym
l+1∑

j=1

εl,m,j
∂j

∂zj
+ pl+2(y).

(cj , εl,m,j are complex constants, and pl+2 is a polynomial of degree ≤ l+2.)
Also, for z ∈ H,

G2l+4,0(z) = 2ζ(2l + 4) +
2 · (2π)2l+4(−1)l

(2l + 3)!

∞∑
n=1

σ2l+3(n)e2πinz,

where

σk(n) =
∑

d|n, d>0

dk and ζ(b) =
∞∑
m=1

m−b

[Ap90]. Finally, by definition of the Ramanujan τ -function, we have

∆(z) =
∞∑
n=1

τ(n)e2πinz, z ∈ H.

Hence,
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∂l+2[G2l+4,0(z)(Ç∆)(z)]

= G2l+4,0(z)∂l+2[(Ç∆)(z)]

= G2l+4,0(z)
[
y2l+4 ∂

l+2

∂zl+2 +
2l+3∑
m=1

ym
l+1∑

j=1

εl,m,j
∂j

∂zj
+ pl+2(y)

]
[∆(z)]

= G2l+4,0(z)
(
y2l+4 ∂

l+2

∂zl+2 +
2l+3∑
m=1

ym
l+1∑

j=1

εl,m,j
∂j

∂zj

)
∆(z)

+ pl+2(y)G2l+4,0(z)∆(z)

= G2l+4,0(z)
(
y2l+4 ∂

l+2

∂zl+2 +
2l+3∑
m=1

ym
l+1∑

j=1

εl,m,j
∂j

∂zj

) ∞∑
n=1

τ(n)e−2πinz

+ pl+2(y)G2l+4,0(z)∆(z).

Thus,

∂l+2[G2l+4,0(z)(Ç∆)(z)]

= G2l+4,0(z)
[
y2l+4

∞∑
n=1

(−2πin)l+2τ(n)e−2πinz

+
2l+3∑
m=1

ym
l+1∑

j=1

εl,m,j

∞∑
n=1

(−2πin)jτ(n)e−2πinz
]

+ pl+2(y)G2l+4,0(z)∆(z).

It follows, then, that

hl(z) = ∂̃6∂l+2[G2l+4,0(z)(Ç∆)(z)]

= ∂̃6
[
G2l+4,0(z)y2l+4

∞∑
n=1

(−2πin)l+2τ(n)e−2πinz
]

+ ∂̃6
[
G2l+4,0(z)

2l+3∑
m=1

ym
l+1∑

j=1

εl,m,j

∞∑
n=1

(−2πin)jτ(n)e−2πinz
]

+ ∂̃6[pl+2(y)G2l+4,0(z)∆(z) ]

=
∞∑
n=1

(−2πin)l+2τ(n)e−2πinz∂̃6[y2l+4G2l+4,0(z)]

+
∞∑
n=1

(−2πin)jτ(n)e−2πinz∂̃6
[
G2l+4,0(z)

2l+3∑
m=1

ym
l+1∑

j=1

εl,m,j

]

+∆(z)∂̃6[pl+2(y)G2l+4,0(z)].
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Therefore,

hl(z) =
∞∑
n=1

(−2πin)l+2τ(n)e−2πinz
(
y12 ∂

6

∂z6 +
5∑

j=1

cjy
6+j ∂

j

∂zj

)

× [y2l+4G2l+4,0(z)]

+
∞∑
n=1

(−2πin)jτ(n)e−2πinz
(
y12 ∂

6

∂z6 +
5∑

j=1

cjy
6+j ∂

j

∂zj

)

×G2l+4,0(z)
2l+3∑
m=1

ym
l+1∑

j=1

εl,m,j

+∆(z)
(
y12 ∂

6

∂z6 +
5∑

j=1

cjy
6+j ∂

j

∂zj

)
[pl+2(y)G2l+4,0(z)]

= y2l+16
[
∂6

∂z6G2l+4,0(z)
] ∞∑
n=1

(−2πin)l+2τ(n)e−2πinz

+
2l+15∑
m=1

ym
∞∑

n1,n2=0

an1,n2,m(l)e2πi(n1−n2)z

= y2l+16
[

2 · (2π)2l+4(−1)l

(2l + 3)!

∞∑
n=1

(2πin)6σ2l+3(n)e2πinz
]

×
∞∑
n=1

(−2πin)l+2τ(n)e−2πinz

+
2l+15∑
m=1

ym
∞∑

n1,n2=0

an1,n2,m(l)e2πi(n1−n2)z.

Therefore, for y > 0,

hl(iy) =
23l+12π3l+12il

(2l + 3)!
y2l+16

∞∑
n1,n2=1

n6
1n
l+2
2 σ2l+3(n1)τ(n2)e−2π(n1+n2)y

+
2l+15∑
m=1

ym
∞∑
n=0

cn,m(l)e−2πny.

Thus, the coefficient of y2l+16e−2π(2y) in the expansion of hl(iy) is

(−2πi)3l+12

(2l + 3)!
6= 0,

while the coefficient of y2l+16e−2π(2y) in the expansion of hl0(iy) is zero for all
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l0 < l. By the uniqueness of the representation
∑M
m=1 y

m
∑∞
n=0 dn,me

−2πny

(which is easily checked!), this establishes the linear independence of the hl.
It remains to be shown that hl → 0 as z → i∞, |Re z| ≤ T . But we have

already seen that

hl(z) = e−2πiz
2l+16∑
m=1

ym
∞∑

n1,n2=0

an1,n2,m(l)e2πi(n1z−n2z)

for z ∈ H. Since e−2πiz → 0 and the rest of the expression approaches
2l+16∑
m=1

yma0,0,m(l),

the desired limit holds. (Note that an1,n2,m(l) satisfies the usual growth con-
dition

∑
n1+n2=n |an1,n2,m(l)| = O(nγ), because these coefficients are finite

sums of products of σ2l+3(n1) and τ(n2), each of which exhibits polynomial
growth.)

Theorem 4.1 follows because if there exists a nonzero nonanalytic mod-
ular form f on Gλ of coweights α, β and multiplier system υ, then f(z)hl(z)
is a nonanalytic modular form associated with the same group, coweights
and multiplier system. (More generally, if f1 ∈ M+{λ, α1, β1, υ1} and f2 ∈
M+{λ, α2, β2, υ2}, then f1f2 ∈M+{λ, α1+α2, β1+β2, υ1υ2}, a fact we have
used implicitly already.)

Corollary 4.3. For k ∈ 2Z+, k > 2, dimCM0{1, k, 0, 1} =∞.

P r o o f. Gk,0 ∈M+{1, k, 0, 1}.
4.3. A construction of nonanalytic forms for arbitrary complex co-

weights. Next we will give an explicit construction, for given complex
coweights, of nonanalytic forms on the theta group. First, suppose that
Reα,Reβ > 0. The classical theta function

ϑ(z) =
∞∑

n=−∞
eπin

2z,

z ∈ H, is a modular form of weight 1/2 on G2, with ϑ(−1/z) =
√−iz ϑ(z).

ϑ has the infinite product representation

ϑ(z) =
∞∏
n=1

(1− e2nπiz)(1 + e(2n−1)πiz)2,

z ∈ H [Kn93]. It follows that ϑ is nonvanishing in H; ergo log ϑ is a single-
valued analytic function. Since ϑ(−1/z) =

√−iz ϑ(z) = e−iπ/4
√
z ϑ(z),

log ϑ(−1/z) = −iπ/4 + 1
2 log z + log ϑ(z) + 2πiA for some A ∈ Z.
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Putting z = i, we get A = 0. Thus we have

2α log ϑ(−1/z) = −iπα/2 + α log z + 2α log ϑ(z).

Exponentiation gives ϑ2α(−1/z) = e−iπα/2zαϑ2α(z).
On the other hand, for y > 0,

ϑ2α(iy) =
[ ∞∏
n=1

(1− e−2nπy)(1 + e−(2n−1)πy)2
]2α

=
∞∏
n=1

(1− e−2nπy)2α(1 + e−(2n−1)πy)4α,

and so by the identity theorem

ϑ2α(z) =
∞∏
n=1

(1− e2nπiz)2α(1 + e(2n−1)πiz)4α.

Thus ϑ2α(z+2) = ϑ2α(z), and we may conclude that ϑ2α is an analytic form
of coweights α, 0 on G2 with multiplier system υ1 generated by υ1(S2) = 1,
υ1(T ) = e−iπα/2 and the consistency condition. (For a discussion of the
Fourier coefficients of ϑ2α when α is real, see [Ma38, Si56, Kn86, Kn89].)

By Table 1, then, ϑ2β has coweights 0, β and multiplier system υ2 gen-
erated by υ1(S2) = 1, υ1(T ) = eiπβ/2. If we put f(z) = ϑ2α(z)ϑ2β(z), then
f is a nonanalytic form on the theta group of coweights α, β and multi-
plier system υα,β generated by υα,β(S2) = 1, υα,β(T ) = eiπ(β−α)/2. Thus by
Theorem 4.1, dimCM0{2, α, β, υα,β} =∞.

To relax the assumptions on Reα and Reβ, merely apply the weight-
lowering operators ∂, ∂̃.

5. A theorem. Now we may prove Remark 2.4, which states that our
definition of nonanalytic integral is in some sense the most economical one
which both encompasses known examples and is closed under the coweight-
changing operators.

Recall that the generalization from analytic to nonanalytic integrals con-
sidered here is threefold: allow a second coweight, admit a broader class of
period functions, and give f a more general shape than simple exponential
series. The next theorem shows that the last of these is necessary to make
our concept of nonanalytic integral a meaningful one.

Theorem 5.1. For z ∈ H, define

f(z) =
∞∑
n=0

ane
2πinz/λ,
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where an = O(nγ), γ > 0, as n→∞. Let υ be a multiplier system on Gλ of
coweights α, β ∈ C, with υ(Sλ) = 1. If

z−αz−βf
(−1
z

)
= υ(T )f(z) + q(z) for z ∈ H,

where q is an axial log-polynomial sum, then either β = 0 or f is constant.

Remark 5.1. The theorem holds even if f has the more general form

f(z) =
∞∑
n=0

ane
2πi(n+κ)z/λ,

0 ≤ Reκ < 1, and our proof easily extends to this case. Our principal tools
in the proof are several operators from Table 1 and the next lemma:

Lemma 5.2. Let θ > 0. A log-polynomial sum which decays exponentially
as z →∞ within a set of the form Wθ = {z ∈ C : z 6= 0, |π/2− arg z| < θ}
is identically zero (Figure 1).

Fig. 1. z → i∞ in Wθ

P r o o f. Let q(z) =
∑J
j=0 z

αj
∑T
t=0 βj,t(log z)t, where the αj are distinct

complex numbers, ordered lexicographically. That is, Reαj ≤ Reαj+1, and
Imαj < Imαj+1 if Reαj = Reαj+1 for j = 1, . . . , J − 1. We will proceed
by strong induction on J .

The case J = 1 is not difficult. If q(z) = zα1
∑T
t=0 β1,t(log z)t → 0

exponentially as z → ∞ in Wθ, then the same is true of
∑T
t=0 β1,t(log z)t.

Put ω = log z. Then
∑T
t=0 β1,tω

t → 0 as ω → ∞ in the horizontal strip
{ω ∈ C : θ ≤ Imω ≤ π − θ}. But

∑T
t=0 β1,tω

t is a polynomial, so it is
identically zero. Thus q(z) ≡ 0.

Next we consider the case J > 1. It was proved by Hassen in [Ha99] that
if c1, . . . , cN are complex numbers not all zero, u1, . . . , uN are distinct real
numbers and limz→∞ in C

∑N
j=1 cjz

iuj exists, then N = 1 and u1 = 0 (and
thus the sum is a constant). In fact, the same proof shows that a stronger
result holds; namely, if we assume only that limz→∞ inWθ

∑N
j=1 cjz

iuj exists,
then the same conclusion holds.
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Since Reαj is increasing in j, we have maxj Reαj = ReαJ . Say Reαj =
ReαJ iff j ≥ j0. By assumption, q(z)→ 0 exponentially as z →∞ in Wθ, so
the same is true of z−αJ (log z)−T q(z) =

∑J
j=1 z

αj−αJ ∑T
t=0 βj,t(log z)t−T .

But limz→∞ inWθ
zαj−αJ (log z)t−T = 0 for j < j0. Therefore,

J∑

j=j0

zαj−αJ
T∑
t=0

βj,t(log z)t−T → 0.

Also, |zαj−αJ | is bounded for j ≥ j0, so
∣∣∣zαj−αJ

T−1∑
t=0

βj,t(log z)t−T
∣∣∣ ≤ |zαj−αJ |

T−1∑
t=0

|βj,t| · |(log z)t−T | → 0.

Thus limz→∞ inWθ

∑J
j=j0 z

αj−αJβj,T = 0. Now we may apply the result of
Hassen, with uj = −iRe(αj −αJ) ∈ R and cj = βj,T , to get βj,T = 0 for all
j ≥ j0.

Thus q(z) =
∑j0−1
j=1 zαj

∑T
t=0 βj,t(log z)t +

∑J
j=j0 z

αj
∑T−1
t=0 βj,t(log z)t.

But z−αj (log z)−(T−1)q(z) still has exponential decay, so as before we
can show that βj,T−1 = 0 for all j ≥ j0. Continuing in this fashion, we see
that βj,t = 0 for all j ≥ j0, 0 ≤ t ≤ T .

Then q(z) =
∑j0−1
j=1 zαj

∑T
t=0 βj,t(log z)t, where j0 − 1 < J . By the in-

duction hypothesis, βj,t = 0 for 1 ≤ j ≤ j0 − 1, 0 ≤ t ≤ T . This completes
the proof of the lemma.

Proof of Theorem 5.1. Let β ∈ C\{0}. By Table 1, both ∂α,βf and S−1f
are nonanalytic automorphic integrals on Gλ with multiplier system υ; ∂α,βf
has coweights α− 2, β and period function ∂α,βq, while S−1f has coweights
α−1, β−1 and period function S−1q. Since f is analytic, ∂f/∂z = 0. Thus,

∂α,βf = y2 ∂f

∂z
+
βiy

2
f =

βiy

2
f =

βi

2
S−1f.

By the transformation laws for ∂α,βf and S−1f , then, we have

zα−1zβ−1[υ(T )(S−1f)(z) + (S−1q)(z)]

= (S−1f)
(−1
z

)
=

2
βi

(∂α,βf)
(−1
z

)

=
2
βi
zα−2zβ [υ(T )(∂α,βf)(z) + (∂α,βq)(z)]

= zα−2zβ
[
υ(T )(S−1f)(z) +

2
βi

(∂α,βq)(z)
]
.

Therefore,
(zα−1zβ−1 − zα−2zβ)υ(T )(S−1f)(z)

= zα−2zβ
2
βi

(∂α,βq)(z)− zα−1zβ−1(S−1q)(z),
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and so

zα−2zβ−1(z−z)υ(T )(S−1f)(z) = zα−2zβ
2
βi

(∂α,βq)(z)−zα−1zβ−1(S−1q)(z).

Thus,

(z − z)υ(T )yf(z) = z
2
βi

(∂α,βq)(z)− z(S−1q)(z),

i.e.,

f(z) = − i
2
y−2υ(T )−1

[
z

2
βi

(∂α,βq)(z)− z(S−1q)(z)
]
.

The right-hand side is an axial log-polynomial sum, while the left-hand
side is analytic. Thus it is in fact a log-polynomial sum. But the left-hand
side approaches a0 exponentially as z → ∞ within Wθ, 0 < θ < π/2. By
Lemma 5.2, then, both sides are constant.

Remark 5.2. In the sequel [Pa99], we present a Riemann–Hecke–Bochner
correspondence theorem for nonanalytic automorphic integrals, together
with several interesting applications.

References

[Ap90] T. M. Aposto l, Modular Functions and Dirichlet Series in Number Theory, 2nd
ed., Springer, New York, 1990.

[Ei57] M. Eich ler, Eine Verallgemeinerung der Abelsche Integrale, Math. Z. 67 (1957),
267–298.
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