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1. Introduction. We are interested in the arithmetic function
a(n) = #{(z,y) € N x Ny | zt —y? = 4n, (x,y) =1}

It is related to the family of elliptic curves E, : n? = € +né (n € N) by
means of the birational transformation F,, — F,, given by

-
(1) { b2 g

= "¢

with B, : € — 72 = 4n (cf. [4], 64.X, §6). We assume € > 0, so that we can
write

E=2
z
with 7,7,z € Z,Z > 0,Z > 0 and (7,7, 2)
are z,z € N with (x, z) = 1 so that

2:22, T =xz.

y M=

RN

1. It is easy to see that there

So we have to deal with the equation
(2) rt —9? =4dnz*  with (z,2) = 1.
Note that for z,y,z satisfying this equation, the condition (z,z) = 1 is
equivalent to ((z2 —v)/2, (2% +y)/2,2) = 1, which implies
(2® —y)/2=p'd,  (2°+y)/2=q"t
with pg = z, (p,q) = 1, dt = n and p*d + ¢*t = 22 for some positive integers

p,q,d,t.
In fact, this is just a special case of a classical method for determining the

rank of certain elliptic curves over Q (see [2]); in particular, for square-free
n, a(n) and the rank r, of E, are related by the inequality 21 > a(n).
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Some aspects of the closely related arithmetic function counting all lattice
points (not just the primitive ones) (x,y) with 2* — y? = 4n are described
in [1]. An asymptotic expansion for its arithmetic mean is a special case of
the results in [3].

In the following section we will consider the slightly more general case
of the function

aA(n) = #{(xay) € N x I\IO ‘ )‘21‘4 - y2 - 477’7 (-Tf,y) - 1}

for some fixed \ € N.

2. The arithmetic mean. Our goal in this section is to establish the
following result.

PROPOSITION 1. Let T > 1. Then

Z ax(n) =C () +O(TY?10g(T /) + €))

1/2
n<T A/

with
1 1 1 ra/4ra/2)  ra/4)?
3°C(2) 6 I(3/4)  3/255/2
Proof. In order not to encumber the notation, we write out the proof
only for A = 1. Setting S = 47T, we may express the sum as

Z #{yEN0|m4—S§y2<a}4, x=ymod?2, (z,y)=1}.
z<V/S

As usual, we can dispense with the last condition by means of the Mobius
function, which gives

Zu(n) Z #{y € Ny | n?2* — S/n? < y* < n?z*, 2n = yn mod 2}.

C =

In order to eliminate the annoying congruence, we observe that for the prin-
cipal character y mod 2 and a,b € Ny,

3) (1= x(a))(X = x(b)) + x(a)x(b) = {

In view of this relation, we find it convenient to consider sums

doumxan) D xa(@) > x3(y),

z<VS/n n2zt—S/n?2<y?2<n?z*

1 if a =bmod 2,
0 otherwise.

where x; (i = 1,2,3) are the principal characters mod N; € N (however,
with a view to applying (3), we need only N; € {1,2}).
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Splitting the last sum, we get

Z u(n)xi(n) Z Xz2(7) Z x3(y)

n<S1/4 z<S1/4/n y<nx2
+ Y pn)xa(n) > xe@ > X3(y),
n<S1/2 S1/4/n<z<S1/2 /n TS <y<na?

which gives after a routine calculation involving Euler’s summation formula
and some trivial estimations

$(N2)$(Ns)

NN Ty, (1~ 1/0)

531 4 0(SY?1og S),

where
1 _ r/4)r(1/2)

+§(t2— th—1)dt = ¢ 372)

3. The quadratic mean. From now on, we restrict our attention to
the case A = 1.

PROPOSITION 2. Let T' > 2. Then

Z a(n)(a(n) — 1) < TY?(log T)°.
n<T

Proof. In view of what was said in the introduction, we have to count
the quadruples (d1,t1,ds,ts) with {di,t1} # {da,t2} such that d; + ¢; and
dy + to are squares and dit; = doto. The last condition is equivalent to

dy

ta t1 b
for some relatively prime a and b, which means that there exist s and ¢ such
that

@ a

dy = sa, do =ta,
tz = Sb, tl = tb.

As a result, we have to count the quadruples (a, b, s,t) with

abst < T,
{sa+tb:D, ta + sb =0,
a#b, s#t.

Note that if such a quadruple satisfies these conditions the same holds for
(b,a,s,t), (a,b,t,s) and (s,t,a,b), which implies in particular that we can
assume a > b, s >t and ab < st.
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Let v € N be a square. First, we count the sextuples (a,b, s, t,x,y) of
natural numbers satisfying
stab < T,
sa + th = va?,
sb+ ta = vy?,
(4) (sa,tb) = (sb,ta) =1,
s>t, a>b,
ab < VT,
(LU, y) =1, z#y.
Obviously, (v,stab) = 1 and the two linear equations in s and t of (4)
show that v | (a? — b?). Putting m = (a? — b?)/v and actually solving these
equations, we get

2 _ py? 2 _ pr?
%) s by ay?—ba?
m m
So the problem of counting the sextuples satisfying (4) is reduced to
finding all solutions (a, b, z,y) of the following system of congruences:
a? = b? mod v,
(6) az® = by? mod m,
ay? = bz? mod m.
Let a and b be fixed. In view of (a,b) = 1, the definition of m implies
(a,m) = (bvm) =1,
and so (6) shows
(@, m) = (y,m) =1,
and, in fact, the last two congruences of (6) are equivalent. Thus, we are
left with the problem of counting solutions (¢ mod m,x,y) satisfying con-
gruences mod m
{ 0* =b/a,

Yy = ox.
The number of solutions of the first of these congruences equals 0 or the
number of residue classes 7 mod m with

72 =1 mod m.

Writing this as the equivalent system of congruences modulo powers of the
various prime numbers dividing m, we find that this number is < 2«
where w(m) denotes the number of different primes dividing m. Now, for
each p mod m we have to count all possible (x,y). We begin with the simple
observation that for all 7" > 0, B > A > 0 the number of such pairs satisfying

(x,y)=1, 0<z<T, A<y/x<B
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is at most 1 + (B — A)T?. Namely, let K be this number and suppose
K > 1. Dividing the interval [A, B] in the K — 1 successive intervals of
length (B — A)/(K — 1), we find two pairs (z,y) and (2/,y’) such that

y y _B-A

0<=-—=K< .
r o~ K-1

But then this difference
yr' —y'x
xx!
actually equals at least T~2, which proves the assertion. Now, assuming that
o is a positive member of its residue class, we can write

(7) y= oz — 2m

with z > 0 since y < z. Further, (z,y) = 1 implies (z,z) = 1. Remembering
(5), we see that the condition abst < T is equivalent to

where we have set

4ab
flit) = m(a —bt)(at —b).

This function is increasing in [b/a, 1] and f(1) = 4ab/(a + b)?.
We have to consider two cases.

First case:

AT dab (TN agb)'?
42 = (a+b)? P\ v '

In this case, we have to count the relatively prime (z,y) such that

BN 172
(a) <¥=t
a x

PN R AL W
¢ R e a a? —b%

The preceding considerations show that this number is at most

T 1/2 a+b . b 1/2 U .
ab v \a a? — b2 +
T1/2 T1/2

- abl/2(al/2 + b1/2) +1= a3/2pl/2 +1

which means
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Second case:
AT dab (T V4 g+ p\?
r — .
zt?  (a+b)? o ab v

We have to count the (x,y) such that

1/2
<b> < Y < t1/2,

a X

where t is the smaller solution of the quadratic equation
4T
f) = —=:
Tiy
which means

b 1/2
x a
§ <a2 + 02— (a® — b%)(1 - 4Ta:_4u_2)1/2>1/2 <b>1/2

2ab a

this expression being

a2+b2—(a2—b2)(1—4Tw741/72)1/2 b
2ab a
2(4)'
_ (a* = b) —4, —2\1/2 a®> —b%) AT
- 4a1/2()3/2<1 —(1=4Tz""v™%) /%) < 4al/2b3/2  pAp2
Substituting (7), we find
0 bi/2 v z 1 T
S\ AR )y T T dPeR oy
and so there are at most
1 4T
— +1

al/2p3/2 42y

suitable (z,z) with v < z < 2u for some

T\* a+b 1/2
U > Uy = prs > .

Now putting u; := 2'ug for 1 < i < N, we sum up over intervals u;
r < wujr1. We have to choose N such that uy > (27)/20~Y2 or N
(4log2)~tlogT. Since
1 AT 4TY2 ATV?

. = <
al/?2b3/2 wiv bla+b) — ba
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we find that the total number of suitable (z, z) (and hence (z,y)) is
1/2
<

+logT.

Now, returning to the original problem and remembering that v is a
square 2, we have to estimate

Z Z < +10gT)2W((a —0%)/1i?)

ab<T1/2 p?|a?—b?

Fortunately, denoting by d(n) the number of divisors of a positive integer

n, we have
Z ow(n/p?) _ d(n)
w3 n
since both sides of the equation are multiplicative and the assertion is easily

checked for powers of primes.
Let

= ) d(a® -1,

b<a<lt
where it is understood that the sum runs over a with (a,b) = 1. This sum is

<<Zd(a—bda+b)
(Zm-z;) (Zda—lrb) <3 d(n)y?

A well-known estimate shows (for t > 2, say) that this sum is < t(logt)3.
So we have

dYood@-v)= ) D,,<T1/2>

ab<T1/2 b<T1/4

1
<TY?(logT)® 5 < T?(log T)*.
bST1/4

On the other hand,

da—b d(a? — b2
> -y e

ab<T1/2 b<T1/4 a<T1/2b1
T1/2p-1
1 1
= > - S — dDy(t).
b t
b<T1/4 b

Integration by parts and trivial estimates show that the integral is <«
(logT)*, so the whole expression does not exceed O((logT)®). Putting
everything together, we have finished the proof of Proposition 2. =
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We conclude by pointing out that this and the preceding proposition
immediately imply

COROLLARY 3.
#{n < T | a(n) #0} = CAT)** + O(T"/*(log T)?).
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