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On divisors whose sum is a square
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Wolfgang Jenkner (Wien)

1. Introduction. We are interested in the arithmetic function

a(n) = #{(x, y) ∈ N× N0 | x4 − y2 = 4n, (x, y) = 1}.
It is related to the family of elliptic curves En : η2 = ξ3 + nξ (n ∈ N) by
means of the birational transformation En → En given by

(1)

{
ξ = η

ξ ,

η = η2−2ξ3

ξ2

with En : ξ
4 − η2 = 4n (cf. [4], 64.X, §6). We assume ξ > 0, so that we can

write

ξ =
x

z
, η =

y

z
with x, y, z ∈ Z, x > 0, z > 0 and (x, y, z) = 1. It is easy to see that there
are x, z ∈ N with (x, z) = 1 so that

z = z2, x = xz.

So we have to deal with the equation

(2) x4 − y2 = 4nz4 with (x, z) = 1.

Note that for x, y, z satisfying this equation, the condition (x, z) = 1 is
equivalent to ((x2 − y)/2, (x2 + y)/2, z) = 1, which implies

(x2 − y)/2 = p4d, (x2 + y)/2 = q4t

with pq = z, (p, q) = 1, dt = n and p4d+ q4t = x2 for some positive integers
p, q, d, t.

In fact, this is just a special case of a classical method for determining the
rank of certain elliptic curves over Q (see [2]); in particular, for square-free
n, a(n) and the rank rn of En are related by the inequality 2rn+1 ≥ a(n).
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Some aspects of the closely related arithmetic function counting all lattice
points (not just the primitive ones) (x, y) with x4 − y2 = 4n are described
in [1]. An asymptotic expansion for its arithmetic mean is a special case of
the results in [3].

In the following section we will consider the slightly more general case
of the function

aλ(n) = #{(x, y) ∈ N× N0 | λ2x4 − y2 = 4n, (x, y) = 1}
for some fixed λ ∈ N.

2. The arithmetic mean. Our goal in this section is to establish the
following result.

Proposition 1. Let T ≥ 1. Then

∑

n≤T
aλ(n) = C

(4T )3/4

λ1/2
+O(T 1/2 log(T/λ+ e))

with

C =
1
3
· 1
ζ(2)

· 1
6
· Γ (1/4)Γ (1/2)

Γ (3/4)
=

Γ (1/4)2

3
√

2π5/2
.

P r o o f. In order not to encumber the notation, we write out the proof
only for λ = 1. Setting S = 4T , we may express the sum as

∑

x≤
√
S

#{y ∈ N0 | x4 − S ≤ y2 < x4, x ≡ y mod 2, (x, y) = 1}.

As usual, we can dispense with the last condition by means of the Möbius
function, which gives
∑
n

µ(n)
∑

x≤
√
S/n

#{y ∈ N0 | n2x4 − S/n2 ≤ y2 < n2x4, xn ≡ yn mod 2}.

In order to eliminate the annoying congruence, we observe that for the prin-
cipal character χ mod 2 and a, b ∈ N0,

(3) (1− χ(a))(1− χ(b)) + χ(a)χ(b) =
{

1 if a ≡ b mod 2,
0 otherwise.

In view of this relation, we find it convenient to consider sums
∑
n

µ(n)χ1(n)
∑

x≤
√
S/n

χ2(x)
∑

n2x4−S/n2≤y2<n2x4

χ3(y),

where χi (i = 1, 2, 3) are the principal characters mod Ni ∈ N (however,
with a view to applying (3), we need only Ni ∈ {1, 2}).
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Splitting the last sum, we get
∑

n≤S1/4

µ(n)χ1(n)
∑

x≤S1/4/n

χ2(x)
∑

y<nx2

χ3(y)

+
∑

n≤S1/2

µ(n)χ1(n)
∑

S1/4/n<x≤S1/2/n

χ2(x)
∑

√
n2x4−S/n2≤y<nx2

χ3(y),

which gives after a routine calculation involving Euler’s summation formula
and some trivial estimations

I
φ(N2)φ(N3)

ζ(2)N2N3
∏
p|N1

(1− 1/p2)
S3/4 +O(S1/2 logS),

where

I =
1
3

+
∞\
1

(t2 −
√
t4 − 1) dt =

1
6
· Γ (1/4)Γ (1/2)

Γ (3/4)
.

3. The quadratic mean. From now on, we restrict our attention to
the case λ = 1.

Proposition 2. Let T ≥ 2. Then
∑

n≤T
a(n)(a(n)− 1)� T 1/2(log T )5.

P r o o f. In view of what was said in the introduction, we have to count
the quadruples (d1, t1, d2, t2) with {d1, t1} 6= {d2, t2} such that d1 + t1 and
d2 + t2 are squares and d1t1 = d2t2. The last condition is equivalent to

d1

t2
=
d2

t1
=
a

b

for some relatively prime a and b, which means that there exist s and t such
that {

d1 = sa, d2 = ta,

t2 = sb, t1 = tb.

As a result, we have to count the quadruples (a, b, s, t) with
{
abst ≤ T,
sa+ tb = ¤, ta+ sb = ¤,
a 6= b, s 6= t.

Note that if such a quadruple satisfies these conditions the same holds for
(b, a, s, t), (a, b, t, s) and (s, t, a, b), which implies in particular that we can
assume a > b, s > t and ab ≤ st.
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Let ν ∈ N be a square. First, we count the sextuples (a, b, s, t, x, y) of
natural numbers satisfying

(4)





stab ≤ T,
sa+ tb = νx2,
sb+ ta = νy2,
(sa, tb) = (sb, ta) = 1,
s > t, a > b,
ab ≤ √T ,
(x, y) = 1, x 6= y.

Obviously, (ν, stab) = 1 and the two linear equations in s and t of (4)
show that ν | (a2 − b2). Putting m = (a2 − b2)/ν and actually solving these
equations, we get

(5) s =
ax2 − by2

m
, t =

ay2 − bx2

m
.

So the problem of counting the sextuples satisfying (4) is reduced to
finding all solutions (a, b, x, y) of the following system of congruences:

(6)





a2 ≡ b2 mod ν,

ax2 ≡ by2 mod m,

ay2 ≡ bx2 mod m.

Let a and b be fixed. In view of (a, b) = 1, the definition of m implies

(a,m) = (b,m) = 1,

and so (6) shows

(x,m) = (y,m) = 1,

and, in fact, the last two congruences of (6) are equivalent. Thus, we are
left with the problem of counting solutions (% mod m,x, y) satisfying con-
gruences mod m {

%2 ≡ b/a,
y ≡ %x.

The number of solutions of the first of these congruences equals 0 or the
number of residue classes τ mod m with

τ2 ≡ 1 mod m.

Writing this as the equivalent system of congruences modulo powers of the
various prime numbers dividing m, we find that this number is � 2ω(m),
where ω(m) denotes the number of different primes dividing m. Now, for
each % mod m we have to count all possible (x, y). We begin with the simple
observation that for all T > 0, B > A > 0 the number of such pairs satisfying

(x, y) = 1, 0 < x ≤ T, A ≤ y/x ≤ B
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is at most 1 + (B − A)T 2. Namely, let K be this number and suppose
K > 1. Dividing the interval [A,B] in the K − 1 successive intervals of
length (B −A)/(K − 1), we find two pairs (x, y) and (x′, y′) such that

0 <
y

x
− y′

x′
≤ B −A
K − 1

.

But then this difference
yx′ − y′x
xx′

actually equals at least T−2, which proves the assertion. Now, assuming that
% is a positive member of its residue class, we can write

(7) y = %x− zm
with z > 0 since y < x. Further, (x, y) = 1 implies (z, x) = 1. Remembering
(5), we see that the condition abst ≤ T is equivalent to

f

(
y2

x2

)
≤ 4T
x4ν2 ,

where we have set

f(t) =
4ab

(a2 − b2)2 (a− bt)(at− b).

This function is increasing in [b/a, 1] and f(1) = 4ab/(a+ b)2.
We have to consider two cases.

First case:

4T
x4ν2 ≥

4ab
(a+ b)2 or x ≤

(
T

ab

)1/4(
a+ b

ν

)1/2

.

In this case, we have to count the relatively prime (x, y) such that
(
b

a

)1/2

<
y

x
≤ 1,

which means

(%− 1)
ν

a2 − b2 ≤
z

x
<

(
%−

(
b

a

)1/2)
ν

a2 − b2 .

The preceding considerations show that this number is at most
(
T

ab

)1/2(
a+ b

ν

)(
1−

(
b

a

)1/2)
ν

a2 − b2 + 1

=
T 1/2

ab1/2(a1/2 + b1/2)
+ 1 ≤ T 1/2

a3/2b1/2
+ 1.
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Second case:

4T
x4ν2 <

4ab
(a+ b)2 or x >

(
T

ab

)1/4(
a+ b

ν

)1/2

.

We have to count the (x, y) such that
(
b

a

)1/2

<
y

x
≤ t1/2,

where t is the smaller solution of the quadratic equation

f(t) =
4T
x4ν2 ,

which means

0 <
y

x
−
(
b

a

)1/2

<

(
a2 + b2 − (a2 − b2)(1− 4Tx−4ν−2)1/2

2ab

)1/2

−
(
b

a

)1/2

,

this expression being

<
a2+b2−(a2−b2)(1−4Tx−4ν−2)1/2

2ab − b
a

2
(
b
a

)1/2

=
(a2 − b2)
4a1/2b3/2

(1− (1− 4Tx−4ν−2)1/2) ≤ (a2 − b2)
4a1/2b3/2

· 4T
x4ν2 .

Substituting (7), we find

0 <
(
%− b1/2

a1/2

)
ν

a2 − b2 −
z

x
<

1
a1/2b3/2

· T
x4ν

,

and so there are at most
1

a1/2b3/2
· 4T
u2ν

+ 1

suitable (x, z) with u ≤ x ≤ 2u for some

u ≥ u0 :=
(
T

ab

)1/4(
a+ b

ν

)1/2

.

Now putting ui := 2iu0 for 1 ≤ i ≤ N , we sum up over intervals ui ≤
x ≤ ui+1. We have to choose N such that uN ≥ (2T )1/2ν−1/2 or N ≥
(4 log 2)−1 log T . Since

1
a1/2b3/2

· 4T
u2

0ν
=

4T 1/2

b(a+ b)
≤ 4T 1/2

ba



Divisors whose sum is a square 119

we find that the total number of suitable (x, z) (and hence (x, y)) is

� T 1/2

ab
+ log T.

Now, returning to the original problem and remembering that ν is a
square µ2, we have to estimate

∑

ab≤T 1/2

∑

µ2|a2−b2

(
T 1/2

ab
+ log T

)
2ω((a2−b2)/µ2).

Fortunately, denoting by d(n) the number of divisors of a positive integer
n, we have ∑

µ2|n
2ω(n/µ2) = d(n)

since both sides of the equation are multiplicative and the assertion is easily
checked for powers of primes.

Let
Db(t) =

∑

b<a≤t
d(a2 − b2),

where it is understood that the sum runs over a with (a, b) = 1. This sum is

�
∑

d(a− b)d(a+ b)

≤
(∑

d(a− b)2
)1/2(∑

d(a+ b)2
)1/2

≤
∑

n≤2t

d(n)2.

A well-known estimate shows (for t ≥ 2, say) that this sum is � t(log t)3.
So we have

∑

ab≤T 1/2

d(a2 − b2) =
∑

b≤T 1/4

Db

(
T 1/2

b

)

� T 1/2(log T )3
∑

b≤T 1/4

1
b
� T 1/2(log T )4.

On the other hand,
∑

ab≤T 1/2

d(a2 − b2)
ab

=
∑

b≤T 1/4

1
b

∑

a≤T 1/2b−1

d(a2 − b2)
a

=
∑

b≤T 1/4

1
b

T 1/2b−1\
b

1
t
dDb(t).

Integration by parts and trivial estimates show that the integral is �
(log T )4, so the whole expression does not exceed O((log T )5). Putting
everything together, we have finished the proof of Proposition 2.
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We conclude by pointing out that this and the preceding proposition
immediately imply

Corollary 3.

#{n ≤ T | a(n) 6= 0} = C(4T )3/4 +O(T 1/2(log T )5).
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