Applications of a lower bound for linear forms in two logarithms to exponential Diophantine equations

by

NOBUHIRO TERAI (Ashikaga)

1. Introduction. In 1956, Sierpiński [Si] showed that the equation $3^x + 4^y = 5^z$ has only the positive integral solution $(x, y, z) = (2, 2, 2)$. Jeśmanowicz [J] conjectured that if a, b, c are Pythagorean triples, i.e., positive integers satisfying $a^2 + b^2 = c^2$, then the equation $a^x + b^y = c^z$ has only the positive integral solution $(x, y, z) = (2, 2, 2)$. This conjecture has been proved to be true in many special cases (cf. Guo-Le [GL], Le [Le] and Takakuwa [Ta]). It is, however, still unsolved.

As an analog to this conjecture, we propose the following (cf. Terai [Te1]):

Conjecture. If a, b, c, p, q, r are fixed positive integers satisfying $a^p + b^q = c^r$ with $p, q, r \geq 2$ and $(a, b) = 1$, then the Diophantine equation

$$a^x + b^y = c^z \quad (1)$$

has only the positive integral solution $(x, y, z) = (p, q, r)$ except for three cases (taking $a < b$), where (1) has only the following solutions, respectively:

$$(a, b, c) = (2, 3, 5), \quad (x, y, z) = (1, 1, 1), (4, 2, 2);$$
$$(a, b, c) = (2, 7, 3), \quad (x, y, z) = (1, 1, 2), (5, 2, 4);$$
$$(a, b, c) = (1, 2, 3), \quad (x, y, z) = (m, 1, 1), (n, 3, 2)$$

with m, n arbitrary (cf. Nagell [N4], Cao [Cao]).

In our previous papers [Te2]–[Te4], we considered the conjecture above when $p = 2$, $q = 2$ and r is an odd prime. In [Te2] and [Te3], we reduced (1) to certain quartic equations, which have no non-trivial solutions by the method of infinite descent. In [Te4], we reduced (1) to Thue equations, and used the known estimates of linear forms in logarithms due to Mignotte and Waldschmidt [MW] and Bugeaud and Győry [BG].

1991 Mathematics Subject Classification: Primary 11D61.
In this paper, we apply a lower bound for linear forms in two logarithms due to Mignotte [M] which is a corollary to a theorem of Laurent–Mignotte–Nesterenko [LMN] to the Diophantine equation

\[a^x + b^y = c^z, \]

where \(n \) is a given “small” positive integer (Main Theorem). The Main Theorem shows that if the upper bound \(n \) of the solution \(y \) of (1) is attained (and small), then the solution \(x \) of (1) satisfies

\[x \leq n + p - q \]

under a certain condition on \(a, b \) when \(a, b, c, p, q, r \) are as in the Main Theorem. By an elementary or algebraic method, we can attain the upper bound \(n \). Indeed, in our theorems, the upper bound \(n \) is derived by using congruences modulo 3, 8 etc. and results concerning the Diophantine equations of the form \(x^2 + D = y^r \).

The Main Theorem has a number of applications. An easy consequence is that if \(A, B, C \) are fixed positive integers satisfying \(A - B = C > 1 \), \((A, B) = 1 \) and \(B \geq 1697C \), then the Diophantine equation

\[A^x - B^y = C \]

has only the positive integral solution \((x, y) = (1, 1)\) (Theorem 3 in Section 4). In Section 3, using the Main Theorem, we show that the conjecture above holds under some conditions on \(a, b, c \) (Theorems 1, 2 in Section 3). In particular, there are infinitely many \(a, b, c \) such that it holds when \((p, q, r) = (2, 2, 3)\). In Section 4, we illustrate in detail how the upper bound \(n \) is determined and the Main Theorem is applied to equation (1) for various degrees \(p, q, r \geq 1 \). In some of the theorems of that section, we verify that the condition “\(a \geq \kappa b^{\theta / p} \)” in the Main Theorem can easily be eliminated.

2. Main Theorem. We use the following result of Mignotte [M] to prove the Main Theorem, which plays an important role in the proofs.

Let \(\alpha \) be an algebraic number of degree \(d \) with minimal polynomial

\[a_0 x^d + a_1 x^{d-1} + \ldots + a_d = a_0 \prod_{i=1}^{d} (x - \alpha_i), \]

where the \(a_i \)'s are relatively prime integers with \(a_0 > 0 \) and the \(\alpha_i \)'s are conjugates of \(\alpha \). Then

\[h(\alpha) = \frac{1}{d} \left(\log a_0 + \sum_{i=1}^{d} \log \max(1, |\alpha_i|) \right) \]

is called the **absolute logarithmic height** of \(\alpha \). In particular, if \(\alpha \in \mathbb{Q} \), say \(\alpha = p/q \) as a fraction in lowest terms, then \(h(\alpha) = \log \max(|p|, |q|) \).
Let α_1, α_2 be two non-zero algebraic numbers, and let $\log \alpha_1$ and $\log \alpha_2$ be any determinations of their logarithms. We consider the linear form

$$L = b_2 \log \alpha_2 - b_1 \log \alpha_1,$$

where b_1 and b_2 are positive integers. Without loss of generality, we suppose that $|\alpha_1|$ and $|\alpha_2|$ are ≥ 1. Put

$$D = [\mathbb{Q}(\alpha_1, \alpha_2) : \mathbb{Q}] / [\mathbb{R}(\alpha_1, \alpha_2) : \mathbb{R}].$$

Lemma 1 (Mignotte [M]). Let a_1, a_2, h be real positive numbers, and ϱ a real number > 1. Put $\lambda = \log \varrho$ and suppose that

$$h \geq \max \left\{ \frac{D \log 2}{2}, C\lambda, D \left(\log \left(\frac{b_1}{a_2} + \frac{b_2}{a_1} \right) + \log \lambda + f(K_0) + 0.189 \right) \right\}$$

with $C \geq 2$,

$$a_i \geq \max \{ 2, \varrho | \log \alpha_i | - \log |\alpha_i| + 2Dh(\alpha_i) \} \quad (i = 1, 2),$$

where

$$f(x) = \log \left(\frac{1 + \sqrt{x - 1}}{x - 1} \right) \frac{\sqrt{x}}{x - 1} + \frac{\log x}{6x(x - 1)} + \frac{3}{2} + \log \frac{3}{4} + \frac{\log \frac{x}{x - 1}}{x - 1}.$$

Suppose also that

$$\frac{1}{a_1} + \frac{1}{a_2} \leq \frac{2}{\lambda}$$

and that there exists an integer K_0 such that

$$8(1 + C)a_1a_2 \frac{4(a_1 + a_2)}{3\lambda} + 8\sqrt{2(1 + C)a_1a_2} \frac{4\lambda}{3\lambda} > K_0 - 1 \geq 33.$$

If α_1 and α_2 are multiplicatively independent, we have the lower bound

$$\log |L| \geq -\frac{\lambda a_1a_2}{9} \left(\frac{4h}{3\lambda} + \frac{4}{\lambda} + \frac{1}{h} \right)^2 - 2\lambda \frac{a_1 + a_2}{3} \left(\frac{4h}{3\lambda} + \frac{4}{\lambda} + \frac{1}{h} \right) - \frac{16\sqrt{2a_1a_2}}{3} \left(1 + \frac{h}{\lambda} \right)^{3/2} - 2(\lambda + h) - \log \left(a_1a_2 \left(1 + \frac{h}{\lambda} \right)^2 \right) + \frac{\lambda}{2} + \log \lambda - 0.88.$$

Main Theorem. Let a, b, c, p, q, r be fixed positive integers satisfying $a^p + b^q = c^r$ with $(a, b) = 1$, $a > b > 1$, $c \geq 3$ and $p \geq q$. Let n be a given positive integer with $q \leq n \leq 1722$. If $a \geq \kappa b^{q/p}$ and the Diophantine equation

$$a^x + b^n = c^z$$

has positive integral solutions x, z with $(x, n) \neq (p, q)$, then

$$x < n + p - q,$$
where

\[\kappa = \left\{ \exp\left(\frac{\delta}{n + 1696}\right) - 1 \right\}^{-1/p} \]

and \(\delta = 1 \) or 2 according as \(rx - pz \) is odd or even.

Remark. We note that the Main Theorem can also be applied to the case of \(p = 1, q = 1 \) or \(r = 1 \). The table of values of \(\kappa \) for some \(p, n, \delta \) is as follows. (These values will be used in the theorems.)

<table>
<thead>
<tr>
<th>(\kappa)</th>
<th>(p)</th>
<th>(n)</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.41783...</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>9.46524...</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>29.12044...</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>29.14618...</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>41.18859...</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>848.0009...</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1696.50004...</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Proof (of the Main Theorem). Suppose that \(x \geq n + p - q \). From \(a^p + b^q = c^r \) and \(a^x + b^n = c^z \), we now consider the following linear forms in two logarithms:

\[
A_1 = r \log c - p \log a \quad (>0), \quad A_2 = z \log c - x \log a \quad (>0).
\]

Using the inequality \(\log(1 + t) < t \) for \(t > 0 \), we have

\[0 < A_2 = \log \left(\frac{c^z}{a^x} \right) = \log \left(1 + \frac{b^n}{a^x} \right) < \frac{b^n}{a^x}. \]

Hence

\[(3) \quad \log A_2 < n \log b - x \log a. \]

On the other hand, we use Lemma 1 to obtain a lower bound for \(A_2 \). We keep the notations of Lemma 1. Put \(\varrho = 4.9 \) and \(\lambda = \log \varrho \). We take

\[
a_1 = (\varrho - 1) \log a + 2 \log a = (\varrho + 1) \log a > \lambda, \quad a_2 = (\varrho - 1) \log c + 2 \log c = (\varrho + 1) \log c > \lambda.
\]

Then it is clear that \(1/a_1 + 1/a_2 \leq 2/\lambda \). In Lemma 1, we choose \(C = 4.5 \). Then we take \(K_0 = 177 \) and \(f(K_0) = 1.2879 \). Since

\[\log \left(\frac{b_1}{a_2} + \frac{b_2}{a_1} \right) = \log \left(\frac{x}{\log c} + \frac{z}{\log a} \right) - \log(\varrho + 1), \]

we can take

\[h = \max \left\{ \log \left(\frac{x}{\log c} + \frac{z}{\log a} \right) + 0.17, 9 \right\}. \]
Hence Lemma 1 shows that

\[(4) \quad \log A_2 \geq -13.09h^2 \log a \log c - 11.73h(\log a + \log c) - 2h - 28.35h^{3/2}(\log a \log c)^{1/2} - \log(h^2 \log a \log c) - 5.75,\]

where \(h = \max\{\log B + 0.17, 9\}\) and \(B = x/\log c + z/\log a\).

If \(a, b, c\) are primes \(\leq 7\), Nagell [N4] completely determined the solutions of the equation \(a^x + b^y = c^z\) using the theory of quadratic fields and cubic fields. In view of his result, if \(a, b, c\) are positive integers satisfying \(a^p + b^q = c^r\) with \((a, b) = 1, a > b > 1, c \geq 3, p \geq q\) and \(a, b, c \leq 9\), then the solution \(x\) of \(a^x + b^y = c^z\) satisfies \(x \leq n + p - q\), where \(n\) is a fixed positive integer. (The cases where \(a, b, c\) are composite can be treated similarly.) Hence we may suppose that

\[(5) \quad a \geq 10, \quad c \geq 3 \quad \text{or} \quad a \geq 3, \quad c \geq 10.\]

Now we distinguish two cases: (i) \(B \leq e^{8.83} (= 6836.2868\ldots)\) and (ii) \(B > e^{8.83}\).

Case (i): \(B \leq e^{8.83}\). Then we show that making \(A_1\) small yields a contradiction. (In case (ii), we do not use \(A_1\).) Since \(h = 9\), (4) implies

\[
\log A_2 \geq -1060.29 \log a \log c - 105.53(\log a + \log c) - 765.39(\log a \log c)^{1/2} - \log(81 \log a \log c) - 12.26,
\]

so

\[
\frac{\log A_2}{\log a \log c} \geq -1060.29 - 105.53 \left(\frac{1}{\log a} + \frac{1}{\log c}\right) - 765.39(\log a \log c)^{-1/2} - \frac{\log 81 + 12.26}{\log a \log c} - \log(\log a \log c).
\]

\[
\geq -1696 \quad \text{(from (5)).}
\]

From (3), we have

\[(6) \quad x < n + \frac{\log b}{\log a} - \frac{\log A_2}{\log a} < n + \frac{\log A_2}{\log a},\]

since \(a > b\).

We want to obtain a lower bound for \(x\). We now show \(rx - pz > 0\). By our assumptions, we have

\[
(a^p + b^q)^x = \sum_{j=0}^{x} \binom{x}{j} (a^p)^x-j(b^q)^j = \sum_{j=0}^{x} \binom{x}{j} a^{px-pj} b^{qj}
\]

\[
= \sum_{j=0}^{x} \binom{x}{j} a^{px-(n+p-q)j} a^{(n-q)j} b^{qj}
\]
\[
\geq \sum_{j=0}^{x} \binom{x}{j} a^{px-(n+p-q)j} b^{nj} \quad (\text{since } a > b \text{ and } n \geq q)
\]
\[
\geq \sum_{j=0}^{p} \binom{p}{j} a^{px-xj} b^{nj} = (a^x + b^n)^p \quad (\text{since } x \geq n + p - q \geq p)
\]
with “>” in the first inequality except when \(n = q\) and with “>” in the second inequality except when \(x = n + p - q\). In conclusion, we obtain
\[
x \Lambda_1 - p \Lambda_2 = (rx - pz) \log c,
\]
so
\[
x = \frac{rx - pz \log c + p \Lambda_2}{\Lambda_1} > \frac{\delta}{\Lambda_1} \log c,
\]
since \(rx - pz \geq \delta\) and \(\Lambda_1, \Lambda_2 > 0\).

Therefore we obtain
\[
n - \log \frac{A_2}{\log a} > \frac{\delta}{\Lambda_1} \log c,
\]
and thus
\[
A_1 = \log \left(1 + \frac{b^q}{a^p}\right) > \frac{\delta \log c}{n - \log A_2 / \log a} = \frac{n}{\log c} - \frac{\log A_2}{\log a \log c} > \frac{\delta}{n + 1696},
\]
since \(c \geq 3\). Hence
\[
\frac{b^q}{a^p} > \exp \left(\frac{\delta}{n + 1696}\right) - 1,
\]
which implies
\[
a < \left\{ \exp \left(\frac{\delta}{n + 1696}\right) - 1 \right\}^{-1/p} b^{q/p} =: \kappa b^{q/p}.
\]
Therefore if \(a \geq \kappa b^{q/p}\), then (2) has no positive integral solutions \(x, z\) with \(x \geq n + p - q\) and \((x, n) \neq (p, q)\).

Case (ii): \(B > e^{8.83}\). Then \(h = \log B + 0.17\). Since \(A_2 = z \log c - x \log a\), we have
\[
B = \frac{2x}{\log c} + \frac{A_2}{\log a \log c}.
\]
From (6), we have
\[
\frac{2x}{\log c} < \frac{2n}{\log c} - \frac{2 \log A_2}{\log a \log c}.
\]
Note that $A_2 < 1$. In fact, $A_2 < b^n/a^x \leq (b/a)^n < 1$, since $x \geq n + p - q \geq n$ from $p \geq q$ and $a > b$.

Hence

$$B < \frac{2n}{\log c} + \frac{A_2}{\log a \log c} - \frac{2 \log A_2}{\log a \log c}$$

$$< 2n + 1 + 26.18h^2 + 23.46h \left(\frac{1}{\log a} + \frac{1}{\log c} \right) + \frac{4b + 4 \log b}{\log a \log c}$$

$$+ 56.7h^{3/2} (\log a \log c)^{-1/2} + \frac{2 \log (\log a \log c) + 11.5}{\log a \log c}$$

(from (4))

$$\leq 26.18(\log B + 0.17)^2 + 33.12(\log B + 0.17)$$

$$+ 35.65(\log B + 0.17)^{3/2} + 1.59 \log(\log B + 0.17) + 3451.34$$

(from (5) and $n \leq 1722$). Therefore $B \leq 6836$, which contradicts $B > e^{8.83}$. This completes the proof of the Main Theorem.

3. Applications of the Main Theorem to the Conjecture. Applying the Main Theorem to the Conjecture with $p = 2, q = 2$ and r odd ≥ 3, we prove the following:

Theorem 1. Let a, b, c be fixed positive integers satisfying $a^2 + b^2 = c^r$ with $(a, b) = 1$ and r odd ≥ 3. Suppose that

$$a \equiv 3 \pmod{8}, \quad 2 \mid b, \quad \left(\frac{b}{l} \right) = -1, \quad a \geq 30b,$$

where $l > 1$ is a divisor of a and $\left(\frac{\cdot}{l} \right)$ denotes the Jacobi symbol. Then equation (1) has only the positive integral solution $(x, y, z) = (2, 2, r)$.

We first need two lemmas. (We prove Lemmas 2 and 3 under slightly weaker conditions than those of Theorem 1.)

Lemma 2. Let a, b, c be fixed positive integers satisfying $a^2 + b^2 = c^r$ with $(a, b) = 1$ and r odd ≥ 3. Suppose that

$$a \equiv 3 \pmod{4}, \quad 2 \mid b, \quad \left(\frac{b}{l} \right) = -1.$$

If equation (1) has positive integral solutions (x, y, z), then x and y are even.

Proof. Since $a^2 + b^2 = c^r$ and r is odd, we have $1 = \left(\frac{b}{l} \right)^2 = \left(\frac{z}{l} \right)^r$, so $\left(\frac{z}{l} \right) = 1$. Thus since $\left(\frac{b}{l} \right) = -1$, y must be even from (1).

Note that $c \equiv 1 \pmod{4}$ from $a^2 + b^2 = c^r$. Since $a \equiv 3 \pmod{4}$ and $b^2 \equiv 0 \pmod{4}$, we have $3^r \equiv 1 \pmod{4}$. Thus x is even.

Lemma 3. Let a, b, c be fixed positive integers satisfying $a^2 + b^2 = c^r$ with $(a, b) = 1$ and r odd ≥ 3. Suppose that

$$a \equiv 3 \pmod{8}, \quad 2 \parallel b, \quad \left(\frac{b}{7}\right) = -1.$$

If equation (1) has positive integral solutions (x, y, z), then either

(i) x is even, $y = 2$, z is odd, or

(ii) x is even, $y = 4$, z is even.

Proof. Lemma 2 implies that x and y are even. Note that $c \equiv 5 \pmod{8}.$ In fact, $c \equiv c^r = a^2 + b^2 \equiv 1 + 4 \equiv 5 \pmod{8}$, since $2 \parallel b$.

Case (i): z is odd. Then it follows from (1) that $1 + b^y \equiv 5 \pmod{8}$.

Case (ii): z is even. Then from (1), we have $a^X = u^2 - v^2, \quad b^Y = 2uv, \quad c^Z = u^2 + v^2,$

where $x = 2X, y = 2Y, z = 2Z$ and u, v are integers such that $(u, v) = 1$ and $u \neq v \pmod{2}$.

Since $2 \parallel b$, we have $Y > 1$. If $Y > 2$, then $uv \equiv 0 \pmod{4}$ and so

$$a^X \equiv \pm 1 \pmod{8}, \quad c^Z \equiv 1 \pmod{8}.$$

In view of $a \equiv 3 \pmod{8}$ and $c \equiv 5 \pmod{8}$, we see that X and Z are even. Then equation (1) leads to

$$(a^{x/4})^4 + (b^{y/2})^2 = (c^{z/4})^4,$$

which has no non-trivial solutions by the method of infinite descent (cf. Ribenboim [Ri], p. 38). Hence $Y = 2$ and so $y = 4$. ■

We are now ready to apply the Main Theorem and prove Theorem 1.

Proof of Theorem 1. It follows from Lemma 3 that x is even and $y = 2, 4$.

In the Main Theorem, let $p = 2, q = 2, n = 2, 4$ and $\delta = 2$. Then by the Main Theorem, if (1) has positive integral solutions with $(x, n) \neq (2, 2)$, then

$$x < n + p - q \leq 4 + 2 - 2 = 4$$

under the condition $a \geq 30b$ (cf. Table). Since x is even, we have $x = 2$. If $y = 2$, then $c^z = a^2 + b^2 = a^2 + b^2 = c^r$. Thus $z = r$. If $y = 4$, then $c^z = a^2 + b^4 = (c^r - b^2) + b^4$ and so $b^2(b^2 - 1) = c^r(c^{z-r} - 1)$. Since $(b,c) = 1$, we have $c^r | (b^2 - 1)$. Hence

$$c^r \leq b^2 - 1 < a^2 + b^2 = c^r,$$

which is impossible. ■

Now, consider the case $r = 3$ in Theorem 1. The general integral solutions of $a^2 + b^2 = c^3$ are as follows:
Lemma 4 [Te2]. The integral solutions of the equation $a^2 + b^2 = c^3$ with $(a, b) = 1$ are given by
\[a = \pm u(u^2 - 3v^2), \quad b = \pm v(v^2 - 3u^2), \quad c = u^2 + v^2, \]
where u, v are integers such that $(u, v) = 1$ and $u \not\equiv v \pmod{2}$.

Let a, b, c be as in Lemma 4 with $v = 2$. Then we can eliminate the conditions $(\frac{b}{a}) = -1$ and $a \geq 30b$ in Theorem 1. Indeed, we show the following:

Corollary. Let $a = u(u^2 - 12), \ b = 2(3u^2 - 4), \ c = u^2 + 4$ with $u \equiv -1 \pmod{8}$ (> 0). Then equation (1) has only the positive integral solution $(x, y, z) = (2, 2, 3)$.

Remark. By the Corollary, we see that when $(p, q, r) = (2, 2, 3)$, there are infinitely many a, b, c such that the Conjecture holds.

Proof (of Corollary). It follows from $u \equiv -1 \pmod{8}$ that $a \equiv 3 \pmod{8}$, and $2 \not\parallel b$.

We also see that $(\frac{b}{a}) = -1$. In fact,
\[
\left(\frac{b}{a} \right) = \left(\frac{2(3u^2 - 4)}{a} \right) = -\left(\frac{3u^2 - 4}{a} \right) = -\left(\frac{3u^2 - 4}{u} \right) \left(\frac{3u^2 - 4}{u^2 - 12} \right) = -\left(\frac{-4}{u} \right) \left(\frac{32}{u^2 - 12} \right) = (-1) \cdot (-1) \cdot (-1) = -1.
\]

The inequality $a \geq 30b$ implies that $u \geq 183$. Hence if $u \equiv -1 \pmod{8}$ and $u \geq 183$, then the conditions of Theorem 1 are all satisfied. Thus our assertion follows.

It remains to consider the case $u < 183$. We show that if $r = 3$, then case (ii) in Lemma 3 does not occur except for the case $u = 7$. (Note that if $u > 7$, then $a > b$.) On the contrary, suppose that case (ii) occurs. We keep the notation of Lemma 3. We may suppose that X and Z are odd, since the equations $A^4 + B^4 = C^2, \ A^2 + B^4 = C^4$ have no non-trivial solutions (cf. Ribenboim [Ri], pp. 37, 38). The equation $a^{2X} + b^4 = c^{2Z}$ implies that
\[b^4 = (c^2 + a^X)(c^2 - a^X) \geq c^2 + a^X > c^2. \]

On the other hand, from $a^2 + b^2 = c^3$, we have $b^2 < c^3$ and so $b^4 < c^6$. Hence $Z < 6$. Since Z is odd > 1, $Z = 3, 5$.

Case 1: $Z = 3$. Then $a^{2X} + b^4 = c^6 = (a^2 + b^2)^2 = a^4 + 2a^2b^2 + b^4$. Thus $a^{2X} = a^2 + 2a^2b^2$, which is impossible, since $(a, b) = 1$.

Case 2: $Z = 5$. If $X \leq 3$, then $c^{10} = a^{2X} + b^4 \leq a^6 + b^4 < (a^2 + b^2)^3 = c^9$, etc.
which is impossible. If $X \geq 5$, then from $a > b$ (except for $u = 7$), we have

$$a^{10} \leq a^{2X} < a^{2X} + b^4 = c^{10} < c^{12} = (a^2 + b^2)^4 < (2a^2)^4 < a^9,$$

which is impossible. Hence when $r = 3$, case (ii) in Lemma 3 does not occur except for the case $u = 7$.

Therefore Lemma 3 shows that x is even, $y = 2$ and z is odd except for the case $u = 7$.

We need the following claim, which is simple and useful:

Claim 1. Let a, b, c be positive integers satisfying $a^2 + b^2 = c^3$ with $(a, b) = 1$. Suppose that there is a prime l such that $ab(a \pm 1) \equiv 0 \pmod{l}$ and $e \equiv 0 \pmod{3}$, where e is the order of c modulo l. Then

1. If $ab \equiv 0 \pmod{l}$ and $a^x + b^y = c^z$, then $z \equiv 0 \pmod{3}$.
2. If $a \pm 1 \equiv 0 \pmod{l}$ and $a^x + b^2 = c^z$ with x even, then $z \equiv 0 \pmod{3}$.

Proof. (C1) See Lemma 3 in [Te2].

(C2) If $a \pm 1 \equiv 0 \pmod{l}$, then $1 + b^2 \equiv e \equiv c^3 \pmod{l}$. Hence from $e \equiv 0 \pmod{3}$, we obtain $z \equiv 0 \pmod{3}$. ■

For all a, b, c such that $u \equiv -1 \pmod{8}$ (> 0) and $u < 183$, we verified that $e \equiv 0 \pmod{3}$ by computer.

By Claim 1, the fact that $e \equiv 0 \pmod{3}$ implies that $z \equiv 0 \pmod{3}$. Note that x is even and $y = 2$ ($y = 2$ or 4 if $u = 7$). Hence using Lemma 4, we can determine x, z in a finite number of steps.

Case (1): $u = 7$. Then $(7\cdot37)^X = \pm U(U^2 - 3V^2)$, $2 \cdot 11 \cdot 13$ or $(2 \cdot 11 \cdot 13)^2 = \pm V(V^2 - 3U^2)53Z = U^2 + V^2$, where $x = 2X, z = 3Z$. Thus we obtain $U = \pm 7, V = \pm 2$ and so $X = 1, Z = 1, x = 2, z = 3, y = 2$.

Case (2): $u = 15$. Then $(3^2 \cdot 5 \cdot 71)^X = \pm U(U^2 - 3V^2), 2 \cdot 11 \cdot 61 = \pm V(V^2 - 3U^2), 229^2 = U^2 + V^2$, where $x = 2X, z = 3Z$. Thus we obtain $U = \pm 15, V = \pm 2$ and so $X = 1, Z = 1, x = 2, z = 3$.

The other cases can be treated similarly. ■

In the same way as in the proof of Theorem 1, we obtain the following (cf. Theorem in [Le]):

Theorem 2. Let a, b, c be fixed positive integers satisfying $a^2 + b^2 = c^2$ with $(a, b) = 1$. Suppose that

$$a \equiv 3 \pmod{8}, \quad b \equiv 4 \pmod{8}, \quad \left(\frac{b}{a} \right) = -1, \quad a \geq 30b.$$

Then equation (1) has only the positive integral solution $(x, y, z) = (2, 2, 2)$.

Proof. Let (x, y, z) be a solution of (1) with $(x, y, z) \neq (2, 2, 2)$. Then Lemma 2 in [GL] shows that $2 \mid x, y = 1$ and $2 \mid z$.

In the Main Theorem, let \((p, q, r) = (2, 2, 2), n = 1\) and \(\delta = 2\). Note that \(n = 1 < 2 = q\), but \(rx - p^2 = 2x - 2z > 0\) when \(y = n = 1\). In fact, otherwise, \((a^x + b)^2 = c^{2z} \geq c^{2x} = (a^2 + b^2)^x\), which is impossible, since \(x \geq 2\). Then by the Main Theorem, if \((1)\) has positive integral solutions, then

\[x \leq n + p - q = 1 + 2 - 2 = 1 \]

under the condition \(a \geq 30\) (cf. Table). Thus \(x = 1\), which is impossible, since \(x\) is even.

4. Other applications of the Main Theorem. In the proof of the theorems in this section, we need the following lemmas. Cohn [Co3] discussed in detail the Diophantine equation \(x^2 + C = y^n\). He collected together some of the known results, and obtained many new ones for values of \(C \leq 100\).

Lemma 5 (Nagell [N3]). Let \(n\) be odd \(\geq 3\). Then the Diophantine equation

\[x^2 + 4 = y^n \]

has only the positive integral solutions \((x, y, n) = (2, 2, 3), (11, 5, 3)\).

Lemma 6 (Nagell [N2], Cohn [Co2]). Let \(m\) be a non-negative integer. Then the Diophantine equation

\[x^2 + 2^{2m+1} = y^n \]

has only the positive integral solutions \((x, y, m, n) = (5, 3, 0, 3), (7, 3, 2, 4)\) with \((y, 2) = 1\) and \(n \geq 3\).

Lemma 7 (Nagell [N3]). Let \(n\) be an odd integer \(\geq 3\) and \(A\) a square-free odd integer \(\geq 3\). Let \(h(-2A)\) be the class number of the imaginary quadratic field \(\mathbb{Q}(\sqrt{-2A})\). If \(h(-2A) \not\equiv 0 \pmod{n}\), then the Diophantine equation

\[Ax^2 + 2 = y^n \]

has no integral solutions \(x, y, n\).

Lemma 8 (Rabinowitz [Ra]). Let \(m\) be a positive integer. Then the Diophantine equation

\[x^3 + 3^m = y^2 \]

has only the positive integral solutions \((x, y, m) = (1, 2, 1), (40, 253, 2)\) with \((y, 3) = 1\).

Lemma 9 (Brown [B1], [B2]). Let \(m\) be a non-negative integer and \(p\) an odd prime. Then the Diophantine equation

\[x^2 + 3^{2m+1} = y^p \]

has only the positive integral solution \((x, y, m, p) = (10, 7, 2, 3)\) with \((y, 3) = 1\).
LEMMA 10 (Nagell [N1]). Let \(n \) be an integer \(\geq 2 \). Then the Diophantine equation
\[
x^2 + 5 = y^n
\]
has only the positive integral solution \((x, y, n) = (2, 3, 2)\).

Using the Main Theorem with \((p, q, r) = (1, 1, 1)\), \(n = 1 \) and \(\delta = 1 \), we immediately obtain the following (cf. Table):

THEOREM 3. Let \(A, B, C \) be fixed positive integers satisfying \(A - B = C > 1 \) with \((A, B) = 1 \). If \(B \geq 1697C \), then the Diophantine equation
\[
A^x - B^y = C
\]
(7)
has only the positive integral solution \((x, y, n) = (1, 1)\).

In the case where \(A - B^2 = 2 \), the condition "\(a \geq \kappa b^{\alpha / p} \)" in the Main Theorem can easily be eliminated. In some other theorems of this section, we also adopt the following way of eliminating it, which is of use and interest:

THEOREM 4. Let \(A, B \) be fixed positive integers satisfying \(A - B^2 = 2 \) with \(B \geq 3 \) and \((A, B) = 1 \). Then the Diophantine equation
\[
A^x - B^y = 2
\]
(8)
has only the positive integral solution \((x, y) = (1, 2)\).

Proof. In the Main Theorem, let \((p, q, r) = (2, 1, 1)\), \(n = 1 \) and \(\delta = 1 \). Then by the Main Theorem, (8) has only the positive integral solution \((x, y) = (1, 2)\) under the condition \(B \geq 41.19 \cdot \sqrt{2} = 58.251 \ldots \) (cf. Table).

The condition \(B \geq 59 \) can easily be eliminated.

Let \(y \) be even. Then \(x \) is odd. Hence by Lemma 6 (with \(m = 0 \)), we obtain \(x = 1 \) and so \(y = 2 \).

Let \(y \) be odd. If \(\left(\frac{B}{A} \right) = -1 \), then (8) has no solutions. Since \(A - B^2 = 2 \), it follows that if \(B \equiv 5 \) or \(7 \) (mod 8), then \(\left(\frac{B}{A} \right) = -1 \). Thus we may suppose that \(B \equiv 1 \) or \(3 \) (mod 8). From \(A - B^2 = 2 \) and (8), we have
\[
A(A^{x-1} - 1) = B^2(B^{y-2} - 1).
\]
In particular,
\[
2^{x-1} \equiv 1 \pmod{B} \quad \text{and} \quad B^{y-2} \equiv 1 \pmod{A}.
\]

For all \(B \) such that \(B < 59 \) and \(B \equiv 1 \) or \(3 \) (mod 8), the order of 2 modulo \(B \) is even. Hence \(x \) is odd. We also see that for all \(B \) above except \(B = 3, 9, 25, 33 \), the order of \(B \) modulo \(A \) is even, which implies that \(y \) is even. In view of Lemma 6 (with \(m = 0 \)), \(B \) is never a square. Consequently, \(B = 3 \) or \(33 \).

Since \(y \) is odd, (8) can be written as
\[
B(B^{(y-1)/2})^2 + 2 = A^x \quad \text{(with \(x \) odd)}.
\]
Since \(h(-6) = 2 \) and \(h(-66) = 8 \), this equation has no solutions from Lemma 7.

Remark. The example above shows that the estimate of linear forms of Lemma 1 is fairly sharp. Indeed, if \(B \geq 59 \) and \(B \equiv 1, 3 \pmod{8} \), then there are some exceptions in using Lemma 7, namely \(B = 67, 91, 123 \):

- \(h(-134) = 14 \), \(e(67) = 249 \), \(d(67) = 66 \); \(h(-182) = 12 \), \(e(91) = 25 \), \(d(91) = 12 \); \(h(-246) = 12 \), \(e(123) = 7565 \), \(d(123) = 20 \), where \(e(B), d(B) \) denote the order of \(B \) modulo \(A \) and the order of 2 modulo \(B \), respectively (cf. Theorems 6, 7).

We now make some comments on equation (7), where \(A > 1, B > 1, C \geq 1 \) are any integers. Pillai [P1] showed that (7) has only finitely many positive integral solutions \((x, y)\). Pillai [P2] also showed that if \(C \) is sufficiently great with respect to \(A \) and \(B \), then (7) has at most one solution. LeVeque [Lv] and Cassels [Ca] independently established that for \(C = 1 \), there is at most one solution with \(y \) even and at most one with \(y \) odd, except for five specific choices of \((A, B, C)\).

Moreover, we make a remark on the equation \(a^x + b^y = c^z \), where \(a, b, c \) are any positive integers \(> 1 \) with \((a, b) = 1\). Using the theory of imaginary quadratic fields, Scott [Sc] proved that if \(c \) is prime, then this equation has at most two solutions \((x, y, z)\) in positive integers when \(c \neq 2 \), and at most one solution when \(c = 2 \), except for two cases (taking \(a < b \)): \((a, b, c) = (3, 5, 2) \) and \((a, b, c) = (3, 13, 2) \), when there are exactly three solutions \((x, y, z) = (1, 1, 3), (3, 1, 5), (1, 3, 7) \) and exactly two solutions \((x, y, z) = (1, 1, 4), (5, 1, 8) \), respectively (cf. Guy [G], Section D9).

When \(a, b, c \) are fixed positive integers satisfying \(a^p + b^q = c^r \), we apply the Main Theorem to the equation \(a^x + b^y = c^z \) for various degrees \(p, q, r \geq 1 \).

By an argument similar to the one used in Theorem 1, we obtain the following:

Theorem 5. Let \(a, c \) be fixed positive integers satisfying \(a + 2 = c \) with \(a \equiv 3 \) or 5 \(\pmod{8} \). If \(a \geq 1697 \), then the Diophantine equation

\[
a^x + 2^y = c^z
\]

has only the positive integral solution \((x, y, z) = (1, 1, 1)\).

Proof. Let \(a \equiv 3 \pmod{8} \). Then \(c = a + 2 \equiv 5 \pmod{8} \). From (9), we have \(3^x + 2^y = 5^z \pmod{8} \). If \(y = 1 \), then we easily see that \(x \) and \(z \) are odd. If \(y = 2 \), then \(x \) is even and \(z \) is odd. Then (9) becomes

\[
(a^x/2)^2 + 4 = c^z,
\]

which has no solutions by Lemma 5.
If \(y \geq 3 \), then \(x \) and \(z \) are even, say \(x = 2X, z = 2Z \). From (9), we have \(2^y = (c^Z + a^X)(c^Z - a^X) \) and so \(c^Z + a^X = 2^{y-1}, c^Z - a^X = 2 \). Hence
\[
 c^Z - 2^{y-2} = 1,
\]
which has no solutions by the following claim:

Claim 2. Let \(c \) be odd \(\geq 3 \) and \(x, y > 1 \). The Diophantine equation
\[
 c^x - 2^y = 1
\]
has only the solution \((x, y, c) = (2, 3, 3)\).

Proof. Suppose that \(x \) is even, say \(x = 2X \). Then \((c^Z + 1)(c^Z - 1) = 2^y\) and so \(c^Z + 1 = 2^{y-1}, c^Z - 1 = 2 \). Thus \(2^{y-1} - 2 = 2 \). Hence \(y = 3, x = 2 \) and \(c = 3 \).

Suppose that \(x \) is odd. Then \((c - 1)(c^z - 1) = 2^y\). Since \((c^x - 1)/(c - 1)\) is odd, we have \(c - 1 = 2^y \) and \((c^x - 1)/(c - 1) = 1\), which is impossible, since \(x > 1 \).

Let \(a \equiv 5 \pmod{8} \). Then \(c = a + 2 \equiv 7 \pmod{8} \). From (9), we have \(5^z + 2^y \equiv 7^z \pmod{8} \). If \(y = 1 \), then we see that \(x \) and \(z \) are odd. If \(y = 2 \), then \(x \) is odd and \(z \) is even, say \(z = 2Z \). Then \((c^Z + 2)(c^Z - 2) = a^z\) and so \(c^Z + 2 = a_1^z, c^Z - 2 = a_2^z \) with \(a = a_1a_2 \). Thus \(a_1^z - a_2^z = 4 \), which is impossible. If \(y \geq 3 \), then \(x \) and \(z \) are even. As above, (9) has no solutions.

Hence if \(a \equiv 3 \) or \(5 \pmod{8} \), then \(x, z \) are odd and \(y = 1 \). In the Main Theorem, let \((p, q, r) = (1, 1, 1), n = 1 \) and \(\delta = 2 \). Then by the Main Theorem, if (9) has positive integral solutions, then
\[
 x \leq n + p - q = 1 + 1 - 1 = 1
\]
under the condition \(a \geq 848.1 \cdot 2 = 1696.2 \) (cf. Table). Thus \(x = 1 \) and so \(z = 1 \).

Theorem 6. Let \(a, c \) be fixed positive integers satisfying \(a^3 + 2 = c \) with \(a \equiv 3 \) or \(5 \pmod{8} \). Then the Diophantine equation
\[
 a^x + 2^y = c^z
\]
has only the positive integral solution \((x, y, z) = (3, 1, 1)\).

Proof. In the same way as in the proof of Theorem 5, we see that \(x \) and \(z \) are odd, and \(y = 1 \). In the Main Theorem, let \((p, q, r) = (3, 1, 1), n = 1 \) and \(\delta = 2 \). Then by the Main Theorem, if (9) has positive integral solutions with \((x, n) \neq (3, 1)\), then
\[
 x < n + p - q = 1 + 3 - 1 = 3
\]
under the condition \(a \geq 9.47 \cdot 2^{1/3} = 11.931 \ldots \) (cf. Table). Hence from \(a^3 + 2 = c \), (9) has only the solution \(x = 3, y = 1, z = 1 \).
The condition \(a \geq 12 \) can easily be eliminated. If \(a < 12 \), then the pairs of \((a,c)\) are only \((3,29),(5,127)\) and \((11,1333)\). Since \(x \) is odd and \(y = 1 \), \((9)\) can be written as

\[
a(x^{(x-1)/2})^2 + 2 = c^z\quad \text{(with \(z \) odd).}
\]

Since \(h(-6) = h(-10) = h(-22) = 2 \), we obtain \(x = 3, z = 1 \) for the pairs of \((a,c)\) above from Lemma 7.

Theorem 7. Let \(a, c \) be fixed positive integers satisfying \(a^4 + 8 = c \) with \(a \equiv 3, 5 \) or \(7 \pmod{8} \). Then the Diophantine equation

\[
a^x + 2^y = c^z
\]

has only the positive integral solution \((x,y,z) = (4,3,1)\).

Proof. Since \(a \) is odd and \(c = a^4 + 8 \), we have \(c \equiv 1 \pmod{8} \).

Let \(y = 2 \). Then \(a^x \equiv 5 \pmod{8} \), which is clearly impossible if \(a \equiv 3 \) or \(7 \pmod{8} \). If \(a \equiv 5 \pmod{8} \), then \(\left(\frac{z}{a} \right) = \left(\frac{2}{a} \right) = -1 \) and so \(z \) is even from \((9)\). This is impossible from \(a^x + 4 = c^z \).

Let \(y \geq 3 \). Then \(a^x \equiv 1 \pmod{8} \), which implies that \(x \) is even, since \(a \equiv 3, 5 \) or \(7 \pmod{8} \). As in the proof of Theorem 5, it follows from Claim 2 that \(z \) is odd. We show that \(y \) is odd. If \(a \not\equiv 0 \pmod{3} \), then \(c \equiv 0 \pmod{3} \). Thus \((9)\) implies that \(1 + (-1)^y \equiv 0 \pmod{3} \) and so \(y \) is odd. If \(a \equiv 0 \pmod{3} \), then \((-1)^y \equiv (-1)^z \pmod{3} \) and so \(y \) is odd, since \(z \) is odd. Hence as \(x \) is even, \(y \) is odd and \(z \) is odd, Lemma 6 implies that \(z = 1 \). Then by \((9)\), we have \(a^x + 2^y = a^4 + 8 \). The case \(x = 2 \) does not occur. In fact, if \(x = 2 \), then we have

\[
(2a^2 - 1)^2 + 31 = 2y^2.
\]

The equation above has no solutions by Browkin and Schinzel [BS], which states that the Diophantine equation \(x^2 + 31 = 2^n \) has only the positive integral solutions \((x,n) = (1,5), (15,8)\). Thus we have \(x = 4, y = 3 \) and so \(z = 1 \).

Let \(y = 1 \). Then \(a^x \equiv -1 \pmod{8} \), which implies that \(x \) is odd and \(a \equiv -1 \pmod{8} \). In the Main Theorem, let \((p,q,r) = (4,3,1), n = 1 \) and \(\delta = 1 \). We may suppose that \(x > 4 \), since \(a^x + 2 = c^z = (a^4 + 8)^z \). Note that \(n = 1 < 3 = q \), but \(rx - pz = x - 4z > 0 \) when \(y = n = 1 \). In fact, otherwise, \((a^x + 2)^4 = c^{4z} \geq c^z = (a^4 + 8)^z \), which is impossible, since \(x > 4 \). Then by the Main Theorem, if \((9)\) has positive integral solutions, then

\[
x \leq n + p - q = 1 + 4 - 3 = 2
\]

under the condition \(a \geq 6.42 \cdot 2^{3/4} = 10.797 \ldots \) (cf. Table). This is impossible, since \(x > 4 \).

The condition \(a \geq 11 \) can easily be eliminated. Since \(a < 11 \) and \(a \equiv -1 \pmod{8} \), it remains to consider the case \(a = 7 \). When \(a = 7 \), taking equation
modulo 5 implies that \(x \equiv 1 \pmod{4} \) and \(z \) is odd. Since \(x \) is odd and \(y = 1 \), (9) can be written as

\[
a(x^{(x-1)/2})^2 + 2 = c^z \quad \text{(with } z \text{ odd)}.
\]

Since \(h(-14) = 4 \), (9) has no solutions with \(y = 1 \) from Lemma 7. \(\blacksquare \)

Theorem 8. Let \(a, c \) be fixed positive integers satisfying \(a + 3 = c^2 \) with \(c \equiv -1 \pmod{9} \). If \(a \geq 2545 \), then the Diophantine equation

\[
a^x + 3^y = c^z
\]

has only the positive integral solution \((x, y, z) = (1, 1, 2)\).

Proof. Since \(a \equiv 1 \pmod{3} \) and \(c \equiv -1 \pmod{3} \), we have \(1 \equiv (-1)^x \pmod{3} \) and so \(z \) is even.

Let \(y \geq 2 \). Since \(a \equiv -2 \pmod{9} \) and \(c \equiv -1 \pmod{9} \), we have \((-2)^x \equiv 1 \pmod{9} \) and so \(x \equiv 0 \pmod{3} \). In fact, the order of \(-2\) modulo 9 is 3. Thus (10) becomes

\[
(a^{x/3})^3 + 3^y = (c^{z/2})^2,
\]

which has no solutions by Lemma 8.

Therefore we have \(y = 1 \). In the Main Theorem, let \((p, q, r) = (1, 1, 2)\), \(n = 1 \) and \(\delta = 2 \). Then by the Main Theorem, if (10) has positive integral solutions, then

\[
x \leq n + p - q = 1 + 1 - 1 = 1
\]

under the condition \(a \geq 848.1 \cdot 3 = 2544.3 \) (cf. Table). Thus \(x = 1 \) and so \(z = 2 \). \(\blacksquare \)

Remark. Let \(a, c \) be fixed positive integers satisfying \(a^2 + 3 = c \) with \(a \equiv -1 \pmod{3} \). Then we can solve (10) without using the Main Theorem. In fact, taking (10) modulo 3 and 8 implies that \(x \) is even, \(y \) is odd and \(z \) is odd. Hence in view of Lemma 9, if \(a, c \) are as above, then (10) has only the positive integral solution \((x, y, z) = (2, 1, 1)\).

In connection with Theorems 7 and 8, we conclude this section by showing the following:

Theorem 9. Let \(a, c \) be fixed positive integers satisfying \(a^2 + 5 = c \) with \(a \equiv -1 \pmod{25} \) and \(c \) odd. Then the Diophantine equation

\[
a^x + 5^y = c^z
\]

has only the positive integral solution \((x, y, z) = (2, 1, 1)\).

Proof. Since \(a \equiv -1 \pmod{5} \) and \(c \equiv 1 \pmod{5} \), we have \((-1)^x \equiv 1 \pmod{5} \) and so \(x \) is even.

Let \(y \geq 2 \). Since \(a \equiv -1 \pmod{25} \) and \(c \equiv 6 \pmod{25} \), we have \(1 \equiv 6^z \pmod{25} \) and so \(z \equiv 0 \pmod{5} \). In fact, the order of 6 modulo 25 is 5.
We next show that y is odd. If $a \not\equiv 0 \pmod{3}$, then $c \equiv 0 \pmod{3}$. Thus (11) implies that $1 + (-1)^y \equiv 0 \pmod{3}$ and so y is odd. If $a \equiv 0 \pmod{3}$, then $(-1)^y \equiv (-1)^z \pmod{3}$ and so $y \equiv z \pmod{2}$. The case where $y \equiv z \equiv 0 \pmod{2}$ does not occur. In fact, if $y \equiv z \equiv 0 \pmod{2}$, then

$$a^X = 2uv, \quad 5^Y = u^2 - v^2, \quad c^Z = u^2 + v^2,$$

where $x = 2X$, $y = 2Y$, $z = 2Z$ and u, v are integers such that $(u, v) = 1$ and $u \not\equiv v \pmod{2}$. Then we have $u + v = 5^Y$ and $u - v = 1$. Thus $5^{2Y} + 1 = 2c^Z$, which is impossible, since $c \equiv 1 \pmod{5}$. Hence $y \equiv z \equiv 1 \pmod{2}$.

Now put $x = 2X, y = 2k + 1, z = 5Z$, where $X \geq 1, k \geq 0, Z \geq 1$ are integers. Since $(a, 5) = 1$ and c is odd, (11) leads to

$$a^X = 5^k \sqrt{-5} = (u + v \sqrt{-5})^5,$$

where u, v are integers such that $(u, v) = 1$ and $c^Z = u^2 + 5v^2$. Equating imaginary parts yields

$$5^k = 5v(u^4 - 10u^2v^2 + 5v^4),$$

so $k \geq 1$ and $5^{k-1} = v(u^4 - 10u^2v^2 + 5v^4)$. Hence since $(u, v) = 1$, we see that either

(12) $v = \pm 1$, $u^4 - 10u^2v^2 + 5v^4 = \pm 5^{k-1}$

or

(13) $v = \pm 5^{k-1}$, $u^4 - 10u^2v^2 + 5v^4 = \pm 1$.

Since $u \not\equiv 0 \pmod{5}$, the relation (12) is impossible. (The case $k = 1$ easily yields a contradiction.) The second equation in (13) can be written as

$$(u^2 - 5v^2)^2 - 20v^4 = \pm 1.$$

Note that the $-$ sign must be rejected since $(u^2 - 5v^2)^2 \equiv -1 \pmod{4}$ is impossible. The equation above has no non-trivial solutions from Cohn’s result in [Co1], which states that the Diophantine equation $x^2 - 20y^4 = 1$ has only the positive integral solution $(x, y) = (161, 6)$.

Therefore we have $y = 1$. Then by Lemma 10, we can solve (11) without using the Main Theorem. Since x is even, Lemma 10 implies that $z = 1$ and so $x = 2$.

Remark. So far as the author knows, at present, it seems that the families of exponential Diophantine equations below cannot be solved completely (cf. Cohn [Co3] and Rabinowitz [Ra]):

$$x^2 + 5^{2m+1} = y^p,$$

$$x^3 \pm 5^m = y^2,$$

where m is a non-negative integer and p is an odd prime.
Acknowledgments. The author would like to thank the referee for his valuable suggestions.

References

[Ca] J. W. S. Cassels, On the equation $a^x - b^y = 1$, Amer. J. Math. 75 (1953), 159–162.

Exponential Diophantine equations

[Ra] S. Rabinowitz, *On Mordell’s equation* $y^2 + k = x^3$ with $k = \pm 2^n3^m$, Doctoral dissertation at the City University of New York, 1971.

[Te4] —, *The Diophantine equation* $a^x + b^y = c^5$ III, ibid. 72 (1996), 20–22.

Division of General Education
Ashikaga Institute of Technology
268-1 Omae, Ashikaga, Tochigi 326
Japan
E-mail: terai@aitsun5.ashitech.ac.jp

Received on 10.12.1996
and in revised form on 26.10.1998

(3094)