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On putting # = ¢ in (8) we then have

= 3

11

(@e+by),

ag required.
Proof of Theorem 3. This follows from Theorem 2 on putting

&=ty k= R@,..., 2.

and uging induction on #.

Added in proof. Dr A. Pfister has made some interesting applications of
these theorems which will be published in the Journal of the Tondon Mathemationl
Society.
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Symplectic modulary groups
. by
M. NzwMAN and J. R. SMaART (Washington)

Dedicated to Professor L. J. Mordell
on the occasion on his 75th birthday

1. Introduction. In this article we extend our investigation of modu-
lary groups of matrices initiated in [2] for the ¢ x ¢t modular group to the
2t X 2¢ sympleetic modular group. The principal difficulty that had to be
overcome was the proof of Theorem 1 below, which itself is a result of
much interest, and suggests the following general question: Suppose
that f is a mapping of the ring of pXp rational integral matrices into
the ring of ¢x ¢ rational integral matrices. Suppose further that a is
& positive integer and that the congruence f(4) = 0(modn) has a-solu-
tion A, where 4 is a p X p rational integral matrix. For what mappings
fis'it possible to deduce the existence of a matrix Bsuch that B = A
(modn) and f(B) = 0% Bxamples of such mappings are f(A) = 1—det(4),
f(4) = 4—4" (Lemma 1 below) and f(A4) = AJA'—J (Theorem 1 below),
where J is the 2¢x 2¢ matrix

0T
2]

Here I is the ¢ X ¢ identity matrix, and will stand in what follows for
the identity matrix of arbitrary size.

In the discussion that follows all matrices will have rational integral
entries. I' will denote the 2¢x 2t symplectic modular group. Then I is
the group of automorphs of J and consists of all 2¢ % 2¢ matrices

4 B
M =
o 2]

such that MJM' = J. Such a matrix will be referred to as symplectic.
It is easy to verify that M is symplectic if and only if

AD'—BC' =1, AB = BA’, CD' = D0,
It is also true that if M is symplectic then so is M".
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If M is a matrix satisfying MJ M’ = J(modn), then M will be
said to be symplectic modulo n.

It is customary to consider not I, but 1" modulo its ecentrwm {I, —1I}.
This is equivalent to identifying an element of I" with its negative. For
our purposes it is irrelcvant whether or not this identification is made,
and we accordingly retain the distinetion.

The principal congruence subgroup of I' of level n, denoted by I'(n),
is defined as the totality of elements M of I' such that

84 M. Newman and J. R. Smart

M= Lo d
= o1 (modn).

Then I'(n) is a normal subgroup of I', and one can define the symplectic
modulary group .
) MN(a,b) =T'(a)I'}), ald.

Our principal result is to reduce the study of the groups (1) to the
cage when ¢ and . are each powers of the same prime p; and under certain
circumstances to determine them completely.

Many of the results that follow can be proved in just the same way
as the corresponding results of [2]. When this is the case the proof is
omitted and the reader is referred to [2] for full details.

2. Matrices modulo ».

Lemma 1. Suppose that the matriz A satisfies A == A'(modn). Then
there is a symmetric matric B such that B = A (modn).

Proof. Put 4 = 4’4 nl, where B is an integral matrix. Then B’ =
—F. Put B = (¢y) and define

B = (3(ey+ley])).

Then E* is an integral matrix, and is obtained from X by replacing all
negative entries by 0. Furthermore (since B is skew-symmetrie)

(BYY = (§(—eq+ ley])),
and so B = E*—(B'Y. Thus
A=A = B = n(B*—(@*y),
A—nB* = (4—aB*).

Hence we may choose B = A —nB*.

’

A B
LeMMaA 2. Let M = [C D] be symplectio modulo n. Then there is
a symmetric matriz X such that
(det(4-+X0), n) =1.
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The proof, with minor meodifications, is identical with the proof
of Lemma 6, pp. 377-378 of [1]. The essential observation is that
(det M, n) =1 since (det M)* =1(modn). )

LeMMA 3. Suppose that P, Q are commuting symmetric matrices such

that M :[5 2?] ts symplectic modulo n. Then there is a symplectic matriaw

N such that M = N (modn).

Proof. M is symplectic modulo » if and only if PQ = I(modn).
Put PQ = I—nkE, where F is symmetric and commutes with both P
and @. Then it is easily verified that the matrix

P+4+nEP —nE
N =
nk Q
is symplectic, and is certainly congruent to M modulo n.

‘We are now in a position to prove the main result of this section.

TaEoREM 1. Suppose that M = [g g] s symplectic modulo n. Then

there is a symplectic matriz N such that M = N (modn).
Proof. By Lemma 2, there is a symmetric matrix X such that
(det(A+X0), 'n) = 1. Put

IX A+X0 BLXD| [4, B
M‘z[oz]M"[ ¢ D }—[0 D]'

Then M, is also symplectic modulo %, and (detd,, n) = 1. Define a by
adet 4, = 1(modn). Then —aCA{¥ is symmetric modulo n. By Lemma 1,
there is a symmetric matrix ¥ such that ¥ = — a0 A% (modn). Put

1o 4, B, 4, B
M, = M, = = .
YI YA4,+0 ¥YB,+D ¢, D,
Then M; is symplectic modulo =, and

O, = YA,+0 = —aCA 4,40 = 0(modn).

Similarly, there is a symmetric matrix Z such that

Iz A, A Z+B, 4, B,
A, = 1, = =
oI 0, C,Z+D, ¢, D,

where B, = 0(modn). Thus M; is symplectic modulo n and

= |0 (modn)
= modmn).
*“1o p

2
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Now (as in the Smith normal form) determine unimodular matricos
U,V such that P = UA,V is diagonal. Put

o Voo |4V 0
Mf = 0 -t M, 0 7 =, v-1p,y- (modn).

Then M, is symplectic modulo # and M, = ['(Z)J ?JJ (modmn), where

P is diagonal. Since P’ == (modn), @ is congruent modulo » to a dia-
gonal matrix. We have shown therefore that symplectic matricos R, &
exist such that )

M == R

Py
S (modn),
0@

where both P and ¢ are diagonal matrices. To complete the proof of
the theorem it is only hecessary to show that a symplectic matrix N,
exists such that ‘

] PO
Ny = o o (modn);

for then the matrix N = RN,8 is also symplectic, and
PO :
N =R 8 = M(modn).
10 Qn
But the existence of N, iy guaranteod by Lemma 3, and so the proof
of the theorem is-complete, :

3. Symplectic modulary groups. In this section m, n denote posi-
tive integers and

a4 = (mym)y, &= [m,n].

LeMMa 4. Suppose that Mel'(d). Then X cam be determined so that
Yel'(m), and

(2) ' Y = M(modn).
Proof. Since M eI'(d), we can write I = [-dN . Set ¥ = T 4mZ.
Then ¥ == I (modm), and (2) becomes
. . M ‘h
mZ = 4N (modn), »i—Z = N (mod -d~)
d

3 m on _ . ‘
Since (vd—, T;‘f) = 1, this has a solution Z,. Thus there is a 7 o such that

¥, = I(modm), Yy = M (modn).
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Then Y, is symplectic modulo m and also modulo » ; hence modulo é.
Thus Y can be determined so that ¥ = ¥,(modé) and ¥ is symplectic
(Theorem 1). This Y safisfies the conditions of the lemma. :
Lemma 4 now implies the following theorem.
THmOREM 2. The normal subgroups I'(m), I'(n) of 1" satisfy

(3) : Im)I(n) = I'(d),
(4) I(m) ~ I'(n) = I'(8).

Proof. It is clear that I'(m)I'(»)C I'(d). Suppose that MeI'(d).
Determine ¥ as in Lemma 4. Then YeI'(m), Y 'Mel'(n) and M
=7Y-Y'M. Hence MI'(m)'(n), I'(d) C I'(m)I'(n), and (3) is proved.
Equation (4) is trivial.

In terms of the modulary groups M(a, b) = I'(a)/I'(b), &|b, Theo-
rem 2 implies by one of the isomorphism theorems :

THEOREM 3. We have the isomorphism

(BY M(d, m) = M(n, 3).
It is now possible to follow the arguments in [2] without change

to obtain the next three results:
THEOREM 4. Let “Xx” represent direct product. Then

MDA, 8) == M(d, m) x M(d, n)

where d = (m, n) and 6 = [m, n].

THEOREM 5. Suppose that m and n are arbitrary, n = []p’. For
.

cach prime p dividing n write m as m,p"r, where (m,, p) = 1 and ap = 0.
Then M (m, mn) is isomorphic to the direct product
[[ @, perto).
g
LEMMA 3. If n|m then M(m, mn) is abelian.v
We now determine the structure of M(m, mp*) where p is a prime
and p*|m. Let By be the matrix with 1 in position (4, j) and 0 elsewhere,

and set )
I E,,; . .
[
By =
T y B
(6) 0
Wf' = k;‘fa . A

B I+ mBy; 0 -
Tl 0 I—mB)
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There are (©*-+1)/2 matrices Sy, (©2--1)/2 matrices Wi, and # matri-
ces Ry. The matrices Sy, W;; are symplectic as are the matrices Ry,
4 # j.'The matrices R; are not symplectic but are symplectic modulo m?
and so modulo mp", since p*|m. This will suffice for our purposes, in view
of Theorem 1. :

‘We now prove

THEOREM 6. Let p be a prime, p*|m. Then M (m, mp™) is an abelian
group of order p ™Y and of wype (@*, 9", ..., p"). The generators are
given modulo mp* by the matrices (6).

Proof. By Lemma 5, D (m, mp") is abelian. Suppose that

(I4+mA mB
M = . el'(m).
mC  I-+4mD
Then : .
(7) = —A'(modm), B==B'(modm), O = (modm).

Since p“|m, the congruences (7) also hold modulo p* By TLemmy 1,
symmetric matrices X, ¥ can be determined so that X == B (modp®),
Y = C(modp*). Then

[ wX [ L 0][I+m4 0
M == ,| (modmp®).
0 I ||mY I 0 I—mA’
Now the matrices
I mX I TmA 0
, and
0 I m¥ I 0 I—md’

can all be expressed modulo mp® in an obvious way in terms of the matri-
ces (6), so that these indeed generate I'(m) modulo I'(mp™). Furthermore
it i a simple computation to verify the independence of these generators
modulo mp", each of which is of period p* modulo I'(mp¥). The proof
of the Theorem is concluded.

Making the choice m == p”, we have

CorROLLARY 1. If 1 <u <o then M(p®, p**°) is an abelion group
of order p***+9) and of wpe (%, 9", ..., p¥). The generators modulo I'(p*“+?)
may be chosen as the matrices (6), with m = 2’

Finally, Theorem 5 and Corollary 1 imply

TomoreM 7. Suppose that nim, n = [[pP>. For each prime p divi-
pin

ding n write m as mp°®, where (my, p) =1. Then 1 < B < ap and DM (m, mn)
18 1somorphic 1o the direct product

(8) [P, pootis).
\ Bin
The direct factors in (8) have the structure described in Theorem 6.
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