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Thus, for # = 2, r = 1, ¢ = 1, (B0) is not satistied and therefore f(w,y)
is not a polynomial in », y. However

P~

Flatip,9) = jly— D v},

Be=0
where I, (y) is defined by (46).
Remark. We note that Rédei and Szele [2] have made a detailed
study of the polynomial representation of functions over rings and in
particular over Z,; the polynomials considered ave in an enlarged ring.
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as sums of squares
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To my leacher and friend Professor L. J. DMordell
Jor his 75th birthday in gratitude

TueoreM 1. Let k be any field and denote by k(z) and k [x], respective-
ly, the field of rational functions and the ving of polynomials in a single
variable & having coefficients in k. Then any fek[z] which is the sum of
squares of elements of k(x) is the sum of the same number of squares of ele-
ments of k[x].

‘What is essentially new in this enunciation is that the same number
of squares suffices. Without this condition the result stated has been
proved by Artin [1], who adapted a proof by Landau [5] of the fact that
every positive define function in Q[a] (where @ is the field of rationals)
is the sum of eight squares of elements of Q [x] (cf. also Witt [6] for some
related results).

As almost immediate consequences of Theorem 1 we have:

THEOREM 2. Let de<k and suppose that the characteristic of % is not 2.
A necessary and sufficient condition that &+ d be the sum of n > 1 squares
in I(ax) is that

either —1 is the sum of n—1 squares of k
or d is the sum of n—1 squares of k.

TunoreM 3. Let R denote the field of real numbers and let oy, ..., x,
be independent variables over R. Then 2+ ... 2 18 not the sum of n—1
squares of elements of R(®, ..., o).

Theorem 3 answers a problem of Professor N. J. Fine which reached
me via Professor Mordell and Professor Davenport. The case n < 4 has
already been proved by Davenport [4] in another way. I am grateful to
him for showing me his manuseript before publication.

Proof of Theorem 1. The proof is essentially an adaption to the
“power series ease” of Davenport’s proof [3] of my theorem [2] that if
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a homogeneous quadratic form with rational integer coeffiicents has
a non-trivial integral zero, then it has one whose coordinates are bounded
in terms of the coefficients of the form. The proof given below is, how-
ever, quite self contained.

We denote the number of squares in Theorem 1 by n and dispose
first of some trivial cases.

Firgt case. o = 1. This follows from the existence of unique facto-
rization in %[x].

Second case. k has characteristic 2. Then any sum of squares is
itself a sgquare and the first case applies.

Third case. —1 ds the sum of n—1 squares of clements of k. Let

—1 = a4 ... a’. After the second case, we may suppose that 2 0,
and then
P (IR N a1
2eTGN
From now on, we shall suppose that none of the first three cases

applies. By hypothesis theve is a solution Z, ¥; (1 < § < n) of the equa-
tion
@) 7= D x

157 En

where Z, Ve k[x] and Z = 0. We have to show that there is a solution
with Z = 1 and, by homogeneity, it iy enough to show that there is a wo-
Iution with Zek, Z ## 0.

Since so]uuom of (2) exist with Z + 0, there is a solution Y; ==y,
7 =z with & # 0 for which the degree of z is a8 small as possible. We
shall show that zek by proving that otherwise there exists a golution
Y; =i, Z =2 with &' 0 for which degz’ < dege. We suppose, then,
that

(3) degz > 0.

Let 2 (1 <j <\») be the uniquely defined elements of % [@] such
that (1)

(4) deg ;<0 (1<Kj<n),
where

(5) Ay = h—yfz.

(*) The degree of an element of %(z) is defined in the obvious way.
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We may suppose that
6) F#3%,

since otherwise 2' =1, y; = 4 would be our required smaller solution.
It may readily be verified that

?/71' =Y {2 X _j}— 2 {2 ;‘u?/u‘f"fz}’
(S-St

is another solution(2) of (2). Clearly, yiek[z], # ekw).
On substituting (5) in (7) we have

? = 22/1,2,
u

(")

Hence ) ) L

degz’ < degz
by (4). On the other hand, (6) implies that not all the A; are 0, and hence
Z‘A2 # 0 on considering the terms of highest degree in « a.nd remember-

ing that the third case (above) does not apply. Hence z' 3= 0.. We have
now reached a contradiction to our assumption that dege is as small as
possible and satisfies (3). This completes the proof of Theorem 1. '

Proof of Theorem 2. If d is the sum of n—1 squares in % then
trivially #*4 d is the sum of n aquares in k[#]. If —1 is the sum of n—1
squares in k, then (1) with f = 2®+d gives a representation of 22 d
ag the sum of » squares. Hence all that is required to complete the proof
is to show that if —1 is not the sum of n—1 squares in & and a°-+d is the
sum of » squares in %(z), then ¢ is the sum of n—1 squares in %.

By Theorem 1, we then have

@) d+d= D Tj,

I<isn

Y;ek[a].

On applying the condition about —1 to the terms of highest degree in

on both sides we see that the ¥; are linear in # (or constants), say

9 Y, = aqut-b;,  a bek.

Then for at least one choice of sign we can find cek such that
¢ = d(anc+bn).

(%) Tt is the second point of intersection of the quadric (2) with the line join-
ing (ys,#) to (47, 1) in m-dimensional projective space over the field  (x).
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On putting # = ¢ in (8) we then have

= 3

11

(@e+by),

ag required.
Proof of Theorem 3. This follows from Theorem 2 on putting

&=ty k= R@,..., 2.

and uging induction on #.

Added in proof. Dr A. Pfister has made some interesting applications of
these theorems which will be published in the Journal of the Tondon Mathemationl
Society.
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1. Introduction. In this article we extend our investigation of modu-
lary groups of matrices initiated in [2] for the ¢ x ¢t modular group to the
2t X 2¢ sympleetic modular group. The principal difficulty that had to be
overcome was the proof of Theorem 1 below, which itself is a result of
much interest, and suggests the following general question: Suppose
that f is a mapping of the ring of pXp rational integral matrices into
the ring of ¢x ¢ rational integral matrices. Suppose further that a is
& positive integer and that the congruence f(4) = 0(modn) has a-solu-
tion A, where 4 is a p X p rational integral matrix. For what mappings
fis'it possible to deduce the existence of a matrix Bsuch that B = A
(modn) and f(B) = 0% Bxamples of such mappings are f(A) = 1—det(4),
f(4) = 4—4" (Lemma 1 below) and f(A4) = AJA'—J (Theorem 1 below),
where J is the 2¢x 2¢ matrix

0T
2]

Here I is the ¢ X ¢ identity matrix, and will stand in what follows for
the identity matrix of arbitrary size.

In the discussion that follows all matrices will have rational integral
entries. I' will denote the 2¢x 2t symplectic modular group. Then I is
the group of automorphs of J and consists of all 2¢ % 2¢ matrices

4 B
M =
o 2]

such that MJM' = J. Such a matrix will be referred to as symplectic.
It is easy to verify that M is symplectic if and only if

AD'—BC' =1, AB = BA’, CD' = D0,
It is also true that if M is symplectic then so is M".
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