° ©
Im“ ACTA ARITHMETICA

IX (1964)

On prime numbers in an arithmetic progression
with a prime-power difference
by
M. B. BARBAN, Yu. V. LinNik and N. G. TsEuDAKOV (Leningrad)

To Professor L. J. Mordell
on his 76-th anniversary

§ 1. The distribution of primes in the segments of an arithmetic
progression has attracted the attention of many authors since the proof
of Dirichlet’s celebrated theorem (1837).

The extended Riemann hypothesis, not proved up to now, would
lead to the following asymptotic law:

Let D > 1 be a natural number; (I, D) =1, ¢ > 0 being an arbitra-
rily small number and z and arbitrarily large number. Then

(1.1) w(z, D, 1) = kliz(1+0 (gz)~™)
for
@>D", h=¢D), u(@@D,)=1, p=imodD), p<a.

In particular, the minimal prime P,,(D, 1) in the progression = =]
(mod D) must satisfy the inequality

1.2) Pow(D, 1) < c(e) D

We have no means of proving (1.1) at present; the same can be said about
(1.2). In article [1], the simpler variant of which was given in [2], it was
shown that there exists a constant ¢ >1 such that

(1.3) Poin(D, 1) < DF.

Pang Cheng Tung [3] showed in 1937, using papers [1] and [2], that
¢ < 5448. The result of this author is the best up to date.

However, for some subsequences ¥ = {D} of the moduli D one can
hope for a considerable improvement of the estimate of the constant c.
Obviously for this purpose one must have more information on the zeros
of the series L(s, x) than in the general case.
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In particular, for the moduli of the type D = p”, where p > 3 is a fixed
prime, n =1, 2, ..., new and important data were obtained by A. G. Post-
nikov [4] in 1954 (see also [5]). The work of A. G. Postnikov was conti-
nued by S. M. Rosin [6].

The authors of this article have studied the asymptotic law acting
on the short segments of the arithmetic progressions with the difference
D =p". We have obtained the following result:

THEOREM. Let p =3 be a prime, D =p" (n=1,2,3, ), >0
being an arbitrarily small mumber. Then the following asymptotic low:

(1.4) w(e, D,1) = b lizn(l+0(gs) ")
8 &
holds for «>D3", M being arbitrarily large.
It is clear that (1.4) implies the inequality:

(1.5) Pon(D, 1) < ¢y(e) Di+*

for the moduli of the type defined above. We see that (1.4) is near to
1.1).

"The sign O can depend only on . One can find a constant ¢ such that
n{z, D,1) > 0 for n > c,expp? for any prime p =3.

Notations:

D= h‘lm;
1, if =#=1I1(modD),

Oy, = . 7L=,,.4,3,...;
0, if n<1(modD),

A(n) — Mangoldt’s function;

1 n
Sn(0) = Ba(@, D) = Y1) (162)', m=0,1,3, .

° in<w

In particular:
8y(z) = (2, D, 1) = Z‘ anA(n);

n<e
O (@) = v (8 (@)~ v) = S, (x, D, V);
A (®) = sup|8,(w, D, 1) for u > @; (1, D) = 1;
¢ = f+1y — the zeros of the function L(s, y) in the stripe 0 < B <1;
a(D) — the set of ¢ for all L(s,y) mod D;

N{o,T) — the number of the elements of a(D) situated in the rec-
tangle o <y <1, |y| < T;

a,(D) — the set of the elements of g, (D) situated in the rectangles:

0<B<l, v<ly|<wv+l (»=0,1,2,...);
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o(x) —the set of all p for a given IL(s, z);
B(t) = maxp for all § with the ordinate y = ¢; if there are no such
7eros, f(f) = 4;

B, (1) = maxp(t) for » < |¢| <»+1 (»=10,1,2,...);

oo _ LI
16 = Jyown™ = =7 25 o 205
Later on we shall consider certain subsets # = {D} of the moduli D.
The latter ¢ denotes the constants independent of #, #, D,l; the
same meaning we shall attach to the symbols “0” and “<”. The letter
b denotes the constants depending upon < but not upon =, D,

It is well known (cf. [8], theorem 44 on p. 28) that there exists an
absolute constant such that for all p ea(D), except perhaps one real ¢ = f;,
the following inequality holds: |o| > u(lgD)™* (4 > 0 being a constant).
The zero f, if it exists for a given a(D), is called the exclusive zero modD.

We know about this zero (Siegel’s theorem, cf. [8], p. 60) that

/31 > ,u"D"

for any ¢ > 0; u” = p''(¢). We have no means at present of calculating
it algorithmically. The classical theorems connecting the functions
w(z,D,1) and p(x, D, 1) (cf. [8], p. 70) enable us to reduce the proof of
our fundamental theorem to the estimation of the value of d&,(x) for

8
2> D", we must only show that for such values of « the estimate

8
do(®, D) < by(lg@)™™ holds. Here z > D3, D = p”, M is an arbitrary
positive number.

§ 2. LemMA 1. Let © > h; then for any ¢ >0 and m =1,2,3,...
the following estimate holds:

8 (0)] < eilga ) I,+0(he™'+),
r=0
where
Bg
I, =f N(s,0)2" 'do,
0

By
I, =y [ (N(o,9+1)—N(o,») 2" do, for
0

»=1,2,3,...

The constant ¢, and the O-sign of the second summand on the right-
hand side depend upon & and m; if for a given D there is no By the O-sign
can be given effectively.
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Proof. It is well known that

1 " .
5p | g @ =
(2) 0 if

We have therefore for x >0

1 .0 .
ity iy =1,

0<y <1,

8

&
[ s
o

Sm (9&’) = é;,;

as the series f(s) converges absolutely in the half-plane o > 1.

The integration contour can be transferred to the line ¢ = — 4 for
there is a sequence of straight lines t =T, (n =1, 2, 3,...), T - oo
for n — cosueh that f(s) < Ig2(DT,) on these lines (cf. [9], p 226) Taking
into account all the singular points of the integrand, we obtain by the
residue theorem for the analytical functions:

(2.1) Om (%) = avnl<w)+ Oy () -+ 6m3(w)7
o att
ml(w =—Zx m;—la

8
“12751)1665 FIL

-1

'v. f &
27 h S“m:rf(s)dv?

(37?{

5m3(w) =

To begin with, we remark that

18 ()] < _ZOQV, Q= D'l o=,

Qeay,
for »

(2.2)

> 1 we have

Q <yt N it

YIS+l

To estimate the value of @,, we break up all the zeros of a,(D) into 3
groups:
lel = ¢/2, /2 > o] > (1g D)

u(1gDy™ = el
(the second and the third group may be void for i H
belong to the firgt group). Y Hgven e > 03 fy oo

icm°®
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Recalling the estimate for 8, (§ 1) and taking into account the well-
known estimation N (0, 1) < klgD which is a particular case of the esti-
mations:

(2.3) N(0,1) <hlgD, N(0,v4+1)—N(0,v)<hlgDy
(cf. [9], pp. 220-221) we get after some simple computations
a
(24) @< o ho T (lg DY 4 T < 2l ha e
o<yt o<1

On the other hand, the elements of the theory of Stieltjes integral enable
us to obtain the equality

8
2 25! =1gxf (¥ (o, »+1)—N(o,»)s"  do+
r<yisr+l 0
(2.5) + (N (0,9 +1)—N(0,»))a™! for »3=1,
8¢
=1lga [ N(o,1)a"'de+N(0,1)a~" for »=0.
o<yl 0
The estimations (2.3) give further
(2.6) a'N(0,1)+a7 Yy NN (0,9 4+1)—N(0,)) < o7 'higD.
=1

The relations (2.2), (2.4), (2.5) and (2.6) lead to the relation

[6n, (@) < 1go DT, +ha™"*".

v=0

2.7)

To estimate dn,(z) we use again the above mentioned partition of a,(D).

Moreover, , ¥) which is expounded in
[9], p- 218 and p. 228. In the nelghbourhood of 8 =0 we put

r Yo . i

'L'(s; 1) = S +;dk6’ :
Then
(2.8)

S ¢ id 1
1 m+1
Res -7 (8:0) = Z Aim— ) (ga)'dm- ,,+(m+1), (lg=)
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The differentiation by terms of the equality (2.10) in [9], p. 218 leads
to the relation

11rd Iy v - Ik .
&y = “mgi[m'f (E (”“))‘ ] = 2 < 0(g Dy g

4

we have, moreover,
(2.9) v, = 0(IgD).

The relations (2.1), (2.8) and (2.9) give

A
(2.10) [6my (®)] < & *hmax 13605 ;}ﬁﬁ-—}; (s, x)l S hamtte,

x

Using the estimate

’

z
7 (8 2) <1gD(ls|+2)

for ¢ < 0 (cf. [9], p. 227), we finally get

3
(2.11) 10, (@)] < @ *hlgD < ha~'te.

The relations (2.7), (2.10) and (2.11) prove the lemma.
LEMMA 2. Let the sequence & be such that

(«) N(o, T) < b,T*DP0-19%D,
® Bly) <1—n(D) for |y| < 7.

(The quantities A, B,C,v,n(D) are determined by 9).
Then for a natural m = A+1 and o fized & >0 arbitrarily small,
and A = (IlgDy '(lgeD F) > ¢ the Jollowing estimate holds:

o i\ lgD 1t
[ (@)] < b (e)1g D[D + 3 exp(~osaﬁ—@)] 0 (o).

=T

Proof. First of all, we note that on account of the property (B),

there is no zero §; in our case. Using now the property («) we get the esti-
mate for the quantity I, by Lemma 1: for » <7:

ﬁv
e -1
I, <™ 1ng(0, y+1)2"  do < bz(v—{—l)“"""llgcl)(lg—gﬁ) DAY

< by 1g°D (Mg D) D),
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analogously,
I, < b, D""D1°D(21g D)1,
Therefore
(212)  lga DI, < b, D" (1gD)° 3t < b, DM (1g D).
y=0 v=1

For v > 7, we shall use the first theorem of Page (cf. [8], p. 115, theorem
40):
1—8 =ce(lgDyy™ (v=1,2,3,...).

This theorem gives for I,, the estimate

gD )

(2.13) lgxl, < by*1g®Dexp (— cszm

(2.12) and (2.13) give the proof of the lemma.
COROLLARY. If the sequence & is such that the property (B) is of the form
(D) =b,(lgD)y™%, O<a<l1
v= (gD, M>0, and moreover B> 2,
then
dm(m, D) < bs(e)lgz-3"  for x> DB+,

Proof. In fact, in this case

ot = O((lgm)“M) ,

< gD
¢ 1-al -2 — R
[0 (2)] < b3(e)1g®D [exp(——bﬁ(lgD) )+ E ¥ exp( ) 2D lgv)] -

+0(ha™tte).

y=17

Hence, writing
@, = (1g2)*"1g° Dexp(—b,A(1g D)%),
gD )
_ My —2 g2
8, = (Igo)™ "% GXP( %D rigr )
vy = (Iga)™,

we get

1gQ: < (M +0)1glg D+ Mg (2+B)—bi(1g D)™ < — b, A(lgD)~*


GUEST


382 M. B. Barban, Yu. V. Linnik and N. G. Tshudakov

icm®
for A > 1y(m) uniformly with respect to D. Hence for all 1 > &, Ded
we have

(2.14) Q. < b;.

Analogously, for = <» <», we get the estimate

lgD M
PO - S Bl .
lgDtlgr, T 7 BGFE)

But lgy, = O(AlgD) and lg(A+ B) = 0(4) for A - oco; these relations
hold uniformly with respect to D; hence we have for a sufficiently large
4 (uniformly with respect to D)

lg(¥™™6,) < — 32

1g»*%8, <0 or 5, by
hence
1'0 0
(2.15) 20, < by D <.
y=T p=1
Finally, we have
(2.16) D8, <(ga)™® 35 < (Iga) Pyt < 1.

r=yy Y=y

The relations (2.14), (2.15) and (2.16) show that
(g2)™| 8 (@)| < Bs(2)

under the conditions of the lemma. This proves our corollary.
We note now that the functions §,(z) (v =0,1,2,...) increase
monotonously with z; they are all continuous for » > 1; finally

b
ou
for v > 2 and @ > 1 for given D.

. From the asymptotic law for primes in progressions it follows imme-
diately that there exists for every natural » at least one function x, (D)
such that

8, (xe") = §,_, (we*)

d,(w,(D), D) -0

if D rung over all natural numbers. The class of such functions for a given
» will be denoted by the letter P,. '

If we are given a sequence ©, we can consider the problem of the
construction of the functions of the above-mentioned type for the se-
quence &, such that they increase as slowly ag possible if D — oo, More-
over, we shall be interested in the estimate of d,(x,(Dy), D).
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LemMA 3. Let »,eP, for a certain v and a given sequence &; then
1 o, =€ geP, (£1=0,1,2,...,9),
2. do(wo(D), D) < bedy™.
Proof. Choose D, so large that d,(x,(D), D} <1 for all D> D,.
The mean value theorem gives
8, (we")—8, () = 78, . (ze"),
8, (@) —8, (ze™™) = 18, _1(ze™""),
where 0 < 6,8 <1,7>0. Since §,_;(z¢") is monotonic the following
inequalities hold :
8,1 (@) < 8,_1(2) < S,y (we™).

On the other hand, for # <1 and x > #,¢ we have the estimate
" 8, (2) 8, (26™") = v +0 (1) +0(vd,),

where d, = d,(m,(D), D). An analogous estimate holds also for 8§,(we”)—
—8,(x). Now put n =V, <1. Comparing the relations mentioned
above we get

186,_1(@)] <bVd, for w>ml,
ie.
(2.17) d,_, =d,_,(x1, D) <bVd,.
Hence, d,_—>0 for D — co. Therefore

wle—Pw—l'

Applying this process of induction for all the values of , from a given
» up to » = 2, we recognize the validity of the first assertion of our lerama
up to the value » = 1. The transition from » = 1 to » = 0 is effected as
in paper [10], p. 216. The second assertion of the lemma results from
a v-feld iteration of the relation (2.17).

LEMMA 4. Let T > 1 and suppose that for all the characters y raod D
with Ded the following estimate holds:

max |L(}+it, )| < M(D)(T+2)° for all [t <T.

Then
N(o, T) < by T+ (DM'2 (D))z(l“”’lg"D .

The proof is given in [7], p. 422.
In what follows we suppose that the sequence @ is the sequence
#, = {p"}, where p >2 is a fixed prime; » =1,2,3,...
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We consider the properties of the characters x(») mod D where
Ded,. Let p >2; for each prime of this type we fix a primitive root
g mod p* (say, the least one). Then, as we know, the multiplicative group
(mod p™) will be a cyclic one with the generator g. Therefore we can put

X("') — Z,‘i“‘l”,

where { is a root of unity of degree h = p(p"). Denote by deg x (deg ¢)
the degree of the character (the degree of the number ¢); in the case of
a character it is the least power » such that y* = %o — the prineipal char-
acter. In our case, h = degy == deg( = degy(g).We have obviously
B p" ' (p—1). Let B’ =pP5, 8| p—1. We shall show that p** is the
principal (i.e. least) modulus of the character y(»).

In fact, first of all it is clear that if p 4 # and » = n’ (mod p"+Y),
then ind n =ind ' (mod p(p™*")); therefore

Cindn ____. Cind.’n.” ie. %(’)’L) —_ X(W)

for (n,p) = 1. Hence p’*' is a modulus for y(»).
Now let p” be the principal modulus of y(»); as ¢"®") =1 (mod 8,
we have (%) = 4 (¢"®")); but then h(p(p)), L.e. p*| p"~* and s0 f-+1 < B.
This .proves our assertion: f-41 = B’.
In particular, if & = 2, the principal modulus of x equals p as = 0.
v

In this case the only real character mod p” is (p) — the Legendre sym-

bol.

Lemma 5. For each positive number M and & >0, arbitrarily small,
there ewists such a constant by, (M, e) that

(2.18) B(y) <1—by (IgD)~}(glg D)+

if gea(D) and |y| < (1gD)™.

First of all, we remark that, the second summand of the right-hand
side of (2.18) being monotonic, it is sufficient to prove our lemma only
for those y for which D = p" ig the principal modulus. Therefore, tak-
ing into account what we said above about real characters, we shall
expound the proof only for complex characters with the principal
modulus D = p”.

The investigation of the quantity 8(y) will be conducted by the clas-
sical method, ie. will be guided by the estimate of the absolute value
|L(s, )| in the half-plane o > 4. First of all, let 1—o < (lgD)™t; |
<2(lgD)y”*+'. Tt is well known that we then have

(2.19) Ig1L(s, x)| < bylglgD.

icm°®
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(For instance, we can put N = h[[{|4+1] in the inequality (35.6) of the
book [8], p. 101.) Therefore, suppose 1—o > (lgD)"'. In the half-plane
o > %-+& we have the estimate

D

L)) < sl (f

D
(2.20) 18(a)| 2™ dw+D~7 [ ]S(as)ldm),
0

where S(x) = } x(») (this extimate is an immediate consequence of the
<

application of the Abelian summation method and the periodicity of
8(x); cf. [8], p. 99).
In our case
D

(2.21) D77ls| [ |8(x)|dw < D~* gDy < 1.

0
(Here the well-known Vinogradov-Polya estimate for the characters
I8 ()| < VDlgD for any 2 > 0 is applied.)

The estimate of the first summand on the right-hand side of (2.20)
requires the investigation of the behaviour of §(z) for 9,, as was done in
paper [6].

Lemma 1 of paper [6] proves that

N4yz~1

D 20) <ad it
N

z>1,

3 P
N being an arbitrary integer. Here I = p*™&n’ 4 — pnlen’, 5 > 9
Using this estimate we get

D—1 *0 (r+1)L
@.22) [ I8(2)o " ds = D[ 8@ e de
0 v=0 »]
1—c ll—o-vl—d 1 1—q 1—o
Al To - IR T S,
<1 T s T3 <i Tt 1—o’

where vl < D—1 << (v,+1)1.
in our case give

The estimates (2.20), (2.21) and (2.22)

(2.23) IL(s, 2)| < (lg DY max[A~D*°, 1],

We now choose ¢, so that 47'D'"°1 = 1; then for any o > o, the esti-
mate (2.23) is improved to
L (s, 2)| < (IgD)"+=°
or
(2.23") Ig|L(s, 1)] <by,lglgD,

Acta Arithmetica IX.4 25
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because (1—oay)lgl < 4lgp-lglgD. Comparing (2.19) and (2.23') we
see that the estimate (2.19) holds in the half-stripe §: o > oy, [t] <2 (Ig DY+
We now construct the circles ¢ and ¢" with centres at the points s, =
=1-+n-dt and s; = 14 9+ 24 and radii R = 0,—1; here » > 0. Both
circles are situated inside S; therefore the values of |L(s, )| and |L(s, %)
are estimated by the formula, (2.19). As L(s, ) and L(s, 4*) are regular
inside §, the classical method of the estimation of the value of B(y) is
applicable to them (cf. [8], p. 116-117). This method shows that if 5
is so small that

ne, (bplglg D-—-1gn) < 0,5 R,

then

(2.24) >3

1—-p(t) =57
Simple computation shows that in the capacity of 5 one can take the
value 7, satisfying the equation

(2.25) p(l— )" (iglg DY+ = 1.

Then for sufficiently large values of D > Dy(M, ) our requirements with
respect to n will be satisfied and the inequality (2.24) will hold. Finding
the value of 7 from the equation (2.25) and puftting this value into (2.24),
we prove (2.18).

LeMMA 6. If Ded,, the following estimate holds:

2

1 1
'y < Dg D)V, Q = win(w, D).
<

(2.26) R(z) = where

Proof. Pirst of all, we remark that it is sufficient to prove our lemma
for the characters with the principal modulus D = p™ because the right-
hand side of (2.26) is monotonic with respect to D. Further, it is suffi-

2

cient to prove our lemma for & < D*; for larger values of @ it is an imme-
diate consequence of the well-known estimate of Vinogradov-Polya men-
2

tioned above. Thus, let 2 < D°. We define a natural number s as the least

of all numbers that are larger than or equal to (n-4-2)/3; if » < p°, our

lemma follows immediately from the trivial estimate |§ ()| < ». There-
2

fore, we ghall suppose that p° <@ <D5. We obviously have

(2.27)

o
N< D)8,

u=0

|8 (2

iom®
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where

Sll = 2 z(»),

N<SN?

N =2"p%, yoeey Ho)

2%p® < w < 240 p°,
Thus the problem is reduced to the estimates of the sums of the type

> a0

e
NN

Sy =
<N <D N <2F
14+ up®; (I,p) = 1. Then, by the Buniakowski-

under the conditions p°
We now put » =
Schwartz inequality

Peal

(2.28) I8 < 2 11+up®)| <23,

m 7=y
where Z denotes the summation over all | running over the reduced

U]
system of residues modp®, N, = p~° ( V—1), N,

=2

() u=N

Now let I* be such that I* = (mod p™'); then

= p~%(N'—1), we have

Nz
8= 3| X sa+rpuf.
M u=i

On the other hand, if p > 2, we can write for any natural v

%(1+pv) ~exp( " ))md (1+po).
In paper [5], p. 21, it is shown that

=A(p—1)f(v){mod(p—1)p"?),
where pfd, A does not depend upon w,

ind, (14 pv)

f0) = vdav’+ ... 4 ayo”.
The coefficients a,,...,ay are integers, a, =3}p(modp™ ), so that

4y = pay, pfo;. In our case v = I*p*"'u, so that ™ =0 (modp™")
for m > 3. Hence

2(1+T"p%) = exp(2ni (e’ fu)),
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where a = AlPap™", f = AP, r = n—2s,

; . 2
(2.29) 8 = 2{ 23 exp (2n (on®+ ﬁu)){ .
() w=Ny

The interior sum on the right-hand side of (2.29) is & trigonometric sum
for a quadratic polynomial; the estimates of such sums are well known;
in particular, it-is known that

3 axp (2 : om0, )
(2.30) \M;ZNlexp(Zm(auz_‘.ﬁu))l < IwéNer]rmn (1\72 Ny, foad))?

where {} denotes the distance to the nearest prime. In our case, putt-
ing (2.30) into (2.29) and changing the order of summation over v and I,

we get

L 1
. 3 ' mjn(_N - "“—r”r'*:—“"‘)
(2.31) 8, < % S % P )
where p% ||, ie. u=wp", ptu, p=r—1, 7, <lgNp~*[igp.
Consider now the changing of the value in the brackets on the right-
hand side of (2.31) if I changes; the variable I runs over all reduced resi-
due classes modp* with the multiplicity p*~*. The variable I** also runs
over these classes but with the multiplicity < 2p°* on account of I*
being squared. As pfAa,u’, the variable Aa;w'7** also runs over the
above-mentioned classes with the same multiplicity as I**. Therefore,
taking into account that s—u <745, we get

2’ min (Np"s

PE
) < 2pp*~* 3 min (NP“S,
@ T=1

1 1 )
" {dagu'pm T} ="

bl 1
<9 ) (Np”‘*, "@F}‘) < p"(Np~*+p"1gD) < p"Np~—°+p'igD.
1=1

Using this estimate and the inequality (2.31), we get

10 ™
8, < 3 Np=="(p"Np~°+p"1gD) < Np~"ry+Np~*+*1gD Y p™"

T=0 Tl
< (M*p~*+N)lgD < NigD,
because

(2.32) N~ L N.

The relations (2.28) and (2.32) give
18yl < p"VN1gD.

icm°
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Comparing this inequality with (2.27) we get

1 e 1 1
I8 (2)] <p°(lgD) D) 2* < p°(1g D)* (ap~*)*
a=0
1
< pVxlgD < DValgD.
This relation proves the lemma.
Lemma 7. If Dedy,, then for any t
1 3
IL(3+1t, x)| < (lt/+1)D°(1g D).
Proof. The Abel summation method gives (cf. [8], p. 99):
3

(2.34) L+t ) <1l [ 18(@)a d.

But for # < D'® we have |S(x)| < z; hence:

D3 3 DU 3 1

I8l [ |8(@)a *de< (11+1) [ @ *do< D*(jt]+1).

The remaining part of the integral (2.34) can be estimated with help of
Lemma 6:

o0 _3 A S o 1 123
[ B@le *ar< [ D'(gDys'da+ [ D(igD)D'w da
D3 D3 D23
1 3
< D'(igDy.

Combining these estimates we prove Lemma 7.
We now pass on to the proof of our theorem. Comparing the Lemmas
4 and 6 shows us that in our case

8 1-0)
N(o, T) < bT*D* (g D)".
Lemma 5 shows that we can take
4
7(D) = b, (1gD) *, 7= (gD)¥,

M being an arbitrary positive number: b, = b,,(M). Then all the con-
ditions of the Corollary to Lemma 2 are fulfilled; we can take a = ;,
m =4 in that corollary. Hence, using the estimates of the corollary,
we get

1 8

—_M =
dy(@, D) < bys(lge) ®  for z>D°
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Now the application of Lemma 3 gives

_ilz_M §-+a
|do(w, D)| < bis(lg@) for @>D" .

Since M can be chosen as an arbitrary positive number, we have thus
proved our theorem.
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On n-dimensional additive moduli and Diophantine
approximations
by

A. M. OsTROWSEI (Basel)

Introduction. By the famous Kronecker’s Theorem, if ay,...,a,
are linearly independent, any point in the n-dimensional unity cube

C 0o, <1) (»r=1,..,n)
can be approximated by a point

(poy—p) (=1,...,n)

for a positive integer p and integers p,. The question arises, how large
p must be taken if we want to be able to approximate any point of ¢
with the precision ¢. The answer depends on the ‘“degree of independence’
of the a,, defined as the function #(e) given for any ¢ 0 <<e<<1, by

7(s) = Inf |myay+ ...+ Moon-+ml,
where the integers mg, My, ..., m, satisfy the inequality

0 <Vmit.. . +md <1l

The first estimate of a bound for p was given by Landau [3]. A much
better estimate was announced (1925) by Thomas [4], whose bound has
the order of 6 "[7n(8); he gave also explicit numerical constants.

However, Thomas’ paper written up with unusual carelessness is
practically unreadable, as in particular its geometric part contains not
only considerable gaps in the argumentation but also evidently erroneous
statements ().

As I needed a corresponding result in another investigation I lost
some time trying to prove Thomas’ statements in his way and finally de-
cided to take up the geometric investigation of n-dimensional lattices ab

(1) In particular the formula on page 892: OP?_ = 0P+ o 0, P2 . which
appears out of the blue and is used in an essential way to obtain the final estimates,
is certainly only true in exceptional cases.
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