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vanish. Hence €, = I, . Since the columns of D, are orthogonal to the
columns of 7, it follows that n, rows of T vanish and the proof is complete.

We have already remarked that, in the case of quadratic forms Q
agsociated with p-blocks of positive defect of finite groups, no row of the
matrix 7' can vanish. Hence ¢ cannot represent a form @, of determi-
nant 1. In particular, @ cannot represent the number 1.
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On Epstein’s zeta function
by
P. T. BareMAN (Urbana, Ill.) and E. GrosswArp (Philadelphia, Pa.)*

Dedicated to Professor L. J. Mordell
on the occasion of his seventy-fifth birthday

§ 1. Introduction and statement of results. The purpose of this
paper is to give detailed proofs of two theorems on the Epstein zeta func-
tion which were announced without proof by 8. Chowla and A. Selberg
about fifteen years ago [1]. The two results which they announced are
our Theorem 1 and a slightly weaker form of our Theorem 3. Our The-
orem 2 was not stated explicitly by Chowla and Selberg in their paper,
but they did indicate that they were in possession of a result of the same
nature as our Theorem 2, that is, one giving a good approximation to
the Epstein zeta function in the critical strip, particularly on or near
the real line.

Throughout this paper a, b, and ¢ will denote real numbers with
a>0 and d = b*—4ac <0, so that am’+dmn-+cn® is a positive defi-
nite quadratic form. The Epstein zeta function associated with this form
is given by
M Z(s) =14 (am*+bmnt o)~ (Res > 1),

where the stroke on the sign of summation indicates that the summation

i to be extended over all pairs (m,n) of integers other than the pair

(0, 0). It will be convenient to define a positive number % by putting
8 dae—b ¢ ( b )2

T4 4 @ 2a] "

As usual ¢ will denote the Riemann zeta function. We shall also require

the Bessel function defined for arbitrary » and |argz| < =/2 by

%2

() K, (2) = %f eBANT IR gy g fe"“’“h‘e""(lt = f e~*°%M gogh vt d.
0 —00 0

* This work was supported by the U. 8. Office of Naval Research and by
the National Science Foundation.



GUEST


366 P. T. Bateman and E. Grosswald

Finally for arbitrary » and positive integral # we write

o, (n) = Zd” = Z(W/d)".
am am

We shall prove the following theorems.
THEOREM 1. When Res > 1 we have

rs=Hr@)

S, T 1—28 . _ L\ e e Tp L2
(B)  @Z(s) = [(28)+ K" (28— 1) 7®) f ) k27" H (s),
where
(4) H(s) = 42%‘""”2 01-25() COS(NTb [@) Ky 10 (2mcTim).

N=]
Further H(s) is an entire function of s such that
H(s) = H(1—s).

The identity (3) provides the analytic continuation of Z (8). In fact,
since the sum of the first two terms on the right-hand side of (3) has
a removable singularity at s =1/2, a simple pole at ¢ = 1 with residue
= /(2k), and no other finite singularities, it follows that Z (s) has a contin-~
uation into the entire finite plane except for a simple pole at ¢ = 1
with residue =/(2ka) = =/|d|"*. It we apply the functional equation for
the Riemann zeta function to the second term on the right-hand side
of (3), the formula (3) may be written

(8)  (ak[m)I(s)Z(s)
= (B/=)T(8)5(28) + (k/r)'~*I(1—5) £ (2— 28)+ K2H (5) .
Thus, if we put for the moment
9(8) = (ak[r)T(5)Z(s) = |dI* (2x)~*I(s)4 (s),
we see that the Epstein zeta function satisfies the funetional equation
(6) P(8) = p(1—s).

Many proofs of the continuability of Z (s) and of the functional equa-
tion (6) are known, and accordingly a variety of other formulas for K (s)
are known (cf. [2], [3], [4], [61, [7D). However, the formula (4) given here
is particularly good for estimating H(s) on or near the segment (0,1)
of the real line.

TaporeM 2. If 1 <o = Res <1, we have
20 (o)

() H(s) = 4cos(wb/a) K,_,,,(2rk)+ 6 P g; o_y (nye~mm
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where |6] <1, or more crudely
I'(o) {29‘2"" 3e~ 4k }
IP(S)I A kl/?.(l_‘_e—ﬂr:k)z .

Since H(1—s) = H(s), the estimates in Theorem 2 imply estimates
for 0 <oy as well
TEEOREM 3. If & >V3/2, then

(9) a'’Z(}) = y+logk—log dm 4 26K~ V2~

(8) |H(s)] <

where vy is Huler's constant and —1 < 6 < 1. Thus
Z(3) >0
(that is, if k* > 49.79 or if 4K° = |d|/a® > 199.2), but

(10) if k& >7.0556

(11) Z(3) <0 i V32 <k<T.0554

(that s, if 3/4 <F <49.77 or if 3 AR = |d]/a® < 199.1).

The inequality % > V3/2 is not particularly crucial. Some positive
lower bound on % must be assumed in order to avoid degenerate cases.
The inequality k > V3 /2 is certainly fulfilled if @ is the minimum of the
quadratic form am®--bmn+ en® for integral values of m and % not both
zero, in particular, if the form is reduced in the sense that bl < a<e.

Since Z(s) approaches — oo when s approaches 1 from below, it fol-
lows from Theorem 3 that Z(s) vanishes in (%,1) if % > 7.0556. On the
other hand, it is probable that Z(s) is negative throughout (0, 1)
if & < 7.0554, but this would require a more detailed numerical analysis
than that needed to prove Theorem 3. If Z (s) is actually negative through-
out (0, 1) for all ¥ between 1/5/2 and 7.0554 inclusive, it would follow
by superposition that the Dedekind zeta function of any imaginary quad-
ratic field with discriminant between —3 and —199 inclusive is nega-
tive throughout (0, 1) and so has no zeros there. This Iast assertion has
in fact been proved by Rosser [8], [9] in another way.

§ 2. Necessary lemmas.
Levma 1. If Rey> —4 and |args| < w/2, we have the Jollowing
aliernative empressions for the Bessel function defined by (2):

_ Tr+3)(2ey f“’ cos udu
(

(12) K, (2) = %) WAy
[]
r 2\ - v_12
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For proofs of these formulas see [5], pp. 50-52 or [10], pp. 185-187.
LemMa 2. If Rev =0 and z is positive, then

»

e[\ r\ I'(Rev—+4-+j) 1
()l = [ (e <o (?z‘) g (y) ToDl ()’

where r 48 any non-negative ineger not less than Rev—%. In particular,
if 0 < Rev < §, then

=\ I(R
E_,(2)] = |, (2)] <e—ﬁ(——) [Rert4)

2] ITo+d)
To prove this we make the substitution % = t/z--1 in (13) and obtain

o
n )1/1 o

. ¢ a:-;-l/zd
=] ———| 1+ — t.
4 L) (2z T D) J ‘ ( Wz)

. 2 1/2 J--s x i mere1p ( _t. )rdt.
=0 <(5) worm J

Expanding the rth power by the binomial theorem, we obtain the result
stated, since K_, (2) = K, (2) by (2).
Lemma 3. If 0 <v <% and 2>0, then

2 1/2
0<(—5) FR,(2) <1,
T
1—ds? 22\ 1—ds®  (1—49%)(9—49%)
—_ — ¢ <1— .
= <(n) CHE) <1-—g 2@
and 80 oOnN.

To prove this, let h be a fixed positive integer. Then, if ¢ > 0, we
have by Taylor’s theorem

b2 = ST o 2

Fe=0

where 0 < 6; < 1. Substituting this in (14), we get

h—1
22\ | _ (9 —1) (40"~ 3%)... (49" — {25 — 1} i
(_'n:—) €K,(2) =1+ ,;1 (82 +
(497 — 1) (4® — 82)... (49 — {3h—1}})

+6

B! (82)" !
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where 0 < 6 < 1. Since 0 <» < 4, the lagt term has the sign of (—1)*
and so we get the results stated by taking h =1, 2, ...

§ 3. Proofs of the theorems. We begin with the first part of The-
orem 1. Suppose Res >1. From (1) we have

1 ’
(15) a°Z(s) = 52 {m+yn)*+ Kn?)~*

— 5 D 5> S’ {(m+yn)' + IPn¥y

m#E NED M=—oc0

=@+ D) DT (mryn+enty,

N=1 Me=wmo0

where y = b/(2a). Now for fixed % and s the right-hand side of (15) is
a function of y with period 1 and a bounded derivative. Thus

(16) @'Z(s) = } Ao+ D Aqco8(2rry),

P=1

where
1

4, =2 [ (¢(28)+ >

4 N=1 M=

In particular

Ll o m+-n
an o=@+ ) X 7t [ (@F+End)du
N=1M=—co m

1
— &:(28)4-701*23&'(28—1) f ’0873/2(1—‘0)—1/2d?}
0

_ N g eg. 1y L= I(F)
= {(28)+ K2 (2s 1)‘—"17(5*—‘-
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Also, it 7> 0, we have (puftting m = gn-1)

o 0o 1m+n /r(u m)
- E = 24k 8 Zm du
A, =2 an (4 4-E*n*)"*co
M=l M=-—00 m
oo n o (41+1)n)-l
u—1
=2§i2 M (- En?)~*cos 2T g
w e n
N=1 1=1 g=—co qn--1
o0 n 0 .
2y (u—1
—2 ML N [ty ey cos = g
n v
n=1 I=1 -0
=2 - oos(znﬂ) f(u’—[—7527L2)“"“<30s(—————Tr )du
1{:{ " =1 " —00 »

CO8v
(2nkr)’)

3

ar\2-l
=25 Lo
o WF
Using (12), we get (for r positive)

271:1/2If3_1/2 (2mhor)

A, = 2(2mr)* Loy g (7) T(s) (drler )~

(18)

k:3
= d By (1) Ky (2mKr) .

I'(s)
Inserting (17) and (18) in (16) and recalling that y = b/(2a), we get (3),
the first assertion of Theorem 1.
To prove the second part of Theorem 1 we first note that if s is in
some bounded subset B of the complex plane and 2 ig positive, then by

the first part of Lemma 2
1/2 1
s T
Y opoi=
(2z) B(z)’

where Pg is a polynomial with positive coefficients depending only on B.
Thus the sum in (4) converges uniformly in B. Since each term is an entire
function of s, it follows that H(s) is an entire function. Now K,(2) is an
even function of » and

n"a,(n) = n"" 2 & = n‘”ﬂZ (n]d)y =nla

am am

[Ko1p(?)l <€

—_y (’"’) -

Thus each term of the sum in (4) is unchanged if we replace s by 1—s.
Hence H (8) = H(1—s). .

icm
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To prove Theorem 2 we first remark that if 0 <v <1, then

Bl il =3 21 6]

din

_1 ' d "
§§2 a TE(= n*o_i(n).

Using this and the second part of Lemma 2, we get

1
wlo_,(n) ==

(19)  |4n*" oy, (n)cos(nmd/a) Ks_yy(27kn)]
—2rckn
1 e I'(o) _ _2T(0) mkn
L4nto_i(n) (4kn) | (s)] - kllzlr(s)l e

provided } < o = Res <1. In view of (4), this proves the first part of
Theorem 2. To prove the second part, note that if n > 2, we have

=D

am

a_1(n) <1+;(n—1)<j(a—1),

with equality only when n = 2. Thus

36—41tk
" e—z—:}m n—1 8—2nlm —_—
N me < § ) 5

CYS T v
= (1—e™ ™)

Using (19) for » =1, we get the second part of Theorem 2.
Finally we turn to Theorem 3. Setting s = % in (7) and using
Lemma 3 and the preceding inequality, we have

1 3e~im¥
(20) H o < 4K, (2nk)+ kl/z(l_e—znk)z
< 26—27:70{ 1 + 9 + 36—21:10 } 26—-27:]0
R 167k ' 512x°k" ' 2(L—e ¥y B

provided & > V3, /2, say. Thus it remains to evaluate the sum of the first
two terms on the right-hand side of (3) or (5) at the point s = }. Let us
rewrite () as

(21) k™' (ak[mYT(8)Z (s) = f(s)+f(1—8)+H(s),
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where

6 = T8 £08) = £(25)oxp (s ) 108 % 10 o h

Now for [s—3%| < 4 we have the power series

L _I'd) _i) 1= 1) N (=1 (G—1)!
g ) = Ty (3 +Z PP e

1 SECA O N LRI

=(y+1og4>(~5-s) ~<~%-~—j (-—2—~ )

Since the Laurent series for [(2s) around 4 is

1
{(2s) =m+‘}’+---a

f(s) has the Laurent series

{;(;1:5 +y+...}{1+(-—y+mgl—;) (s—%) +}

valid for [s—3%| < 4. Thus the ‘“value” of f(s)--f(1—s) at the remova-
ble singularity at s =1 is

fis)

i

1( ) k)
+5\rt 0g )+

y+loghk—logdr.

Substituting s = 4 in (21) and using (20), we obtain Theorem 3.

Added in proof (Sept. 1, 1964):

Recently R. A. Rankin has called our attention to fhe fact that the main
asgertion of Theorem 1, namely the validity of formulas (3) and (4), was actually
proved on p. 157 of his paper, 4 minimum problem for the Epstein zeta function,
Proe. Glasgow Math. Assoc. 1 (1953), pp. 149-158.

Tn a forthcoming paper Marc E. Low has proved the result envisaged in the
last paragraph of § 1, that is, he has shown that if % «< 7.0554, then Z (s) is negati-
ve throughout (0, 1). He did this by showing that if % < 4me~?, then (in the nota-
tion introduced above) the series for f(s)+f(1—s) in powers of (s— 3)? has negative
coefficients and so takes its maximum on (0,1) at s = }. Thus, as mentioned in
§ 1, 1t follows by superposition that the Dedekind zeta function of any imaginary
quadratic field with discriminant between —3 and —199 inclusive is negative
throughont (0, 1). By using similar methods in conjunction with a high-speed
computer Low has extended this last assertion to all imaginary quadratic fields

icm
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with discriminants between —3 and —400000. A particularly interesting case is the
imaginary quadratic fields with disecriminant —115147 = —113-1019, for in this
case the Dedekind zeta function takes a negative value very close to zero when s = 3.
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