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Universal graphs and universal functions
by
R. Rapo (Reading)

In a very general sense, a class K of mathematical structures is
said to contain o wniversal elemenmt w* if every element u of K can be
embedded in «* in some specified sense. The first three sections of this
note are concerned with universality in cerfain classes of denumerable
structures, and by means of elementary number theory we shall con-
struct universal elements. Theorem 2, due to N.G. de Bruijn, asserts that
a certain class, although rather similar to that considered in Theorem 1,
nevertheless does not contain a universal element. In section 4 we con-
sider analogous problems for higher cardinals.

1. Graphs.

1.1. In this note a graph is a pair I' = (4, B) of sets 4, B such
that every element of B is a subset of 4 of cardinal 2. Geometrically,
the elements of A are thought of as points or modes, and those of B as
lines or edges. The intersection of two distinct edges is either empty or
consists of exactly one point. The graph I' = (4, B) is weakly embedded
in the graph I'* = (4%, B¥) if there is a one-one map ¢ from A4 into 4™
such that {®,y}eB implies {p(x), p(y)}eB*. The graph I' is embedded
in I'™ if such a map ¢ exists for which, in addition, for &,y <A, the rela-
tion {m,y}¢B implies {p(2), ¢(y)}¢B*. Weak embeddibility does not
imply embeddibility as is seen by considering the case

A =A4*={0,1}; B=0; B ={{0,1}}.
The graph I'™ is said to be (weakly) universal in the class K of graphs
if ™K and if every graph I' of K is (weakly) embeddible in I™.
THEOREM 1. The following graph I'* = (4*, B*) is universal in the
class K of all graphs with at most denwmerably many nodes. We pui
A* ={0,1,...} and take as B* the set of all subsets {z,y} of A* for which
(1 y= D (0<v< o0) 2a(s),

where a(v)e{0,1} for all » >0, and a(z) = 1.
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Proof. Let I'=(4,B)cK. We may assume 4 = A*. We define
inductively an embedding function @ of I'in I'™. Let &eA, and suppose
that @ () has been defined as non-negative integer for all integral # in
0 <z < £. We now define ¢(£). For wed, put a,(z) = 1if (*) {2, &} B,
and ay(z) = 0 otherwise. Choose a non-negative integer u(x) such that
o(x) < y(z) for 0 <o < £, and put

= Y (0 <@ < §) 2%ay ()42

This defines a one-one map @ from 4 into A*. If {z, £} B then ay(x) =1
and therefore, by definition of B*, {p(x), ¢(£)}eB*. If, on the other hand,
wed and {®, £}.¢B, then ay(z) = 0 and therefore {p(z), ¢(&)}¢B*. This
proves that ¢ is an embedding function of I' in I™ and proves Theorem 1.

1.2. The graph I' = (4, B) is locally finite if for every weA the set
{y: {z, y}eB} is finite. The graph I" is a ir¢e if I contains no ecircuit, i.e.
if for no » > 3 and no nodes «,,...,%, we have %, = @, and #, #ux,
for 0 < p<v<mn, and {&, 2. 3¢ B for 0 <v < n.

The next theorem, and its proof, was kindly communicated to the
author by N. G. de Bruijn.

THEOREM 2. The class K of all locally finite graphs with denumerably
many nodes does not contain a weakly universal element.

Proof. We shall in fact prove more than is required. We shall show
that given any graph I'™ of K there always is a tree in K which cannot
be weakly embedded in I'™.

For I' = (4,B)eK and weAd, and for every positive integer m we
denote by %(I", 2z, m) the number of nodes y such that, for suitable
nodes g, ..., %, We have

%y =; {®,®.3eB for 0<rv<m; @, =y.
Clearly, %#(I",x,m) is a non-negative integer.
Let I'™ = (4%, B*)cK. We may assume A* = {1,2,...}. Choose

non-negative integers p,,p,,... and
= (4, B). Put(?)

A = {z, %, }+2 1<n< o) {Yn: 1 <» <pn}
where the @z, ¥, are mutually distinct;

Bz{{‘”mmMH}:l sm < oo}-|-2(

congider the following graph

SN < o) {{mm Y1 <w <pn}

Then I'eK. Tu fact, I' is a tree of a very simple structure. Suppose that
(*) The symhbol {wy, @1, ..., %n_1}< denotes the set {zp,..

same time expresses the fact that =, < @ < ... < wp_;.
(%) The operators “--" and 3 denote set union.

., ®p—1} and at the
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¢ is a weak embedding function of I" in I™. Then, for m > 1, we have
(T, 2y, m) < (

Also, by definition of I,

?‘P(wl),m)-

kL, 2y, m) > D

since each of the P, +1 1n0des Yuiy Ymas -+ -3 Ympyy Pmi1 CAL be reached
from #, in m steps along suitable edges of P “Hence p,, < k(F ,o(®,), m)
for m >1 and, in particular,

Doty < k(f’*, ‘P(wl)y‘/’(‘vl))-
We obtain a contradiction if in the original definition of I' we take
P = k(I™, m, m) for m =1,2,...

2. Complexes.

2.4. Graphs are one-dimensional simplicial complexes. Let I be
a fixed positive(2) integer. A I-dimensional complex is a pair of sets, (4, B),
where the elements of B are subsets of 4 of cardinal I+ 1. The notions
of embedding and wniversality carry over in the obvious way from one
dimension to ! dimensions. The I-dimensional complex (4, B) is embed-
ded in the l-dimensional complex (4*, B*) if there is a one-one map ¢
of A into A* such that, for X < A, the relations X<B and ¢(X)eB*
are equivalent.

THEOREM 3. The following Il-dimensional complex

O*l — (A*l, B*l)

is universal in the class K of all I-dimensional complexes with denumerably
many nodes. We put A® = {0,1, ...}, and as B* we take the set of all sets
{20y -y 2}« © A* such that there is a represeniation

o = Z 0 (P + ()

where all a(%yy «.., 1) e{0, 1}, and a(z, ..

@@y v oey Bio1)y
.,21_1) =1.

In proving the theorem we shall omit in our notation the index I,
and we put I—1 = m. We need a simple lemma.

KT < oo < 21)2

2.2, LeMMA. The function

(@) vy Tm) = ) (0

defines a one-one map of the set S of all systems (%o, ...
with 0 <@y < ... << &y onto(*) the set {0,1,...}.

<2 <)

y ®m) Of 1 integers

(3) Theorem 3 also holds, with obvious changes, for 1 = 0.
(*) In our application of the Lemma we shall only need “‘into”’.
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Proof of the Lemma. Since 7(0,1,...,m) =0 it suffices to
show that if § is ordered by last differences then neighbouring elements
of 8§ are taken inte neighbouring integers. Let (%o, ..., Zm); (Yos-oey Ym)
be neighbouring elements of S, the first preceding the second. Then

(®gy very Bm) = (@, a+1
(y())"'7y1n,) = (0}17"'

for some 7, 0 <7r

gy @Fr—=1, atr, by, oy by,
2 "1y atr+1, b1y ey b,

< m. Hence

T(%: ey wm)‘“”f(?/o: [RRS] :’/m)
_ - [ AN L PPN A a-+r-+1
=2/ 0<a<n (Z—H) 2 ‘*’1<’”)(z+1)‘( Pl )
<1< a+A+1 a2 a+r+1
=0 <2< (( )= )) ('r-il )“—1’
and the Liemma follows.

2.3. Proof of Theorem 3. Let ¢ = (4, B)eK. We may assume
A = A* We define an embedding ¢ of € in ™. Let &4, and suppose
that @(2) has been defined for {x, £}. < 4, and that p(z) e4*. We now

define p(&). For 0 < 2y < ... < &y, < & pub
1 if {&y, ..., &
b(m()’"'!mvn): ) {0’. 7 ’E}EB’
0  otherwise.
Choose a non-negative integer (&) such that p(z) < (&) for 0 <z < &,
and whenever 0 <@ <... <@, <& then z(p(a),...,e mm)) < p(&).
Then we put
@) @& =D O<Bm< .. <y < HLEOIEN () 4200,

This defines an order-preserving map ¢ from 4 into A*.
Now let 0 <y <... <Ym << &, We want to show that the two

relations
(3) Wos ooy Ym, £}eB,
(4) {2y s @(Yn), ()} B

are equivalent.

(i) If (3) holds then b(y,,...
definition of B*, (4) follows.

(ii) If (4) holds then, by definition of B*,
(8) p(&) =D (0 <

»¥m) =1 and hence, by (2) and the

z <. L) 20T (g L @)
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for some @@y onry D) ef0, 1} such that alp(x),
comparing (2) and (5) and using the Lemma we find

1 =a(@(¥)y s 9Wm) = (Yo, -
Hence (3) follows by definition of b(y,, ...

2.4. We briefly consider mized complexes, i.e. complexes whoses sim-
plexes are not necessarily of the same dimension. For any one of these
complexes these dimensions need not be bounded, and the set of its nodes
is denumerable.

THEOREM 4. The following mimed complew C*° = (A*,B**) s
universal in the class K of all miwed complexes with denwmerably many
nodes. We put A*® = {0,1,...} and as B* we {oke the set of all seis
{Roy -eey i} = A* fm" varying A > 0, such that there is a represeniation

b=

where all a(®y, .., T 1)e{0,1} and a2, ...,z1) =1.

Concerning the proot of Theorem 4 we only need to remark that the
analogue of the Lemma is trivial and that the proof of Theorem 4 is
closely parallel to that of Theorem 3.

‘P(mm)) =1. By

s Ym)-
» Ym). This proves Theorem 3.

KTy < vee < By_y) 20t Tu=10(dg, ooy By ),

3. Functions: the finite case. The Theorems 1, 3, 4 are most con-
veniently expressed in terms of functions rather than graphs and com-
plexes. For % > 2 and I > 0 we denote by Ky the class of all functions
f(xy, ..., #;) with range in {0, 1, ..., k—1} which are defined for integral
2o, - ,wl such that 0 < @y < ... < ;. The function f*eK; is universal
in I if, given any feKy, thele is a one-one map ¢ of the set {0,1, ...}
into itself such that

F(@oy vvr @) = FHp(@0)5 -y @)
for 0 < 2 < ... < @;. By Ky, we denote the class of all functions f(wy, ..., %)
with range in {0, ..., k—1} which are defined for any 4 > 0 and 0 <, <

< ...< . The deﬁmtmn of a universal member of K; is obvious. The-
orem 1 is concerned with K, Theorem 3 with Ky, and Theorem 4 with
K,. The following theorem is a generalization of Theorems 1, 3 and 4.
It shows that these theorems remain valid if the simplexes are oriented
and the complexes have coefficients from a ring of integers mod %.

THEOREM 5. (a) Let k > 2 and 13=1. The following function fiy is
universal in K. Hvery x>0 has a unique representation

k(ﬁ°)+---+(w’z‘1)fo(mm .

(6) w:_}:(o LB < oo < &y_y) .y Ty B)
where foe{0,...,k—1}. We put, for 0 <o <... <%, <&,
fzz(mov"'walyw) =fu($07~-'1ml—17"'c)'
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(b) Let & = 2. The following function fi is universal in Ky. The range
of ft is m {0, ..., k—1}, and for every > 0 we have

(1) o= Z A=0;0 <ty <... <y <) B0+ t22f (my Ly g, ).

Clearly fi is uniquely defined by (7).

Proof of (a). Put (2, ..., %) = 2 (0 <A< (Aj_‘l).LetfeKkl.

We define ¢(x) as follows. Let &> 0, and let ¢(x) be defined as non-neg-
ative integer, for integral z, 0 < # < & We can choose an infteger (&) > 0
such that

ple) < y(f) for O0<w<é,

and

r(w(yo),---,w(yz_l))<w(E) for 0<Y < ... <Y1 <&

Put
(8) »
P(&) = D (0 <y < ... <oy <E) WA=y, gy, )4 570
This defines ¢, and we have

p@) <p(§) <BO L) for 0<<w<é.

By (6),
@) @) =D (0 <Yp.. < ya) KO-Vl oy gy, p(£)).

o< <... <oy <@(&), then

T (“‘o: veey m1_1,<p(5)) =fo(-’”o; ceny Xpgy ‘P(’S))-
Now let 0<<ay<...<@m.; <& We compare the -coefficients of

F@oy ey @rogy &) =fo(§0(wo); vy @(@1), 9’(5))
= f;:l(‘?’(mo)y vy (@), 9’(‘5))-

This proves the assertion.

Proof of (b). Put o(w,..., %) = 2%04...4-2%-1 for 1 >0 and
0 <m0.< voo < ;. Let feK,. We define ¢. Let £> 0, and let ¢(x)
be defined for ¢ <@ < &. There is (&) > 0 such that p(z) < y(£) for
0<o<é, and
o(®(Go)y -y @ (Wao1)) < (&)  for
Put

(10)

220 and 0 <y, < ... <Yy <&

p(8) =
..2 (2050 <ys <oov <yay < IOy Ly, I EAL
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This defines ¢(z) for all # > 0, and we have

p(e) < p(&) < I <pf) for 0<z<é.
By (7),
(11) (&) =

2(1 Z0;0<y<...<yP1 < <P(5)) Felor- yl_l)flr(?ln, ey Wim1, 0(8)).

Tet 0oy <. oo <2y, < & We compare the ecoefficients of
;ele@?@-1) in (10) and (11) and obtain

F@ay + vy wayy &) = Filp (@), -0y 0(@1-0), 9(8)).
This completes the proof of Theorem 5.

4. Functions: the transfinite case.

4.1. Notation. In this final section every small letter, unless a con-
trary statement is made, denotes an ordinal number (ordinal). The se-
quence of transfinite initial ordinals is

gy Wy -+«

and their cardinal numbers are
Roy Ry o0

respectively. We recall the definition of Tarski’s cofinality function cf(n).
For every n the symbol cf(n) denotes the least ordinal such that ¥, can
be written as the sum of 8y, cardinals smaller than R,.. By | X| and |n]
we denote the cardinal of the set X and of the ordinal # respectively.
If n = r-+1 then we put n=—1 = r, and if » has no immediate predeces-
sor then we put n—=—1 =n. We make frequent use of the obliteration
operator ~ whose effect upon a well ordered sequence consists in remov-
ing from that sequence the element upon which it is placed. For a < b
we put
[a,b) = {o: a <& <b}={a,a+1,...,5}.

4.2. Let I and m be ordinals and S a set. Denote by # (I, m, S) the set
of all funetions f(,, ..., #;) with range in § which are defined for all
A<l and @y, ...,% <@ <m. We call f* a universal function of
P(l,m,8) = F if f*<F and if for every feF there exists a one-one map
¢ of [0,m) into [0, m) such that

f(@gy ooy @) =f*(¢(m0): ---7‘7’(551))
for A < 1 and @, ..., & < %, < m. It follows that it F(I,m, ) contains
a universal function then F(l,,m,S,) contains a universal function
whenever I, <1 and @ = 8, = §. Without loss of generality we may
agsume m to be an initial ordinal.

Acta Arithmetica IX.4 =
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TaeorEM 6. Let 1 and n be ordinals, and suppose that 2% = N
jor v < m. Then the set F(l, wy, 8) contains & wniversal function if either
@) n=n=1=ci(n); 1< op; 1|8 <Ny or (1) n=r-11; 1< ayy;
1|8 <8y or (i) n>cf(n); I < wny 1< I8] < Moo

The author does not know how far in the definition of F (I, m, §)
the inequalities imposed on the arguments ,,...,#; are essential nor
whether the order type (= A1) of the sequence of arguments 2y, ..., 2,
necessarily must be of the second kind for the assertion of Theorem 6
to hold. Also, it would be of interest to have non-trivial cases of sets
F(l,m,S) which do not contain a universal function.

4.3. Proof of Theorem 6.

Case 1. Let (i) or (ii) hold. We may assume § = [0, w,). Let 7 < w,,
and let @, be the set of all functions g(my, ..., ;)eS, defined for 1 <1
and @, ...,#¢e8, such that g(my, ..., 2;) = 0 if sup(p < ) 3, = 7. Pub
G = 3 (1 < w,)G,. For fixed A the number of systems (z,..., ;) with
Doy vy @y < 7 i8 J7|™, and for varying 1 the total number of such systems
is

2 <y [ <1y

Hence

8 < Y (v < o) S
If (i) holds then

61 < D (v < on) # ny,

and if (ii) holds then

1G] < Z (v < @) &nﬂr = Np-
In either case we can write

G ={gos -y gwn}'

Algo, there is a representation 8§ = } (» < w,)8,, where |§,| =8,

for » < w, and S,nS, = @ for u <» < w,. Define f* by putting
PWoyeeor¥2) = 0oy oon ) I A< Yoy oen, 92 < Y1803 v < @n.

Then f*eF(l, w,, 8). Now let feF (I, w,, 8). We define a one-one map
@ of 8 into 8. Let £¢8, and suppose that ¢ (z) has been defined for # < &
and that ¢(z) < p(y) for 2 <y << £. We now define ¢(&). There is an
ordinal #(§) < w, such that ¢(2) < 5(¢&) for @ < &. There is v(£) < w,
such that

f@oy oy 3, &) = gv(e)(‘)?(wu)y ceny ‘;’(ml))

for 2 < 13 %5 ...,.59,1 < §. We can now choose g(£)eS,; such that n(£)
< @(£€). This defines the map ¢, and we have ¢(2) < p(y) < w, for =
<Y < wy.
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Now let 2 <1 and @, ..., % < 6, < 0,. Put & = ®;. Then

F @0y oevs @) = [(@0y vy 15 &) = Goge) [0 (@) - ooy P (@) -

Since (@), ..y (@) < (&) €Sy We have

f*(qj(xo)a veey ‘7’(90/1)) = gv(E)(‘P(mo); “ery ‘%’(ml)) =f(m01 sery ;)

which shows that f* is universal.

Case 2. Let (ili) hold. We may assume that 8§ =[0,s), where
1<s < w,. Putb

M= {m: 8,1 < oy < 0p};

X ={(m,p): g < wmyg)for meM; X = 2 (mel) Xp,.

We order X lexicographically. Then the order type of X is
Z (8: 1< om < 0g) Wmpz = Wp-

Instead of F(I, 0., 8) we may consider the set F’ of all functions
F(g, -y ;) 8 defined for A <1 and @,..., % <zeX.

Let me M; neX, and consider a function g(w,, ooy @) €S defined
for 4 < Land @y, ..., #; < 7. For fixed A the number of systems (g, «.., &)
is at most 82, , < NN, = 8. For varying 2 the total number of such
systems is at M08t Ry 1)l < Rpmyi¥m = Ry Hence the number of func-
tions g is at most |s|¥" T < WM+l = Wy, Hence for fixed m e M the set
of all functions g, for all 5, can be written as {gm,: # < ®ny2}. Als0,
we can write, for me M, X, = > (# < wmys) Xmy, Where | Xp,| = Nmya
Or pt < Omyy 804 XN Xy = B for p <A< opys. We define f* by
putting

f*(yo; ey "Ji) - gnm(ym ey :Z/l.)
if
A<l me M;

']/07--'7@}.<y1 E-Xmlﬁ p< Opyg.

Then f*<F’. Now let feF'. We define the map ¢. Let £¢X, and let ¢(x)
be defined for # < £. Suppose that ¢(z)eX,, if {r, £}. < X, and also
that (z) < @(y) for © <y < £. We now define ¢(&). There is m(£)e M
such that &eX,g. There i8 9(£)eXmy such that p(z) < (&) for & < &.
There is p(£) < Wmgse Such that

S (o -+ -y&;/h &) = gm(&‘)_./z(:‘)(‘p (@o)s -+ oy ‘?h’(mz))

for A < lj @g, ..., < £.
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We can now choose ¢(&)eXme) ue) such that 7 (&) < @(&). This defi-
nes ¢, and we have p(X,) < X, for me M, and g(2) < @(y) for o < y.
Let A <1 and &y, ..., % < #eX. Put & = ;. Then, by definition

of m(&) and u(£),

f(mo; erey mi.) = f(-%, sy 5’/17 E) = gm(E),,u(s)(‘P(mo)i teey (']‘7($;_)).
Since
@(%a)y ey P(m) <plm) = P (&) e Xy ey
we have

f(‘P(%); weny fP(WA)) = Gm(&),m&) (‘P(%): ey (}7(:0,1)) = f(@gy + ., 1)
which completes the proof of Theorem 6.
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1. Introduction. At successive stages in the development of the proof
of the prime number theorem several authors have investigated the rela-

tion
2 @ d @
gf(g)zg—;—l—bw—}—o(w) (@ — o),

or the same relation with a stronger error term, and deduced from is,
under various supplementary conditions on f(z), that

1) flz) =x+o(x).

The problem is discussed explicitly by Landau ([7], pp. 597-604; 81,
Ingham ([3]), Karamata ([5], [6]), Gordon ([1]), and is implicit in the
‘Bratosthenian’ summation method introduced by Wintner ([10], [11]).

In this paper we counsider the analogous problem in which the se-
quence {n} of all positive integers is replaced by a finite or infinite sequence
1, ay, @, ... of real numbers for which

v 1
l<o<o,<...,, A= — < o0,

Initially f{z) is supposed defined for all # > 1, but for formal convenience
we extend its definition by putting f(#) = 0 when # < 1. We may then
write our basic hypothesis in the form

) for + D 1(2) = (1+ 3 2) e+ ot

or in the equivalent form

@) st Sa() = o,

n
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