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Some remarks on a method of Mordell
in the Geometry of Numbers
by

P. MULLENDER (Amsterdam)

1. Some years ago Lekkerkerker [1] gave a short analysis of a meth-
od of Mordell in the Geometry of Numbers, by which sometimes an
estimate can be obtained for the critical determinant of an »-dimensional
star body by reducing the problem to an (n—1)-dimensional one. In
this note we add a few remarks that may lead to further elucidation
of the method.

2. We consider two distance functions ¥ and ¢, defining two star
bodies K and Kg, both of the finite type, in an #n-dimensional (Eucli-
dean) space X. We suppose there is a group £ of automorphs of Kp,
all having the property that the contragredient transformation is an
automorph of Ky, i.e. we suppose there is a gronp of non-singular n Xn-
matrices A, such that F(4.z) = F(») and G‘(Aim) = G(z) for all weX,
A denoting the transposed inverse of 4.

It is not difficult to prove that, if R is the k-dimensional linear sub-
space of X generated by %+1 linearly independent points, including the
origin o, of the lattice

A = {1} | X = L.u, Ue U},
where L denotes a non-singular n X n-matrix and U the set of all points
of X with integral coordinates, then the (n—k)-dimensional subspace
8 of X through o and perpendicular to R is generated by n— k-1 linearly
independent points of the contragredient lattice

A= {wle = LNA(‘, uel},

where I is the transposed inverse of L. Further, denoting the k- and

(n—k)-dimensional lattices R ~ 4 and 8~ 4 by 4 and 7, respectively, we
have for the determinants

@) () = —z = .
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It is also clear that, if 4 is a non-singular » x n-matrix, and the transfor-
mation & — 4.z transforms the lattice A into A’, then the contragre-
dient transformation z-» A.z transforms A into A'.

We prove the following

THEOREM 1. If there are in X a k-dimensional linear subspace R and
an (n—k)-dimensional subspace 8, perpendicular to each other, both con-
taining o, with the following properties:

(a) The k- and (n—k)-dimensional star bodies R~Ky and S~Kg are
of the finite type in R and S, respectively.

(b} To any k-dimensional linear subspace R' of X comtaining o, such
that the k-dimensional star body B'~Ky is of the finite type in R', corres-
ponds an automorph of Kp in Q transforming R' into R.

Then, if k=n—1,

v ‘/‘I K g7 " n—h
@) (diep)” > (j‘ff) (s,

where Ag ., denotes the critical determinant of K, elc.
F >

3. Proof of the theorem. Obviously, if & = n—1, then § is
a straight line through o, S~K; is a segment of that line, and Ag.x,
is bhalf the length of that segment. :

We need a

Leama. If A is o Kgp-admissible lattice and x any point other than o
of the contragredient lattice /I, then there is an automorph A of Ky in 2,
such that the contragredient automorph A of Kg transforms x into a point
of 8.

Proof. Let 8’ be the line through # and o. Then the (n—1)-dimen-
sional subspace R’ through o and perpendicular to &' is generated by
n linearly independent points of 4. Hence B ~A is an (n— 1)-dimensio-
nal sublattice of A, which is (R’ ~Kp)-admissible, since A is K -admissible.
Therefore, R ~Ey is a star body of the finite type in B’ and, consequen-
tly, there exists an automorph 4 of Ky in Q transforming R’ into R.
But then, the contragredient automorph A of K¢ trangforms 8’ into S.
In particular A.zeS.

From this lemma it follows that G (z) > 0 for any point x other than
o of 4, if A is Ky-admissible.

For, if G(z) =0 and 4 is the automorph of K4 for which j.meé’,

then also G(i‘w) = 0 and, hence, G(z) = 0 for all xeS, contrary to our
assumption that S~Kq should be of the finite type, i.e. of finite length.
It also follows that

G(A) = int{G(o) |wed, 2 # 0} > 0.
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For, let  be a primitive point of zf, which ig, according to the lemma,
transformed into a point of §. Then, after the transformation, putting
R~A =1 and 8~A =1, we have d(1) = |»|. Further, since Asnry 18
the distance to o of the point @, on § with G(z,) =1, we have also ||
= G(®).ds~xr,- Hence

() = 6 (@) A5,
And so, by (1),
d(4)

a(d) = —éﬁ(";)’-l’snxg .

Bat, since .1 is Kp-admissible, 1 is (R~ Ky)-admissible in B and, therefore,

(2 = Arax,-

Hence,

s
1) > —Ameis
M2 G domy

As the point » can be chosen arbitrarily, this implies G(A) > 0. Also
(3) d(d) » —L0kF
G(A). Agnxy,
Now, putting ¢ ((’I) = 1/e, we see immediately that the lattice

[5(: &= &) ysj},

which has determinant ¢".d(4), is Kg-admissible. Hence
1 w . Axg

edyr " T ad)

Substituting this result in (3), we obtain

1:] X n
a4y = (——R_“:KL) g
SnKg

= dgg.d(4).

As thig iy true for any Kp-admissible lattice, the theorem immedia-
tely follows.

4. We finigh with a few remarks.

i. The fundamental ideas of the theorem and of the proof are, of
course, due to Mordell. Our general approach is somewhat inspired by
Armitage [2]. However, the proof by Armitage is not complete, since
no attention is given to the possibility that & (z) =0 for the point wx,
which is transformed into a point of 8. To avoid this difficulty, Lekker-
kerker makes a condition concerning the subspaces B’ through o with the
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property that the star body B'~Kgx is not of the finite type: There should
not be to many of these. As we have shown, such a condition is not neces-
sary.

ii. The use of the integer k in the enunciation of the theorem is, to
show, whether generalisations of the method are possible.

Clearly, it is mueh more difficult to satisfy the condition (b),
itl<k<n—1.

However, even if the condition (b) can be satisfied for such %, ag is
the case when F(z) = ((x) = |@| for all z<X, then the argument still
breaks down. TFor, it is only possible to obtain an egtimate for (l(/f) in
the way we have done, if ¥ =n—1, because only for 1-dimensional
lattices it is true that an arbitrary lattice is always proportional to a crit-
ical lattice.

Yet, taking F'(z) = G(z) = ||, we may get a result for arbitrary
k by the use of a generalisation of the notion of the critical determinant:
Let 45 be the infinum of the determinants of the m-dimensional lattices
with the property, that no k-dimensional sublattices have determinant
less than 1. Then one can prove

THEOREM 2.
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(40)° = ()" (AyFp

However, since it does not seem eagier to find an estimate for the
generalised determinant A%~ than for the ordinary 42, it is hardly worth
elaborating on it.

lil. In his paper Lekkerkerker states two theorems, from which
all the results can be derived, which so far have been obtained by the appli-
cation of Mordell’s method. His first theorem ig contained in our Theorem 1.
It is not necessary to restate his second theorem, since no new aspects
would come into view.
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