284 G. Pall

— (man’[3) @ (mod m™). Then if »" and u7 ave given the notations (%, )
and (m, m,), (23) becomes

K=1, Ik =0, I =0(modm),

mi=0, mmy=0, m=9(modm’).

Hence k, hag 2° residues modm, while k, == 0; m, has 2° residues modm/,
while m,; = 0. Both (24) and (28) are seen to be automatically satisfied.

To sum up, there are 48-2°*" b, /u simultaneous and primitive repre-
sentations of m and m' by ¢ and ¢’ if mm’ = 1 mod 4, or if mm’ = 3 mod8
and (m'|3) = (—1|m). There are 48-2°*" (h-h,)/2 such representa-
tions if smm' =T7mod 8 and (m'|3) = (—1|m). There are 48 20+7yx
X hy[u such representations if mm’ = 3 mod 8 and (m’|3) = —(—1 | m).

Now, if & denotes the number of properly primitive classes of posi-
tive binaries of determinant mm’, then it is known that

2%hy it mm' = 1(mod 4),
- lz"““]hl it mm' =3 (mod 4);
and, if mm' == 3 (mod 4),
hy if
(2—(2 | mm))h, it

(36)

mm’ = 3
(37) hy = X
mm' > 3.

Also, % (the number of unimodular automorphs of @) is 6 if w is i.p. and
mm' = 3; 4 if mm’ =1; and otherwise u = 2.
The result stated in the Introduction readily follows.
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On Catalan’s problem
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K. Inknrr (Turku)

1. Catalan’s well-known conjecture that 8 and 9 are the only two
congsecutive integers larger than 1 which are powers of other integers
would be proved if it could be shown that the Diophantine equation

1) a

—yt =1

has only the obvious solutions (x or ¥ = 0) for all pairs of prime num-
bers p and ¢ except for the pair p = 2, ¢ = 3, for which also # = + 3,
y = 2 are solutions. Up to the present this has been proved only for
certain special pairs p, q. The case p = ¢ is naturally obvious. Lebesgue
[6] has treated the case ¢ = 2 and Nagell [7] the cases p = 3 and ¢ = 3.
On the other hand the case p = 2 still awaits its final clarification,
even though certain strict eonditions have been presented. There is,
ag Oblath [9] has shown, at most one solution. If z, y is the solution,
then [5]

(2) 2 =0 (mod ¢*), y= —1(modg)
and (cf. e.g. [4]), in addition,
(3) 2% == 2 (mod ¢°).

As of the primes not exceeding 200183, [10], only 1093 and 3511 fulfil
(3), equation (1) is seen not to have a golution for a large number of pairs
2, q.

In this paper we limit ourselves to prime exponents p > 3, ¢ > 3,
of which at least one is of the form 4m+3 and present proofs for two
theorems which yield necessary conditions for the existence of a non-
trivial solution of equation (1) that arve similar to congruences (2) and
(3). As an application, we show that equation (1) is not soluble in non-zero
integers for a fairly large number of pairs p, ¢.


GUEST


286 K. Inkeri

TuEOREM 1. Suppose that p and ¢ are primes >3 and p == 3 (nod 4).

If g does not divide the class number h(p) of the quadratic fzeld Y —p )
and the equation (1) has a solution xz,y in non-zero integers, then

(4) p" = p (mod ¢°)
and
(5) 2= 0 (mod¢®), y==—1 (mod ¢"?).

THEOREM 2. Let p and q be primes with p = g e= 3 modi), P>y

has a wlutwn @,y in non-zero iniegers, then

p'=p (modg’), ¢ == g(modp?),

(6) == 0 (mod ¢?),

y = 0(modp®)
and

z=1(modp’ "), y:=—1(modg®").

2. To prove our theorems we introduce certain preliminary results
based on the theory of circle-cutting.
The following property of the Gaussian sum is well known:

p—1 n—1

o NEe=X Yo=Y =VF o= ),
m=1

m
where p is an odd prime, (;) the Legendre symbol, { a primitive pth

root of unity, o runs through a complete system of quadratic residues
(modp) and b through a system of non-residues, and the radical is guit-
ably determined.

Further, one can write ([1], p. 205)

(8) 1T 04 (0)2B(0) = V(o p 2o,

‘where

9) A@) = [[@@—t, B@)= ]j (@—¢")

and )

o) 24 () = ¥ (2)—2 (mwf » | Y@ = A@)+B(o),
2B(2) = Y(@)+Z(@Vp*, |Z@Vp* = B(x)—4 (z)

(the radical has the above value). The coefficients of the polynomials
Y (x) and Z(x) are rational integers.
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We can establish easily by (9) and (10) that

1

> 1 Y7 J’. _1
Y () ::(—m)ly(;;)y Z(w) = ml/J(*) (P = *?"2-’—,]9 > 3).

(11) po

Putting

Z(6) = ap+ a2+ ...+ apa®,
we find from (9), (10) and (11) that
(12) Z(0) =ay = ap = 0

and
-3,
3 5

all/ p“* = wpwll/};":

whenee, by (7), it follows that
(13) 4 =1.

Suppose now that »,y is a non-trivial solution of the equation (1).
Cagsels [2] has shown that

(14) @ ==0(modg), y=0(modp).
The equation (1) can be written in the form
a1
I | R
(1) =y

Since p | ¥, the greatest common divisor of the factors on the left is p
and the latter factor is not divisible by p*. Therefore, there exist inte-
gers 4 and v such that

P
(15) b———l o p'l—l 11 _____ o =Z)’Dq.
@

Obviously, » is odd and not divisible by p. From the latter equation it
follows, by (8), that

Pt = Y pZ (Y, = Y(@)2, % =Z()/2),
since p* = -—p by p == 3 (nod4), Flere the numbers ¥, and Z, are inte-
gers. In fact, by (11) Y(l) = ( and thus Y(a") = 0 (mod 2) for an odd
%, while, by (12), Z(0) == 0, and therefore Z (x) == 0 (mod 2) for even x.
As p| ¥, the above equmtmn can be written in the form

(16) = Bk p XY = (B YoV <) (Za—ToV =),

where ¥, == y:l Zy = Z,. We see easily that (¥,, Z,) = 1; for if a prime
2 p ) 42 1 N

7 divides this greatest common divisor, then r > 2, since # | v and v is
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odd. Now r|(4(x), B(x)), because 7| (¥ (x),Z(x)). If p is a prime

ideal factor of the ideal (r) in the eyclotomic field k({), we have, by (9),
pla—2g®, plo—2

for some @ and some b, and therefore p | *—(® or = p, which is impos-

sible, since 7| v and v is not divisible by p.

In the quadratic field %(V — p) the ideals (Z2+Y2l/—~ p) and (Z,—
-1y :Z) are relatively prime. For, if q is their common prime ideal
factor, then q|2%,, and hence q|Z,, because q|v and v is odd. But
sinee (¥Yq, Z,) = 1, it follows from (16) that q | p, which is contrary to

the fact that v is not divisible by p.
It follows now from equation (16) that

(Zy+ Y,V —p) = a7,
where a is an ideal of k(]/:;). Since (q, hip)) =1,ais principal, whence

a-+0 —p )q

Zy YV —p = ( 5

where a and b are rational integers with a == b (mod 2). ¥rom this equa-
tion we deduce, since Z(z) = 2Z,, that

q—1

2917 (3) = a?— (g) AP — . qab®p

Hence
(17) 217 (z) = o (mod ga).
By (12} and (13), Z (%) = (14 a,x+...). Since, by (14), ¢ | =, it follows
from congruence (17) that g|a. But now ¢* | a? and ¢* | ga, whence we
see from (17) that ¢ |Z(w) and thus ¢* |2, which proves the former
of the congruences (5). The latter congruence follows immediately from
the original condition (1).

To prove congruence (4) we establish, by (5), that the former of the
equations (15) gives
(18) P4 = —1 (modg?).

By Fermat’s theorem, we deduce from this that of = —1 (mod ¢) and
further that % = —1 (mod ¢). Hence %= —1 (mod ¢*) and it follows
from (18) that

77 =1 (mod ¢?),

which concludes the proof of Theorem 1.
To prove Theorem 2, we note first that (1) can be written in the form

(=)' —(—aP =1.
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Moreover, the class number h(g) of the quadratic field k(V:_E) is not
divisible by p, since p > ¢ > h(q) (cf. e.g. [3]). Now Theorem 2 follows
immediately from Theorem 1.

Remark. Gut [3] has proved that 2 (p) < p/4. Thus g does not divide
the class number of the field 70(1/~ p) if it is greater than pl4. Asis well
known, [11], logh(p) is asymptotically equal to log 1/1; for p —ooc. There-
fore the lower bound for ¢ can be considerably improved if p is large. It
seems that for a fixed p there exist very few primes g which fulil the
condition (4). Besides what was said above about the congruence (3),
this is confirmed by the fact [5] that the congruence (4) is fulfilled for
p =3, ¢ <<100000 only if ¢ = 11. We know no pair p, ¢ of odd primes
which satisfies both of the congruences (6).

3. In addition, we consider the prime exponents p, ¢, which belong
to the closed interval (5, 199). There are 44 primes in this interval and
23 of these have the form 4m--3. There are thus 483 pairs of the form
dm+3, 4n+1, 253 pairs dm--3, 4n4-3 and 210 pairs 4m+1, 4n+1.
The last-mentioned pairs remain outside our theorems. The theorems
does not apply to the following two sets of pairs 4m-3, 4n4-1:

(i) p, 5 (p = 47, 79,108, 127, 131, 179); 191, 13, for which ¢ | h(p);

(i) p, 5 (p =17, 43, 107, 151, 199); p, 13 (p = 19, 23, 191); p,
17 (p = 131, 179); 19, 137; 107, 97, for which (4) is valid as may be
established from data tabulated by Niewiadomski [8].

We can verify that of the pairs 4m+3, 4n+43 only 71, 7; 151, 7
and 167, 11 satisfy the condition ¢ | h(p) and, according to the data just-
mentioned, only the pairs p, 7 (p =19, 31, 67, 79); 127, 19; 19, 43;
67, 47; 71, 47; 11, 71; 31, 79 and 43, 103 satisfy (4). Immediately
we see, however, that for all these pairs the latter of the congruences
(6) and the condition ¢ |h(¢) are not valid. Thus equation (1) has only
obvious solutions for all pairs 4m <3, 4n-+3 under consideration. The
same hag thus been found valid for 718 of the 946 pairs p, ¢ with 5 <p
<109, b < q =199, p #g.
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Diagonal equations over p-adic fields
by

B. J. BrrcH (Manchester)

1. It has heen conjectured that every form of degree d in at least
d’4-1 variables over a p-adic field K has a non-trivial zero in K. How-
ever, a8 yet it has not even been proved that there is a constant I'(d)
independent of K such that every form of degree d in at least I'(d) variables
over a p-adic field has a non-trivial zero in the field. It is the purpose
of this note to fill this gap.

In view of the results of Brauer [3], we can deal with general forms
(though with an enormously large number of variables) if we can deal
with diagonal forms; so it will be enough to prove

THEOREM. Given d, there is a constant G(d) such that any form

Eaim‘f
=1
with coefficients in a p-adic field K and s > G(d) will have a non-trivial
zero @ over K.
Our proof of the theorem is a moderately straightforward, though
messy, computation; for some of the variables #; we substitute expan-

sions 1+ 3 n'y;, where o generates the prime ideal of K and the y;, are
=1

units; and in § 2 we analyse what the powers (1+ 3 #'y;,)* look like. This
=1

enables us to prove our result fairly easily, and fairly efficiently, in cer-
tain favourable cases — this is done in § 3. Introducing devices to avoid
various difficulties that arise, we gradually widen the scope of our methods,
until in § 4 we can prove our theorem in general.

Unfortunately, the arguments of § 4, though not difficult, are inef-
ficient; so our final result involves an inordinately large number of va-
riables.

Our results may be applied to prove theorems about the solutions
of equations over algebraic number fields — see [1]. Results similar to
our theorem, but with a far better estimate for G(d), have been proved
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