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In view of (15) we see that this estimate in conjunction with (12)
yields (3).
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1. Let f, g be homogeneous quadratic forms in 13 variables, de-
fined over the rationals. Mordell [3] has shown that f and g have a com-
mon non-trivial rational zero, provided that they satisfy certain condi-
tions of a non-number-theoretic nature. In this paper I prove the cor-
responding result for forms in 11 variables:

TuEOREM. Let f, g be homogeneous guadratic forms in 11 variables,
defined over the rationals; and suppose that for all real 2, u not both zero
the form Af+ ug is indefinite. Then f and g have a non-trivial common ra-
tional zero.

We shall see in § 2 that the condition of the theorem is the natu-
ral one. Henceforth, in discussing functions homogeneous in a get of
variables, we shall implicitly assume that the variables are not all zero;
in fact it will be convenient to state part of the argument in the lan-
guage of projective geometry.

The idea of Mordell’s proof is as follows. We arrange that f is non-
singular and has signature between —3 and 3 inclusive; then by a change
of variables it can be written in the form

5
(1) f= Z*Eimi% +fi(@n, B2y Byg) -
iz
By putting x; = 0 for 6 <4 <13 we ensure that f = 0 and we reduce
¢ to a form ¢,(#,,..., %) in five variables. We can certainly find a ra-
tional zero of g, — and thereby a common rational zero of f and g — if
¢, is indefinite. But the possibility of making g, indefinite depends only
on real and not on rational conditions; for if we have any real trans-
formation of variables which takes f into the form (1) then we can find
a rational transformation as close as we like to it which also takes f into
the form (1).
If we apply the analogous argument to a pair of forms in 11 variables,
we arrive at a form g, in only four variables. This may not have a zero
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even when it is indefinite; but one expects that an indefinite quadratic
form in four variables will usually have a zero, and hence that the argu-
ment can be carried through if the reduction of f is chosen with suffi-
cient care. This turns out to be so. With the natural modifications of
the previous notation, consider the situation at the stage when we have
split off three products from f, thereby reducing it to the form

)
f = 15+ @y g+ 23 2, -+ fy (8645 Tay Ly, Broy F11) -

We must next split off a term 2, from f,; and the way in which we
do this determines the quadratic form g, (2, ®,, %5, %), Obtained from
g by setting the other seven variables equal to zero. We must ensure that
¢, represents zero; and for this it iy sufficient that it should do so in
every p-adic field, including the reals. But the form g, (2,, @,,xy, 0)
already represents zero in almost all p-adic fields; and it does not depend
on the way in which we split off @, 2, from f,. The problem of doing this
in a satisfactory way turns out therefore to be local rather than global;
and this makes it much easier. Even so, it can only be done under further
conditions. One is that the earlier stages of the reduction should be ‘gen-
eral’ in a sense which is defined later. The other is that certain p-adic
fields are excluded; these are the reals and those p-adic fields (with p
finite) for which the kernel of f has dimension 3. There are only finitely
many of these fields; and we can choose the first two stages of the
reduction of f so that already g,(w, %, 0,0) represents zero in these
fields.

It is natural to ask whether the theorem proved in this paper is hegt
possible; and if not, whether it can be improved without using a radi-
cally new idea. For the local case, Demyanov [2] has shown that two quad-
ratic forms in 9 variables have a common zero in any p-adic field; this
result is best possible. (A simpler proof has been given by Birch, Lewis
and Murphy [1]). With a suitable reality condition, one expects this result
to hold even over the rationals. Indeed we may cut down the number
of variables even further by posing the problem in a local-to-global form.
Pet T, 9 be two quadratic forms in % variables, and suppose that f =g = 0
is soluble in every p-adic field — with if necessary a stronger condition
over the reals. For what value of # do these conditions imply that fre=yg=0
Is soluble over the rationals? The most interesting case is when 7 == 5.
The variety f =g = 0 is now the surface given by the intersection of
two quadrics in four dimensions. It ig birationally equivalent to a plane,
though in general only with the help of a field extension. For a detailed
account of its geometry, see Segre [6] or Rao [4].

There seems no hope of modifying the argument of the present pa-
Per so as to use a form g in only three variables. The only other way to
save a variable, without an entirely new approach, is to waste orllyltwo
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variables instead of three in the analogue of the function f; in (1). We
are therefore led to the following problem:

Let f, g be quadratic forms in 10 variables. Is there a form in the pencil
defined by f, g whose kernel has dimension two or zero?

(The kernel of a quadratic form is the part left when we have split
off as many products as possible; it is well defined, by Witt’s Lemma.)
Certainly this is not always true; but if the pencils for which it is false
form a small enough exceptional class one could hope to deal with them
by special arguments. In particular, suppose that no form in the pen-
cil hag rank less than 9, that is, that the ten roots of the equation
det(f-+Ag) = 0 are all distict. Then the problem above becomes a purely
local problem, for there is a finite set & of primes p with the following
property: if p¢ then no form of the pencil has kernel of dimension
greater than two over the p-adie numbers. But I have been unable to
find any plausible line of attack on the local problem.

2. Before embarking on the proof of the theorem, it is convenient
to obtain some preliminary results. We first put the reality condition
into the form in which we shall actually use it. It is the natural condi-
tion for the problem; for if there is a form of the pencil generated by
f,g which is definite, then the manifold given by f=g =0 can have
no real points. Again, suppose that the form Af+ ug is semi-definite
for some real 2, x not both zero. Then the real points on Af-4 ug = 0 are
just those of a real linear subspace, and the rational points are those
of the maximal rational linear subspace contained in it. The problem
of finding rational solutions of f = g = 0 therefore reduces, in this case,
to that of finding zeros of a single quadratic form in fewer variables.

LemvA 1. Let f, g be real quadratic forms in n variables. Then

(i) the mamifold f = g = O contains real points if and only if Af+ug
is never definite for any real A, u;

(ii) if f is indefinite there exist points on f = 0 giving either sign to g
if and only if Af+g is indefinite for all real 1.

Since the degree of g is even, it makes sense to talk about the sign
of g at a point of projective space. Now suppose that h is any quadratic
form in » variables. The real manifold % = 0 is not empty if and only
if  is not positive definite; and in this case it is connected. Moreover it
separates the projective space into two disjoint parts, defined by k> 0
and A < 0, if and only if A is indefinite.

We can now prove the Lemma. The necessity in (i) is trivial; so
we may assume that f=g = 0 contains no real points and Af-+-pug is
never definite, and obtain a contradiction. For given 1, 4 with x 3 0,
the manifold Af+ ug = 0 does not meet f = 0 in real points; it therefore
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lies entirely in f >0 or entirely in f < 0. Suppose (4, u) runs through
the points of the open semicircle %: A°+u® = 1, u > 0; and let M,, M,
be the sets of those (4, u) in ¥ for which fhe real manifold Af+ ug = 0
lies in f> 0, f < 0 respectively. Then M,, M, are disjoint sets, closed
in %, whose union covers €. Since this is impossible, we have 2 contra-
diction; and this proves (i).

The proof of (i) is similar. Again the necessity is trivial; so we assume,
say, that g > 0 whenever f = 0, and that if+g¢ is indefinite for all real
4, and obtain a contradiction. For any fixed A, the set of real points at
which 4f+g¢ < 0 is open, connected and mnot empty; and it does not
meet f = 0. It therefore lies either entirely in f > 0 or entirely in f < 0;
for if it met both these we would obtain a representation of it as the
union of two disjoint open sets, which is impossible. Let A, 4, be the
set of values of A for which the region Af+¢ < 0 les in f > 0, f < 0, re-
spectively. Since f is indefinite, 4, and A, are neither of them empty;
and they are disjoint open sets whose union is the real numbers. This
is impossible, and the contradiction ecompletes the proof of the Lemma.

It is convenient to recall here some elementary facts about quadratic
forms and quadries which will be needed below. Let f be a quadratic
f?rm in » variables, with rank 7; and let @ be the quadric in (n— 1)-dimen-
sional projective space whose equation is f = 0. If H is any hyperplane,
then @NH can be regarded as a quadric in (n—2)-dimensional space.
Let its rank be 7;; we shall need to know the relation between r; and
r. Suppose first that @ is non-singular, so that n = r. Then @ NH has
rank r—1 in general, so that it too is non-singular; but it has
rfmk r—2 if H is a tangent hyperplane to . If % > then the
singular points of ¢ form a linear space L of dimengion n—r—1. If H
does not contain L, then QNH has rank » ; and if » < n—1 the singu-
larities of QNH are just the points of HL. If H contains L then in gen-
eral QNH has rank r—1; but it has rank »—2 if H touches @ at a non-
singular point of Q.

Suppose now that f, g are two quadratic forms in n variables, and
that the general form of the pencil generated by f, g is non-singular.
T&s (4, ) moves on the circle 2+ 4’ =1, say, the form Af+ ug varies
in the pencil. Of the forms thus obtained, at most 2n are éingu]ar. The
mgna,_ture of f--ug only changes as we pass through a singular form;
and it changes by at most twice the nullity of the form. (The nullity 01,’
a quadr?,tie form is the number of variables minus the rank.) Moreover
the nullity of the form is at most the multiplicity of the corresponding
va.l.ue (?f Alp as a o0t of the equation det(Af+- 4g) = 0. That we cdn have
striet inequality here is shown by the example f = o}, g = w,@,. All

these results are ical: . ’1
ization. classical; and they can easily be proved by diagonal-
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It is natural to deal at this point with the proof of the theorem in
the case to which the remarks above do mnot apply.

Lemmva 2. Let f, g be rational quadratic forms in n variables, such
that every form of the pencil generated by f, g s singular. Then f, g have
a common rational zero.

Let » < » be the maximum of the ranks of the forms in the pencil.
That the form Af+ ug should have rank less than r involves a set of non-
trivial algebraic conditions on 1, u; hence these fail almost always, and
so for some rational A, z. By a rational change of basis for the penecil
we may assume that f has rank »; and by a rational change of variables
we can put it into the form

f=ayi+.. . +ay,

where the a; % 0. Let us write also g = 3 > by¥,y;, and consider the
determinant of the form obtained from f--eg by setting all but the
first 7+ 1 variables to zero. If we assume that ¢ is small then the deter-
minant is

3br+1,r+1n (%Y +0 () =0

gince f+ ey has rank at most ». Hence b,,,,,; = 0, and the point at
which 4,,; = 1 and all other y; = 0 is & common zero of f, g. This pro-
ves the Lemma.

For later use, we translate into geometric terms the process of split-
ting off a product %, from a quadratic form fin n variables. We assume
that the rank of f is at least 2 and that f = 0 has non-singular rational
solutions. Let P, be a non-gingular point on f = 0, and let P, be any
non-singular point on f = 0 not on the tangent at P,. Such a point P,
exists, for rational points are everywhere dense on the real part of f = 0;
moreover the relation between P; and P, is symmetrie. If we choose
a coordinate system such that the tangent planes at P, P, are x; = 0,
x, = 0 respectively and all the other coordinates hyperplanes pass through
P,P,, then we shall have

f=cmay+fi(as, ...
for some non-zero c.

Retaining the same notation, suppose also that f is non-singular.
Let ¢ be a fixed non-singular quadratic form not a multiple of f; and let
h, which need not be rational or even real, be a singular form in the pen-
cil generated by f and g. Let & = 0 be the polar hyperplane of P, with
respect to g = 0. Since the rational points on f =0 are dense in the
Zariski topology, we can choose P so that it is not on g = 0 and & = 0
does not contain all the singular points of » = 0; for since g is non-singu-
lar there is no point common to all possible hyperplanes & = 0. Simi-
larly we can choose P,, for fixed Py, so that z, = 0 does not touch the

y &)
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restriction of g = 0 to & = 0 nor coincide with & = 0, and P, is not
on », = 0; and if the rank of & is less than n—1 then z, = 0 does not
contain all those singular points of # = 0 which lie on & = 0. Moreover,
it i3 obvious that all these restrictions are compatible with P, P, being
ag close as we like to assigned real or p-adic points on f = 0, for finitely
many p.
It may clarify things to restate this in purely algebraic terms. Then

we can split off w2, from f and find a

51 = w1+02w2+ . -‘l"cnwn.
guch that

g =0 E+0(@,..., 7)),
where b, # 0. Moreover the restriction of g to & =, = 0, or of g, to
2, = 0, is non-singular; and if », », are the nullities of h and of its restri-
ction to & = m, =0, then », <» always and » = »—2 if » > 1. Since
there are effectively only finitely many possible %, we can engure that
this last condition holds for all of them.

3. In this section we prove two Lemmas which will be needed for
the proof of the main theorem. The first deals with a special case which
requires an ad hoc argument; it has been separated off in order not to
confuse the main line of the proof.

Levma 3. Under the conditions of the theorem, suppose that there cwist
Ay p mot both zero such that the form If +ug has rank at most 6. Then f, g
have a non-trivial common rational zero.

Note that in the statement of this Lemma we do not assume that
A, 4 are real.

Suppose first that the pencil contains a rational form of rank at
most 6. By a rational change of basis of the pencil we may suppose that
this is f; and by a rational change of variables we can write it in the
form f = f(w, ..., %). If the coefficient of 4% in g were 0 we would have
& common rational zero of f and g; so without loss of generality we can
assume that it is positive. By Lemma 1 (ii) there are real points — and
S0 rational points — on f = 0 which make g negative; and by a rational
qhamge of variables on @y, ..., %, only we can assume that one of them
1}es 0 @ = ... =u; = 0. Thus, in particular, the coefficient of a2 in f
is zero. Now let g, be the form obtained from g by setting @y = ... == J,
= 0; g, is an indefinite quadratic form in 6 variables and therefore hau;l
a non-trivial rational zero. This extends in an obvious way to the com-
mon zero of f and g that we are seeking.

.Thus Wwe may assume that the forms of rank 6 or less in the pencil
are irrational. After Lemma 2 we may also take f to be non-gingular. Thus
the root§ of the equation det(Af4-g) = 0 are one simple rational one and
two conjugate ones a and o, each with mulbiplicity 5; each of o and o
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generates a quadratic extension % of the rationals, and the correspond-
ing forms af-+-¢ and a'f-g have rank 6. Let L, L' be the linear spaces
of their singular points; they are defined over %, conjugate over the ra-
tionals, and have dimension 4. Moreover, they do not intersect; for their
intersection would be a singular point of every form of the pencil, and f
is non-singular. Hence the least linear space containing both of them
is a rational space of dimension 9, which by a change of variables we
can take to be 2, = 0. Now we can find a linear transformation defined
over k which has z, = x, and takes af-+g¢ into the form #&(z,..., %)
with coefficients in %. Suppose that this transformation implies

(i=2,...,6),

where the y; are rational linear forms in the x;; and for convenience
write %, == ;. The y,; are linearly independent; for otherwise we could
find a rational point at which they all vanished, and this would be a com-
mon point of L, L'. Hence it is enough to show that we can choose them
rational and not all zero so that h(z) = 0. But we can find a zero of
h(z) in %k, by Hasse’s theorem; for if % is & real field then h(2) is indefinite
for both injections of % into the real numbers, by hypothesis. By scaling
we obtain a solution of h(2) = 0 with &, = 0 or 1; and this gives us what
we want. This completes the proof of the Lemma.

The next Lemma is purely local; it is needed to ensure that the
final stage of the reduction is satisfactory. In its statement, 0 is to be
regarded as a p-adic square; thus in applying it we can treat the squares
as a closed set. The condition on the kernel of f’ is vital; without it the
Lemma would be false for every p.

LEMMA 4. Let p be a finite prime and let f',g" be linearly independent
quadratic forms in B variables defined over the p-adic nwmbers. Suppose
that f' is mon-singular and its kernel has dimension 1, and that the value of
g’ at each p-adic zero of f' is a square; then there is a form of rank 1 in the
pencil generated by f', g'.

Since we can add a multiple of f' to ¢* without altering hypothesis
or conclusion, we may assume ¢’ non-singular. Let L be any line on f'=0
defined over the p-adic numbers; then the restriction of ¢’ to L is singular
gince any form of rank 2 represents some non-squares. In geometric
terms, L touches or lies in ¢’ = 0. But we find L by choosing any p-adic
point on f' = 0 and joining it to any other p-adic point on the intersection
of f = 0 with the tangent plane at the first point — and such L exist
because the kernel of f* has dimension 1. Thus the set of lines I is, in the
Zariski topology, dense in the set of all lines on f' = 0; and so any such
line touches g’ = 0. In particular, it follows that the tangent hyperpla-
nes to f' = 0 and ¢’ = 0 at any common point are the same. Since the

2y == Yt alfigs
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coordinates of the tangent hyperplane are linear in those of the original
point, we deduce either that f' = 0 and g’ = 0 are the same or that their
intersection lies entirely in a hyperplane. The first possibility has been
explicitly ruled out; the second implies that there is a form of rank
1 in the pencil generated by f, g'. For let the hyperplane be y, =0,
where ¥, is & linear form in the original variables whose coefficients may
be irrational. The restrictions of f’, g’ to y,= 0 are, after scaling, iden-
tical. Hence f'—g' = y,¥, for some y,. But the intersection of y, = 0
with f = 0 must lie on ¥, = 0; and this can only happen if ¥, is a mul-
tiple of #,. This proves the Lemma.

4. We can now embark on the proof of the theorem. After Lemmas
2 and 3 we may assume that Af---ug is non-singular in general and has
rank at least 7 if 1, u are not both zero. We consider the signature of
A+ pg as (1, p) moves round the circle A’ p* = 1. This is an odd integer
except perhaps at the finitely many points for which Af-- ug is singular;
these points are its only discontinuities and it has a jump of at most 8
at them. Since it is an odd funetion of (1, u), it takes both positive and
negative values. Hence there is an interval on the unit circle on which
it is absolutely bounded by 3; and this interval contains rational points
(4, p). Thus by a rational change of basis of the pencil, we may henceforth
agsume that f is non-singular and has signature absolutely bounded by 3,
and ¢ is non-singular,

Now let & be the seti of those finite primes p for which the kernel
of f over the p-adic numbers has dimension 3. The set & is finite, for if
we make f integral any odd prime in & must divide the determinant
of f. Our next step will be to split off two products from f, taking it into
the form

[ = e1@atmauy - f (a5, ..., Byy);

and we must do this in such a way that the binary quadratic form obtained
from ¢ by putting @; = 0 for ¢~ 1, 3 is indefinite and represents zero
in each p-adic field for which pes.

We choose real points P, P,, of f=0 guch that J(Preo) >0
?Jnd g(P3s0) << 0, which is possible by Lemma 1 (ii); and by a small change
in Py, we further ensure that neither point is on the tangent hyperplane
at th«la of;her. The restrictions of f, g to any 8-dimensional linear subép‘cme
are distinct, since the forms of the pencil which these restrictions vg‘mn-
erate have rank ab least 3; thus we can find a real point P, which is on
I = 0 and on the tangent hyperplanes to it at P, P, bub na;t on g =0.
Wlthout loss of generality we may agsume that 9(P3) < 05 for other-
wise We'interehange Py, Py, and change the sign oafQ g. ’

) Again, for each p<¥ we choose a p-adic point Py, on f = g = 0 at
which the tangent hyperplanes to f=0and g=0 gre distinet. That
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there is a p-adic point on f = g = 0 we know from Demyanov’s theorem;
if the tangent hyperplanes were the same we could by a p-adic change of
variables take the point to be (1,0, 0,...) and the coincident hyperpla-
nes to be y, = 0. Then we should have

f=anyatfilWey - yn)y =09+ g¥sy s n)
for some non-zero a, b; and the intersection f = g = 0 would be given by
bfo—age =0, 1= —a 'y

Hence p-adic points would be everywhere dense on this intersection in
the Zariski topology; and since f = 0 and g = 0 do not touch at a gen-
eral point of the intersection, we can choose P, to satisfy the conditions
stated. Given P,, we choose Py, on f = 0 and on the tangent hyperplane
at Py, to f = 0, but not on that to g = 0; and we then choose Py, onf=10
and not on the tangent hyperplane to it at Py,. The line Py, P, lies enti-
rely in f = 0; let Py, be the point where it meets the tangent hyperplane to
f = 0 at P,,, so that Py, is distinet from P,,. The line Py, P, meets g = 0
in two distinet p-adic points, and so the restriction of g to if, in any
convenient coordinates, will have determinant minus a non-zero p-adic
square. Hence any line near enough to it will have the same properties.

We now choose & rational point P; on f=0 near to P, and
each Py,, and similarly for P,; and in addition we impose on P,, P,
the conditions stated at the end of §2. With the same notation
as there we have

f=am@+fol@s, ..., 2), §= by gy (@, -y 1),

where b, > 0, & = ;- ¢p&,+...; and if g, is the restriction of g, to
2, = 0 then f,, g, are non-singular and no form in the pencil generated
by them has rank less than 7. Now let P, be a rational point on f, = 0
near to Ps, and the Py,; we can clearly make this as near as we need
provided we make P,,P, near enough to the corresponding points. P,
is initially defined in the space of wg, ..., #1,; but we may extend it to
the original space by putting z;, = x, = 0. We also define P, on f; = 0
but not on the tangent hyperplane at P, to it; and as before we impose
the additional constraints given at the end of § 2. Then with the obvious
notation we have
fo =@+ ful@sy ooy Bu)y G = by &34 g3 (Byy +ovs 1)

where £ = #;+ Cy®,...; and by¢+by << 0 whence b, << 0. Moreover,
if g, is the restriction of g, fo #, = 0 then fa» g5 are non-singular and no
form in the pencil generated by them has rank less than 5. Finally, P, P,
is near Py,Py, and so meets g = 0 in two points defined over the p-adic
numbers; in other words b, &+ b, & represents zero over the p-adic num-
bers for each pes.
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The next stage of the reduction is analogous except that we have
1o local conditions to trouble us. It enables us to write

fo =52+ Fs(@y ooy mn), g =b; £ G5 (T y ---y @11)

with & = @5+ cs62+...; and if g; is the restriction of g to x5 = 0 then
f5, g6 ave non-singular and no form of the pencil generated by them hag
rank less than 3. Moreover we may assume that b; # 0; for otherwise
we cal obtain a rational selution of f = ¢ = 0 by putting w; =1, & =
L=, =0, =0 =..=0.

Now let %' be the finite set of these primes p such that by & -4 b, &4
-+ by £ does not represent zero over the p-adic numbers. We have arran-
ged that %' contains no prime of ., and we can therefore apply the result
of Lemma 4 to the forms f; and by b,b, g5 for each pes’. For each of them
we obtain a p-adic point P, on f; = 0 such that b, byb; g, (P,) i8 not
a p-adic square. Let P; be a rational point on f; = 0 o near to each P,
that it has the same properties; by a further change of variables we may
take it to be (1, 0,0, 0, 0). Let b, = g;(P;) = 0 and consider the linear
subspace given by

By = By = Ty = Wy = Wy = By = y; = 0.

On this we have f=0 identically; and since &, &, &, #; are an acecept-
able system of homogeneous coordinates we can write the restriction
of g in the form

by E1-F by £+ b5 &5+ by af

But this is an indefinite quadratic form which represents zero in every
p-adic field. (The only difficulty is with the pe%’, for which we appeal
to the theorem that a quaternary quadratic form which does not repre-
iqent zero in a p-adic field must have determinant a p-adie square.) Hence
it represents zero over the rationals; and this representation extends
in an obvious way to a rational solution of f = ¢ = 0. This completes
the proof of the theorem.

References
[1] B. J. Bireh, D. J. Lewis and T. G. Murphy, A J. M
oo, 16145, > phy, Amer. J. Math. 84 (1062),
[2] V. B. Demyanov, Izv. Akad. Nauk. SSSR 20 (1956), pp. 307-32
f . . N . 307.324.
(3] L. J. Mordell, Hamb. Abh. 23 (1959), pp. 126-14&&) o

[4] C. V. H. Rao, Proc. Lond. Math. Sec. 17 (1019 272
» . . , . 272.305.
[5] C. Segre, Math. Ann. 24 (1884), pp. 313-444. PP '

TRINITY COLLEGE, CAMBRIDGE

Regu par la Rédaction le 20. 12. 1963

icm®

ACTA ARITHMETICA
IX (1964)

Simultaneous representation by adjoint quadratic forms
by
G. PaLL (Baton Rouge, La)

Dedicated to Professor L. J. Mordell

1. Introduction. Consider an n-ary quadratic form ¢ with real coef-
ficients, and its adjoint form ¢'. Denote their matrices by A = (ay) and
A' = (aj;), so that ag i the cofactor of the element @ in the determi-
nant of A. Two real numbers m and m’ are said to be simultaneously rep-
resented by ¢ and ¢’ if there exist integers @;,2; (! =1,...,n) such that

n n
v 1ot ’
2, %Rty 0= Zwizi.

=1 i=1

n
(1) m = 2 @y, m o=
ig=1

The pair of column vectors z = (x;) and & = (2;) is called a simultaneous
representation. The representation is termed primitive if each vector is
primitive, that is the n components of each vector are relatively prime.

The notion of simultaneous representation was first introduced by
. Bisenstein [1], as part of an expression for his invariant system for
a genus of ternary quadratic forms. The extension of Eisenstein’s idea
to m-ary quadratic forms, due to H. J. S. Smith [2] and H. Minkowski
[3], involved the sequence of leading minor determinants in the matrix
of A. It is interesting that the definition we have given above allows
a quantitative development, which is the main purpose of this article.
An algorithm will be given which produces all the simultaneous repre-
sentations of given m and m’' by ¢ and ¢', each sef of primitive represen-
tations (a set being an aggregate Wz, W'z’, W running over the unimo-
dular automorphs of @) being associated with a unique class of quadratic
forms in n—2 variables and a certain set of solutions of certain quadratic
congruences modulo m and m’. A formula similar to those of Smith, Min-
kowski, and Siegel [4] for the weighted number of simultaneous represen-
tations by a genus, exists for the weighted number of simultaneous re-
presentations by the system of classes of a genus and the adjoint genus.

Ag an example, the number of simultaneous, primitive solutions of
(2) m=wi+aoytay, w = B+vtyE, 0= oY+ Yt B,

where m and m’ are coprime positive integers, is 24gg’, where g and g’


GUEST




