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We wish, in the present short paper, to study the structure of the
class group of cohomologically trivial modules over a finite group @,
on introducing the notion of this class group in analogy to that of pro-
jective class groups; for projective class groups, see Rim [9], [10], Swan
[12], [14]. It turns out, mainly by virtue of Schanuel’s lemma (cf. Swan
[13]) and the characterization of cohomologically trivial modules by
projective dimension (Nakayama [7], Rim [9]), that our class group is
in fact isomorphie to the projective class group; such isomorphism appears
already at the level of Grothendieck groups. The advantage, or reward
rather, of dealing with the class group of cohomologically trivial mod-
ules is, however, in that modules of finite order may be taken as class
representatives. Indeed, we shall prove that the elements of the Grothen-
dieck group of (finitely generated) cohomologically trivial modules
represented by modules of finite order form a splitting subgroup isomor-
phic to the class group of cohomologically trivial modules. Toward the
end of our paper, we consider the case where @ is a cyclic group of prime
order, and we represent the class group in this case by residue-modules
of cyclotomic ideals, making use of Rim’s result [9] on the projective
class group of the group G.

1. Grothendieck group of finite-dimensional modules. Let A be
a (left) Noetherian ring, and let M = M, be the category of all finitely
generated (f.g.) A-(left-) modules with finite projective dimension. The
Grothendieck group & (M) associated with the category N, or the Gro-
thendieck group of f.g. finite-dimensional A-modules, in short, is by
definition the factor group of the free abelian group generated by the
(A-) isomorphism classes (M) of modules M in 9N modulo the subgroup
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generated Dy the elements of form (M)—(M)y—(M") with M, M', M M
forming an exach sequence

0= M M- MN"—0
in M. By (M) we denote its element represented by (M), or by M, in
ghort.

In this number we shall show that the group &(9M)is isomorphic,
in a natural manner, with the Grothendieck group ®& (P) associated with
the category P = P, of all £.g. projective A-modules. By the nature of
projective modules, this latter group is explained in terms of splitting
exact sequences, and thus in terms of direct sum decompositions, which
makes both the notion itself and its handling simpler. We denote by
[P] the element of the group ® (D) represented by (the isomorphism class
(P) of) a f.g. projective module P.

Now, let M be a f.g. finite-dimensional A-module, i.e. an object in

M, and let
(1) 0<«~M <fP0<—...+—P,L<—O

be its projective resolution of finite length with f.g. projective A-modules.
To M we associate the element

(2) [Pol— P11+ 4+ [P4]

of B(P). We contend that this element (2) of & (D) is independent of the
choice (1) of a projective resolution (of finite length by f.g. projective
modules) of M. For, let

0« M<~—Py<«... <P« 0

also be a projective resolution of M. Supplementing one of the sequences
with terms 0, if necessary, we may assume h = h'. And, if h (= h') =0,
then the contention is trivial. So, suppose h (=h') > 1. We have
@) 0 <M <Py~ K <0,

0 <M <Py« K <0

with K, K’ denoting the kernel of the maps P, < P,, P} < P; respecti-
vely. We have also two exact sequences

0 <K <P, <P, «...
0 <K' <P, <P, «<...

<Py « 0,

<« P;, <0,

From these two exact sequences we derive the exact sequences
0 «E@P, < P@P; <Py ... « P« 0,

0« K @Py «<Pi@P, < Pj « ...« P, <0,

with easily conceivable significances of first several arrows in each of them.

(4)
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Now, by Schanuel’s lemma (cf. Swan [13]) the exact ‘sequen(*es
(3) entail an isomorphism

(5) EQP, ~ k' ®P,.

S0, in (4) we have, essentially, two projective resolutions of a single
module. If we here assume (that P,,P;,..., P, are also f.g. and)

[P, @Py]— [Py]+...F [P3] = [P{@P,]1— [P;]+...F [P1],
then

[(Pol—[P1]+ [Po]— ... £ [Pa] = [Pyl [Pi]+ [Po]—... £ [P3]-

This reduces the problem to the case of projective resolutions, (4),
of length << h. Repeating the argument we arrive at a case of two se-
quences of length 0 (with 3 arrows in each), which is rather trivial.

Thus we have proved, with Schanuel’s lemma as the main tool

LeymA 1. With each f.g. finite-dimensional A-module M, the element
(2) of the Grothendieck group G (D) is uniquely associated, where P; are f.g.
projective A-modules in an exact sequence (1).

It is evident that the element (2) is determined uniquely by the
isomorphism class of 3. So, mapping (M) to (2) (and extending the map)
we obtain a homomorphism into &(P) of the free abelian group gene-
rated by all isomorphism eclasses of f.g. finite-dimensional A-modules.
We assert

LEMMA 2. In this homomorphism, defined by (M) —(2) (with (1)
exact), an element of form (M)—(M')— (M") is mapped to 0 of G(P)
when we have an exact sequence

(5) 0->M M- M" —0.
To prove this, we choose % sufficiently large so that we have exact
sequences
0 <M «Py<..<P,<0,
0«M' <P <... <Py <0
with f.g. projective A-modules (possibly 0) P;,P;. By Cartan-Eilenberg
[2], Chap. V, Prop. 2.2, there exists then a projective resolution (by f.g.

projective modules)
0<«M «Py<«...<Pp <0
of M, such that we have an exact sequence

0—P,—>P;, P >0
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for each #=0,1,...,%. The element (M)—(M')—(M") is wap-
ped to

([Po]— [Pyl £ [Pu) = ([P ] — [Pi]+ ... £ [PA])—
— ([P 1= [P 1+... £ [P}])

= ([Py]—[Py]— [Py D= ([P 1= [Pi]= [P/ D)+ ... &
£ ([Pu]— [P~ [P]) =

We now see, by our lemmas, that (M} -> (2) (with (1) exact) defines

a homomorphism
o: B(M) - B(P)
of (M) into B(P).

On the other hand, each object in 9P is evidently an object in N
(and each map in P is a map in M). By [P]-—> (P> we have thus
a homomorphism

¢ B(P)->BM)

of G(P) into B(M). ., is epimorphic. For, the exact sequence (1) entails
indeed

> = Py — P+ (Pyd— =Py

) 'I‘h.e composite go: is the identity map of &(P). It follows, since
¢ 18 epimorphie, that both o and . are isomorphic:

B (M) ~ B(P).
So we have

) _PROPOSITION 1. The Grothendieck groups & (P) and G (M), of f.g. pro-
].ectwe A-modules and f.g. finite-dimensional A-modules respectively, are
isomorphic by the natural isomorphism associating [P] in & (D) with (P)
in G(OM). o

Remark 1. We have been, as we shall be too, considering (f.g.)
(left-) modules over a (left-) Noetherian ring 4. In the case of a general
non-Noetherian ring 4, we have, in order to make a same thing, merely
to rgstrict ourselves to the category of f.g. finite-dimensional A-~1110(]ﬁ1(;3
having a resolution of finite length by f.g. projective /l—modules.‘

Remark 2. The same argument holds also for the Grothendieck
grqups 9f noxn-f.g. (i.e. not necessarily f.g.) projective modules and non-f.g
finite-dimensional modules (with A Noetherian or not). However theix.'
(‘%rothendieck groups (which are thus essentially a same thing) are Eesseil—
tially a same thing also with the Grothendieck group of free inodules
and are) trivial; they are identity groups. ’
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2, Class groups. In the isomorphism of Proposition 1 the subgroup
of B (P) generated by elements represented by f.g. free modules corresponds
to the subgroup of & (M) generated by elements represented by f.g. free
modules. The factor group €(P) of G(P) modulo the said subgroup is
called the projective class group; cf. Rim [9], [10], Swan [12], [14]. The
factor group (M) of G (M) modulo the above said corresponding sub-
group may perhaps properly be called the class group of finite-dimension-
al modules. These two class groups, €(P) and €(M), are thus isomor-
phic, by the isomorphism induced by the isomorphism of Proposition 1,
and are essentially a same thing. The projective class group is some-
times denoted by C(A4).

3. Cohomologically trivial modules. Let @ be a finite group. We
consider the case where A is the group ring Z(G) of @ over the rational
integers Z. A @-(equivalently, Z(@)-)module M is called cohomologically
trivial when its (Artin-Tate) cohomology groups HY(G, M) (i =0, +1,
42, ...) are all 0. In [7] the writer showed that every f.g. cohomologically
trivial module is finite-dimensional (indeed of dimension <{1) (and con-
versely); Rim [9] has proved, by a much better method, that the same
holds for non-f.g. modules too (cf. Serre [11]). Thus, in the case of A
= Z(@) our category M of f.g. finite-dimensional (G-, i.e. Z(G)-) modules
is nothing but the category of f.g. cohomologically trivial (G-) modules,
and our result may be interpreted as: the Grothendieck group of f.g. co-
homologically trivial modules (resp. the class group of cohomologically tri-
vial modules) over a finite group G is essentially the same thing as the Gro-
thendieck group of f.g. projective modules (resp. the projective class growp)
over G. (Here we use the term class group of cohomologically trivial
modules in the same way as the term class group of finite-dimensional
modules.) The projective class group €(P) in group case is often denoted
by C(&).

Remark 3. The subgroup of the Grothendieck group ® (M) of f.g.
cohomologically trivial modules generated by elements represented by
f.g. free modules may also be characterized as the subgroup generated
by elements represented by f.g. regular modules. For, (a free module
is evidently regular while) a regular G~-module has, by definition, a form
Z(6) ®; M, with a Z-module M, and, if M, ~ F|F' with Z-free modules
F,F', we have Z(G)®;M,~ Z()®,F|Z(G)@F with Z(&)QzF,
Z(G) @z F" free over Z(@); if here Z (&) ®zM, is (Z(@)-, equivalently Z-}
f.g. then M, (isomorphic with (Z (&) ®ZJI0)G) is (Z-) f.g. and F,F’ may
be taken f.g.

Remark 4. If M is cohomologically trivial, then proj. dim M is
(not only finite but) <1 as is remarked above. So, M has a projective
resolution of form 0 « M < P, < P, < 0 (P; projective). If M is f.g.
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then P,, P; may be taken f.g., and the element () in & (IN) corresponds
by our map g, to the element [Py]— [P,] in G (P). If we further choos:(:
P, (f.g.) free to have 0 < M « F « P < 0 exact (F f.g. free, P f.g 1)1';):
jective), then the class of (M) in € (M) corresponds to the class of ‘—[P
inG(P) = C(6). :

4. Cohomologically trivial modules of finite order. In the same
note [7] (Proposition 6) the writer also showed that every f.g. projeé‘rivé
G-module P has a Z-rank divisible by the order of 6. Using this fact and
using characters as well as an analysis of a cyclic group case, Swan [12]
(Tt}eorem 8.1) showed that @ ®,P is free over the group rixig over the
rationals @. It follows then that there is a (f.g.) free G-submodule‘ 'Ir"ig
P such that the residue-module P/F is of finite order. This residue.-mo-
dule M = P[F is evidently cohomologically trivial and <M> belongs
to the same element (class) in the class group of cohomologically triviil
irgm;dszlei Ia; <Pt>}:l Since the class group of cohomologically trivial ‘modulm

entia. e same thi jecti ‘
S, hayv Jre ng as the projective class group, as we have

PROPOSITION 2. Ewery element (class) i
( 2, 7 the class group C(M
Fo}o;:owéioaily ;"wml modules over a finite group @ contafmspmz (elewzm(g
of the Grothendieck group &(IM)) represented b i ivia
G-module of finite order. Y ol by eohomologically rivit
o ﬁnl\iTow, consider the ea,t'egory N of cohomologically trivial G-modules
te order. Our Proposﬁnon entails that the composite of the natural
?'mp of the G“rrothen.dleck group B (N) to €(M) and the map g in Section 1
vlj:zf;se to ¢ mgic(:;mn 1C): induces an epimorphism of € (N) to the projecti-
88 group ) = € (G); this is almost i r iti
but is somewhat weaker ﬂ;an it. eauivalent to our proposition,
The kernel, &, of this epi i i
: . pimorphism (or, equivalently, of the epi-
g?;%?;sm (G) é‘a‘l) ->S,J(9R) induced by the natural homomorpyh,ism ® (‘:R(;Ii
contains the subgroup, &, generated b ,
| y elements repre-
Z?rnteg b.y regular G-modules of finite order. Indeed, S is con’ﬁai]:\l:)d
v eady in the kernel R, of the natural homomorphism of 6(‘52 into
(M); S = K (< Q). o ) into
e ]Ef;é 31 (f.g.) ;egular G-module ¥ is always a rasidue-module of a (f.g.)
froe . e modulo a (f.g.) free submodule (cf, Remark 3), and if N iy <;f
e order, then. the two free modules are isomorphi , .
considering Z-ranks. PR 4 we see by
(e Ni[s(:)ﬁ(:-pﬁin si?aggoul; )6 every element of &(N) is represented by
. s of) a cohomologically trivi ini
order itself; observe that ever L tinity opaodule of finite
¥ (G-)module of finite order i i
(G- er -
module of a regular module of finite order, (The above epiiio?‘pﬁzlriusf
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B (N) to C(P) plus this fact as well as the fact that & is contained in
the kernel & of the epimorphism recovers Proposition 2 entirely).

We now show that our kernels § and &, of the epimorphism &(9) —
- (M) (or, of G(9N)— C(P)) and the homomorphism B (N) — G (M)
respectively, coincide in fact. For, since & is contained in &, and since
every element of &(N) is congruent modulo & to an element represented
by a module itself, it suffices, in order to show R = (whence =) &,
to prove that an element of ® (M) represented by a module N belongs
to ®, whenever it belongs to . However, N is then a residue-module
of a f.g. free module modulo a f.g. free submodule, 0 <N « Fy, < F; <0
(exact), as was noted in Remark 4. Here F, ~ F, as a consideration
on (Z- or Z(G)-) ranks shows. Thus R = R,. (Instead of Remark 4,
we might use merely the existence of a (f.g.) free resolution for N.)
Remark 5. Our subgroup S of G(N), generated by elements re-
presented by regular modules of finite order, is in fact actually smal-
ler than ® = &, (provided G # 1). To see this, let » be a prime and let
1. (N) be, for a (cohomologically trivial) module N of finite order, log
(r-component of the order of N¥). L,(N) is a function of the element in
®(N) represented by N, and can be extended to an additive function
on ®(N) as we readily see. For every element of our subgroup the
function takes a value divisible by the order of @, as we see also easily.
On the other hand, we shall presently see that if » is congruent to 1 mo-
dualo the order of @ then Z+Z (operated by @ trivially) represents an ele-
ment of ®(MN) belonging to the kernel in question. Clearly 1.(Z/rZ) is 1,
and is not divisible by (G:1). Now, for the above contention, observe
the isomorphism Z/rZ ~ Z (@)[% where 9l is the ideal of Z(@) consisting of
elements ¥ a,0 (a,¢Z) with Y a, divisible by 7. It suffices to show that 2
oeG o
is isomorphic to Z () whenr =1 mod (G: 1). Let r =14+ (G:1)h and con-
sider the element % =141 Y o in Z(G). We want to show 2 = Z (G

(=uZ(@)). Clearly ue2. On the other hand, 1—o¢ = (1—o)4eZ(G)u
for every o<G. Hence, Z'mﬁasgmn mod Z(G)u for every element

N, (7,¢Z) in Z(@). In particular, r =1+h(G:1) =% mod Z (G)u and
'r”eZ(G)u. For Ya,0el we have Z’aﬁazZ’aa:—:OmodZ(G)u. Thus

o a a
A = Z(G)u (= uZ(G) and this relation shows that « is a non-zero-
divisor. Hence 2 ~ Z (&) as was asserted. (This is merely an ad hoc ob-
servation, and it is quite plansible that it is & special case of & more general
relation. In fact, in case G is & cyclic group of prime order p, we shall
see, in Seetion 6, that Z |77 is isomorphic to the residue-module of Z(G&)
modulo a submodule isomorphic to Z(G) whenever r is an integer prime

to p.)
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5. Splitting structure of the Grothendieck group & (M) of f.g. co-
homologically trivial modules. Leaving & (N) itself, we now consider its
image in ® (M) (which was our original stand in Proposition 2). That &
and ®, coincide means that the image of &(N) in B (IMN) intersects with
the subgroup of ® (M) generated by elements represented by f.g. free
modules by 0 only. Further, since every element of & (N) is represented
by a module itself modulo & (< &) our image of & (N) in B (M) con-
sists of (not only is generated by) elements represented by modules of
finite order. We have thus, naturally aided by Propositions 1, 2 100,

TemoREM 3. Let G be a finite group. The following three groups are
isomorphic in natural way:

(i) the subgroup of the Grothendieck group G (M) of f.g. cohomologi-
cally trivial G-modules generated by elements represented .b@/ (cohomologi-
cally trivial G-) modules of finite order; the subgroup in fact consists of such
elements,

(i) the class group C(M) of (f.g9.) cohomologically trivial G-modules
(modulo f.g. free modules, or, equivalently, modulo f.g. regular modules)
g (1) the projective class group €(P) = C(Q) over G. ’

) .COROLLARY. The Grothendieck group ®(IM) of f.g. cohomologically
trivial modules is the direct product of the subgroup congisting of ele-
ments represented by (cohomologically trivial) modules of finite order
and the subgroup generated by elements represented by f.g. free modules
(or, equivalently, by elements represented by f.g. regular modules)
The? same structure is transfered to the Grothendieck group G (P) of . g.
projective modules, by the isomorphism in Proposition 1; G (P) is t'hé
dz?"eot product of the subgroup consisting of elements of f70r1n [P]1—[F]
with P _and F projective and free, respectively, and of equal Z-mnks
{or, equivalently, Z(@)-ranks) and the subgroup generated by elements
r(?presented by (f.g.) free modules. The last structure of B(P) can in fac;
directly be o.btained from Nakayama, [7], Proposition 6. Then, from it
we can obtain the former part, for & (M), of our corollary b’y means
Io(f Swan [12], Theorem 8.1. We followed the above somewhat
i ;gvi;yvfray to our theorem in order to get some informations on B (M)

Remark 6. With an arbitrarily given non-zero int d Bver
f.g._ Projective G-module P has a free gubmodule Z}r(;ulé;f Gflf;t ”11)7/1‘;7‘[1(1;5:
z_a,ﬁmte order prime to m (see Theorem 7.1 in Swan [12]). It follows tha;}
in our tl%eorem (as well as in ity corollary) we may re- la,ée “of f" ite
ordfsr” with “of finite order prime to m”. Further, if we rﬁake uqoe ofmtllg
311]21; ’l‘heor(eim 7.2 in [127 (ef. [1], [5]) we may restrict ourselves, in our
v i:)naa,?%ig?lronarg, 1’co modules of finite order (prime to m) gsomor—

e-module of a (left-) ideal of Z (@) (and, in the corollary,
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to elements of form [P]—{Z ()] with a (left-) ideal P of Z(¢) (such that
Z(@)/P has a finite order prime to m).

6. Cyclic groups of prime order. We now consider the special case
where G is a eyclic group of a prime order p. In this case Rim [9] has
determined the projective class group €(P) = € () explicitly, on mak-
ing use of Diederichsen’s [47 (cf. also Reiner [8]) normal form of (inte-
gral) representations of @. Thus, Rim [9] shows that ithe projective class
group C(P), over G, is isomorphic o the ideal class group of (the integer
ring of) the field @ (sp) of p-th roots of 1 over the rationals §. More precisely,
with a £.g. projective module P over & and o denoting a generator of G,
the submodule nP of elements annulled by the operator N =1-
+...+0¢""! may be regarded as a f.g. projective module over the inte-
ger ring J of @(sp), 3 fixed (primitive) pth root s, of 1 operating as o,
and thus determines, by Chevalley’s [3] theory, an ideal class in J. Asso-
ciating the projective class of P with this ideal class in J, we get the said
isomorphism, ag is shown in [9]. We denote this isomorphism, of €(P)
and the ideal class group € (J) of J, by a. Representatives for € (P) are
constructed as follows: Let a be a non-zero ideal in J. Since a/(o—1)a

~ Z[pZ , there exists an element w in a not belonging to (c—1)a. A well
defined G-module structure is given to the direct sum a-+Z of Z-modules
by: o(a, 0) = (08, 0), a(0,1) = (w,1) (aca). We denote the G’—-modul'e
thus obtained by a,. a, is projective, and the projective class of a, 1s
independent of a choice of w. Tndeed y(a,) is isomorphic to the ideal a.
If we let a run over a system of representatives for the ideal class group
in J, then a, runs over 2 representative system for the projective class

group C(P) over G.

We now turn to the class group C(M)
dules over G. Naturally the above constructed representatives for C(P)
form a representative system for G (M) too. We wish, howeve?, to get
representatives as modules of finite order. The answer iy simple: if a runs
over a system of representatives prime to p for the ideal class group @(J )
of J, then J/a (regarded as @-module with ¢ operating as the multipli-
cation of s,) runs over & repregentative system for C(M). (Th1-15, b‘y tu.rn-
ing to (M), from C(P), we may construct class Tepresentatives inside
of the cyclotomic integer ring J.) To be more precise, denote by o1 the

1
composite of the isomorphic map of €

(ON) to €(P), induced by ¢ (=17
Proposition 1), with the isomorphic map « of G(P) to €(J). Then we
have

ProrostrioN 4. If a is a (n
ring J of the cyclotomic field Q(8p)y
JJa (with o operating as the multiplication
an element (class) of the class group (M)

of cohomologically trivial mo-

on-zero) ideal prime to P in the integer
the cohomologically trivial G-module
of $p) of fimite order represents
which is mapped by a, to the in-
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verse of the ideal class of a. So, if @ runs over a system of representatives
(prime to p) for the ideal class group C(J) of J, then J Ja runs over a repre-
sentative system for €(M).

To prove this, let p be the ideal (s,—1)J. Then a & p and there exists
an element w in a not belonging to p. As wé¢(o—1)J (= (s,—~1)J = )
(even more) wé¢(c—1)a, we may construct the G-modules J,, = J-+Z
and @, = a-Z by the procedure described above. a, is, in natural
way, & G-submodule of J,, and we see readily J,/a, =~ Jja. Rither
from this or, more directly, from the fact that the order of J/a iy prime
to the order p of ¢, the G-module J fa is seen to be cohomologically trivial.
Further, J,, is a free (G)-module (with a single generator) since N () m2
the unit ideal of J. The projective class of a, is mapped by « to the ideal
class of a. It is now clear that J/a represents an element of € (M) map-
ped by a, to the inverse of the ideal class of a.

Remark 7. If b is a (non-zero) ideal not prime to p, then the (f-mo-
dule J/b is never cohomologically trivial. For, every element of the sub-
module p~'b/b is invariant by &, while NJ = 0 and, even more, N (J 6)=0,
N denoting the operator 1+ o--...+ ¢"! ag before.

Let us next rather start with an arbitrary cohomologically trivial
G-module M of finite order. We want to determine the ideal class of J
corresponding to the element of ®(9MN) represented by M. M is a direct
sum of G-submodules each of which has a prime power order. Together
with M, these primary components of M are cohomologically trivial. So,
it is sufficient to consider a case where M has a power of a prime num-
ber I as its order. First, we assume that I is prime to p. Let I =11,...[,
be the decomposition of I into prime ideals in J ; it is, naturally, well
known that if f is the smallest positive exponent with ¥ = 1 mod p then
f§=p—1, but we do not need to use this. The group ring (Z[1Z)(Q)
over Z(lZ is decomposed into mutually orthogonal g1 simple ideals.
More pl:ecisely, it is the direct sum of an ideal, %0, iSomorphic to Z/1Z
and an ideal isomorphic to (Z 1Z) (G)/N((Z /ZZ)(G)), and this last residue-
%nodule i3, as it is isomorphic with J/IJ, a direct sum di+...+g of g
ideals 3; such that 3; ~ J/I;. Similarly, for any natural number”t the
group ring (Z[IZ)(6) is a direct sum Do+914-...4p, of ideals y, such
that 9, ~ Z[I’Z (operated by @ trivially) and 9, ~ Jf for 4 =1 . g-
As ., = lJ is prineipal in J, #1+...+3 represents an elem’ent, of
G (M) belonging to the unit clags of C(M). Then 3, (~ Z/12Z) represents
an element of‘GS(‘JJl) belonging to the unit class of € (M), since tﬁe same
Is the case With 3+ @1+ ... +§) = Z(G)[IZ(G). The same is the case
Wlth Z/l? too. Every (Z(l'z) (Gy-module is, as the theory of wuni-serial
rings (thhe [61) shows, a direct sum of submodules each of which is
isomorphic to a residue-module of one of 90391y +..y 9y, thus to a module
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of form Z(FZ or J[Ii (1 <i<g). Now, owr M is a (Z/I'Z)(@)-module
for a sufficiently large ¢, and our consideration can be applied to it. In
view of Proposition 4 and the above observation on Z /l”Z we have now
easily

ProprostrioN 5. Let M be a (cohomologically trivial) G-module having
a fintle order prime to p. M is a direct sum of G-submodules M, such that,
for each u, M, s isomorphic either to a module of form Z|mZ (opera-
ted by G trivially) or to a module of form J [a, with a non-zero ideal a,
wn J. M represents an element (class) of the class group GC(IM)
mapped by ay to the inverse of the ideal class (in J) of the product of
those ideals a,.

Next, just a word for a cohomologically trivial module of order
a power of p. Naturally, ¢-modules of form (Z [9'2)(G) are eohomologi-
cally trivial, and, indeed, regular. In fact, every regular G-module of
order a power of p is a direct sum of modules of this form. But,
there are cohomologically trivial G-modules of order a power of p which
are not regular, as somewhat complicated construetions show. It does
not seem to be simple to analize them generally. So we close this
short paper by stating a conjecture that every cohomologically trivial
G-module of order a power of p represents the unit element of the
class group C(9M).

Addendum: Just after I had finished proof-reading of the present note (May
17, 1964), I was given, by the kindness of Dieudonné, a chance to see the galley-
proofs of a paper “The Whitehead group of a polynomial extension” by Bass, Heller
and Swan, to appear in Publ. Math. IHES., 1964. Proposition 1 in § 1 of the present
note is given, in a more general setting of abelian categories (satisfying certain con-
ditions), in § 4 of this joint paper. As is stated there, the result was essentially given
by Grothendieck, in the case of categories of coherent sheaves over a connected al-
gebraic variety; Théoréme 2, Borel-Serre, Le théoréme de Riemann-Roch, Bull. Soc.
Math. France 86(1959), pp. 97-136.
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IX (1964)

Remark concerning integer sequences
by
K. F. Rore (London)

It seems highly plausible that there are various limitations to the
extent to which a sequence of natural numbers can be well-distributed
simultaneously among and within all congruence classes; unless the
sequence is in some sense “nearly” the sequence of all natural numbers
or the empty sequence. Many conjectures of this type appear to be very
intractable, particularly those closely related to the well-known conjec-
ture that every sequence of positive upper asymptotic density contains
arbitrarily long arithmetic progressions. The object of this note is to remark
that, on the other hand, a very simple argument yields at least some

information concerning irregularities of distribution of an arbitrary se-

quence with respeet to congruence classes. The theorem below is repre-
sentative of the type of result that can be proved in this way.

THEOREM. Let N be a natural number and let N be a set of distinct
natural numbers not exceeding N. For any natural number m < N and any
congruence class b modulo g, we denote by Pgz(AN'; m) the number of ele-
menis of A which do not exceed m and lic in the eongruence class; and we
denote by D% (A5 m) the corresponding “expectation”, namely

Pgu (A5 m) = qPyp(F5 m)
where £ is the set {1,2,..., N} and

N
) g =N Y1,
net”

For each m, and every natural number q, we define

i
@) Volm) = Y {@pu(W5 m)—@pp (A5 m)}.
h=1

Then, for all natural numbers @,

Q N 0 .
(3) N S Vam) 40 3 V) > nl—n)eN,
g=1

g=1 m=1
where the implicit constant is absolute.
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