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1. A point of Ruclidean n-space R, will be denoted by x =
(&1, Loy ..., &) Where @y, Ty, ...,&, are real numbers and A, will
denote the lattice of all such points with integral x,, s, ..., ¥,. II K
is a closed convex body in R,, sypunetrical about the origin O and
with non-zero content V¥, we denote its distance function by F(x);

. 50 that K may be defined by the inequality F(x) <1, where F(ax)
[ has the usual properties

(i) F(O)= 0, F(x) >0 unless x = O,

(il) F(tae) = [t| F(x), for all real ¢{ and any x,

(i) (o, +a5) < F (o) +F ().
Also, for any real ¢ and any fixed point @eR,, the set of all points of
the form tr- a, where ®<K, will be denoted by tK -+ @. Then the in-
homogeneous minimum p of K, relative to .1,, may be defined as the
least ¢ for which the set of all convex bodies tK-+u, where ued,, com-
pletely cover R,. Similarly, the successive minima A <A <... </
of K, relative to A,, may be defined by taking 4 to be the least ¢ for
which the body #K contains % linearly independent points of A,. Under
the general heading of transference theorems in the geometry of num-
bers (c.f. J. W. 8. Oassels [1], Ch. XI, § 3), there are various inequali-
ties relating u to one or more of the numbers 1, ..., 2,. Of those which
involve just one of the successive minima, perhaps the simplest and best
known is

(1) no< Endg.

Without modification, this is the best inequality of its type, for in the
special case when K is the generalized octahedron K,,

@) F(a)= ool +... o] <1
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we have 4, = A =... =4, =1 and
(3) x = max min F(é—g)

teRy, gedy

) 11 1

#) j),lmAnF(h-—g),_ h = PHCK L

g<do

1

=5

1

(5) =3 iy,

However, more interest hag attached to the problem of relating u to
the homogeneous minimum 4, and the best known bounds in this direction,

(6) p < HgH{D") b,

. g =Fn)"r
(7) p <k (if g =), o

follow from applications (by M. Kneser and B. J. Birch) of Macbeath’s
“Sum-theorem” in the quotient space R,/d, (for the history of these
and similar inequalities, see [1], Ch. 3, pp. 310-315). So far as ¢ is con-
cerned, the classical theorem of Minkowski on convex bodies gives ¢ > 1
but in special cases ¢ can be exponentially large, e.g. in the case of the
hypersphere when F(x) = (z}-+...+22)"* we note that A = 4, =...
= A, and

n_—nj2 1 2 \"?
¢=2"t"" 1440yt ~|l—1 , a8 n-»oco.
e

This example also serves to illustrate the fact that when ¢ is much larg-
er than n and the successive minima are comparable in size, the classi-
cal inequality (1) is more effective. For such cases, it is of interest to
enquire whether (1) can be modified and improved. For this purpose,
I introduce a modified set of successive minima(?)

(8) M. <H

of K, relative to A4,, and define A} (k =1,2,...,%) to be the least ¢
for which there is a d = d(t) such that the “displaced” body tK -+d
contains a k-dimensional sebt of k41 points of A,. It is evident that
A and 23 are related by the inequalities

(9 P <H<kh (k=1,2,...,n),

(*) More precisely, it should be noted that, since K is closed and bounded,
#, A 2% are attained bounds.
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for 4, K contains % linearly independent points of ,, which together
with O give a set of the type required, while the difference body
DMK +d) = 2){ K contains k linearly independent points of 4,. More-
over, the inequality on the left of (9) is exact(?), for in the case when
X iy the “box” max(|z],..., |2.)) <3, we have 1 = 2 immediately,
while A% = 1 follows on considering K--(%, %, ..., 4). Thus there is the
possibility of improving the classical inequality (1) by a factor, depend-
ing on K and lying between { and 1, in replacing 2, by 4. In fact, I con-
jecture that (%)

(10) < ndy,

for all ». This is known to be true for n = 2, (see [2], Lemma 2), but the
proof for this special case does not seem to extend to higher dimensions
without considerable wastage. In this note, I give a purely elementary
argument to secure the slightly weaker result

(11) < dpis

with
n-+1, if n is odd,

(12) p= (1+ 1 ) i n i 0
n —_— if » is even.
' n4+1/’

In any event, by considering the octahedron K, we know that any such
constant p satisfies p =>n. In § 2, we give a proof of the intuitively
obvious result A¥ =1 for K, and in § 3 we calculate u for the modi-
fied octahedron:

(13) K+l +lo 4. e <1,

which plays a special role in the proof of (11), (12) following in § 4.

2, LEMMA 1. For any set (ay, ap, ..., o) 5= (0,0, ...,0)modl, the
inequality -

(14) A ad <1

is satisfied by at most n distinet sets of integers (Ty,&Lay ...y Tn).

Proof. Suppose, if possible, that there exist n+41 distinct integral
sets (@), Loy ..., &y) satisfying (14). By means of the operations (i) a; —
— T —wi @y, (i) @ —a;, ;> —a;, where wu; is an inte-
ger, we may assume that (0,0,...,0) is one of these sets, that

0< o<, a1+a2+...—!—(1,,<1,

(2) On the right of (9), equality oecurs when k == n, K = Kj; but if & <n,
the question is unsettled.

(3) Le., if K can be translated to cover a proper simplex with vertices in ..
then inK-u, wed, constitute a covering of space.
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and that there arve » distinct sets of infegers (ay, @y, ..., @), other than
0,0,...,0), which satisfy (14). Hence x; = 0 or »—1 for all 4, But if
7; =x; = —1 for some 1+ j
(I—e)+(1—e) =2~ (gt @) = 2—(aq+ ...+ a,) > 1.
Hence the only possible values for the left of (14) are
gt at. A=) e, (B=1,2, ..., n).

Bach of these is <1, bub their sum is n+(n—2)(a 4. 4 w,) = n;
a contradiction.

COROLLARY. If K = K,, then
(15) An = 1.

Proof. By the right of (9), A} < 4, and 4, = 1. But, for any 1 < 1,
there are, by Lemma 1, at most » points of A, in the set 1K --d, unless

d = 0 (mod 4,), when d = O is the only point of 4, in the set. Hence
=1, and so Af =

3. LemMA 2. Let ay,y 0y, ...y a, be 1 real numbers. Then there exist
INtegers Xy, Ly, ..., &, such that

(16) i+ ay| oA b o] A (@A ) A (- )|
3(n4-1), if n is odd,
< 1
in (1 +- +1) if n is even
with strict inequality, unless
1
W= =y = (modl), when n is odd,
amn
L ” .
==, = + ;2"74:-‘1_ (modl1),  when n is even.

Proof. We may suppose that

1zun2az...2e4 >0, otat sty < g,
by applying one or more of the operations
(i) a; = u;-++a;, where wu; is an integer,
(i) {ary eeny ty) = (L~ay, ..., 1—a,),
(ili) permutation of a, ..., a,.
Put
g+ ot =k+6, where 0O <1
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and % is an integer > 0. If k¥ = 0, the values z, = = p, = 0 give
2(a;+...+ @) = 20 < 2; which satisfies (16) unless » = 2. In this spe-
cial case, the 3 values

2t a) =20, o—a+2—0, —otaut2-06,
corresponding to (@, z,) = (0,0), (0, —1), (—1,0) have a sum = 4,

and hence at least one of them is g If & =1, we make the two selec-
tions

T =..=0,=—1, Zr,,2=..=2,=0

and
L =...=Lpy = —1, Xpa=..=0,=0

and denote the corresponding values by
wr=1—a)+...+1—am)+agnt+...+antd,

Yoy = (1—a)F+...+ L= )+ ot +a+1-0.
Note that

Gt op— Oy — e — 0 = 2o+ F ) —kE— O

(a1+ _{_an)—'k—@
2 2k
=—k(k+0)—k—0 = (k—i—@)[——— - 1],
n n
with striet ineguality, unless o, = ... = a,, and

ay = 2(a;+... Fapy)—E—06

e U G —

>z(’”:1)<al+...+aﬂ) @—(k+@>[ (b+1)— 1]

with striet inequality, unless o; = ... = a,. Hence
2k 2k(n—k 2(n—k)
Hh(n—F) 2

P < k— (k+@)[— —1] +6 = o - —-6
and
Pro1 < (B+1)+(1— @)—(k+@)[ (B+1)— ]
— 2 ()= (b4 1)0
n n
Thus,

(k1) e+ (n—E)peon < 2(n—k) (k1)
(n+1), it nis odd (k< 3n—1),

< w2
h in(n—T—-), if 7 is even (% < 3n).
2 \n++1
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4. THEOREM. -

n+1, if n s odd,

i 1 .

(18) pS 2 —-) if nis even.

Aty £ if

Proof. Let. A > 0 be any number large enough to ensure the existence

of a point d = d(1) such that the body AK contains an n-dimensional

set of n+1 points @ —d, a;—d, ..., a,—d, Where? a; ey ('f/, = 9,_17 ey ).

Then it is sufficient to prove that, for any given point £eR,, there
is a point ®ed, of the form

n

19 r = 24y (@ — ) u; =0 (modl)
(19) 2 ;

satisfying

(20) F(s—x) < 1pa,

1 ip s
where p = n+1, if n is odd and =n (1+ m), if » is even. On put-
ting b; = @,—d (i =0,1,2,...,71), We have
(21) F(by) <A

and, from (19), ¢, may be taken in the form

n

@ = D u(b; —b), =0 (modl).

1

Sinee b;—b, (i =1,2,...,n) are linearly independent, by hypothe-
sis, we may express £eR, a8

§ = 2 £i(by—by).
1

Hence, by properties (i), (i), (iii) of the convex distance function F(a),
we have

F(g—) = F{ Y (s wbi— ) (6i—w)) b}
1 1
< Dla—wlF )+ | Y (- )| P (by)

and the result (20) now follows from Lemma 2.
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